Какой адрес использует протокол tcp для выбора какому из приложений направить поступивший пакет
В основе работы глобальной сети Интернет лежит набор (стек) протоколов TCP/IP. Но эти термины лишь на первый взгляд кажутся сложными. На самом деле стек протоколов TCP/IP — это простой набор правил обмена информацией, и правила эти на самом деле вам хорошо известны, хоть вы, вероятно, об этом и не догадываетесь. Да, все именно так, по существу в принципах, лежащих в основе протоколов TCP/IP, нет ничего нового: все новое — это хорошо забытое старое.
Человек может учиться двумя путями:
- Через тупое формальное зазубривание шаблонных способов решения типовых задач (чему сейчас в основном и учат в школе). Такое обучение малоэффективно. Наверняка вам приходилось наблюдать панику и полную беспомощность бухгалтера при смене версии офисного софта - при малейшем изменении последовательности кликов мышки, требуемых для выполнения привычных действий. Или приходилось видеть человека, впадающего в ступор при изменении интерфейса рабочего стола?
- Через понимание сути проблем, явлений, закономерностей. Через понимание принципов построения той или иной системы. В этом случае обладание энциклопедическими знаниями не играет большой роли - недостающую информацию легко найти. Главное - знать, что искать. А для этого необходимо не формальное знание предмета, а понимание сути.
В этой статье я предлагаю пойти вторым путем, так как понимание принципов, лежащих в основе работы Интернета, даст вам возможность чувствовать себя в Интернете уверенно и свободно — быстро решать возникающие проблемы, грамотно формулировать проблемы и уверенно общаться с техподдержкой.
Принципы работы интернет-протоколов TCP/IP по своей сути очень просты и сильно напоминают работу нашей советской почты.
На конверте письма будет написано примерно следующее:
Теперь мы готовы рассмотреть взаимодействие компьютеров и приложений в сети Интернет (да и в локальной сети тоже). Обратите внимание, что аналогия с обычной почтой будет почти полной.
Таким образом имеем следующую практически полную аналогию с нашим обычным почтовым адресом:
В компьютерных сетях, работающих по протоколам TCP/IP, аналогом бумажного письма в конверте является пакет, который содержит собственно передаваемые данные и адресную информацию — адрес отправителя и адрес получателя, например:
Конечно же в пакетах также присутствует служебная информация, но для понимания сути это не важно.
Обратите внимание, комбинация: "IP адрес и номер порта" - называется "сокет".
В нашем примере мы с сокета 82.146.49.55:2049 посылаем пакет на сокет 195.34.32.116:53, т.е. пакет пойдет на компьютер, имеющий IP адрес 195.34.32.116, на порт 53. А порту 53 соответствует сервер распознавания имен (DNS-сервер), который примет этот пакет. Зная адрес отправителя, этот сервер сможет после обработки нашего запроса сформировать ответный пакет, который пойдет в обратном направлении на сокет отправителя 82.146.49.55:2049, который для DNS сервера будет являться сокетом получателя.
Как правило взаимодействие осуществляется по схеме «клиент-сервер»: "клиент" запрашивает какую-либо информацию (например страницу сайта), сервер принимает запрос, обрабатывает его и посылает результат. Номера портов серверных приложений общеизвестны, например: почтовый SMTP сервер «слушает» 25-й порт, POP3 сервер, обеспечивающий чтение почты из ваших почтовых ящиков «слушает» 110-порт, веб-сервер - 80-й порт и пр.
Большинство программ на домашнем компьютере являются клиентами - например почтовый клиент Outlook, веб-обозреватели IE, FireFox и пр.
Номера портов на клиенте не фиксированные как у сервера, а назначаются операционной системой динамически. Фиксированные серверные порты как правило имеют номера до 1024 (но есть исключения), а клиентские начинаются после 1024.
Повторение - мать учения: IP — это адрес компьютера (узла, хоста) в сети, а порт — номер конкретного приложения, работающего на этом компьютере.
Рассмотрим подробнее, как это работает. Ваш провайдер явно (на бумажке, для ручной настройки соединения) или неявно (через автоматическую настройку соединения) предоставляет вам IP адрес сервера имен (DNS). На компьютере с этим IP адресом работает приложение (сервер имен), которое знает все доменные имена в Интернете и соответствующие им цифровые IP адреса. DNS-сервер «слушает» 53-й порт, принимает на него запросы и выдает ответы, например:
Отправляется запрос (точнее пакет с запросом) DNS серверу на сокет 195.34.32.116:53. Как было рассмотренно выше, порт 53 соответствует DNS-серверу - приложению, занимающемуся распознаванием имен. А DNS-сервер, обработав наш запрос, возвращает IP-адрес, который соответствует введенному имени.
Диалог примерно следующий:
Приняв от нас запрос, веб-сервер обрабатывает его и в нескольких пакетах посылает нам страницу в на языке HTML - языке разметки текста, который понимает браузер.
Наш браузер, получив страницу, отображает ее. В результате мы видим на экране главную страницу этого сайта.
Зачем эти принципы надо понимать?
Например, вы заметили странное поведение своего компьютера - непонятная сетевая активность, тормоза и пр. Что делать? Открываем консоль (нажимаем кнопку «Пуск» - «Выполнить» - набираем cmd - «Ок»). В консоли набираем команду netstat -anи жмем <Enter>. Эта утилита отобразит список установленных соединений между сокетами нашего компьютера и сокетами удаленных узлов. Если мы видим в колонке «Внешний адрес» какие-то чужие IP адреса, а через двоеточие 25-й порт, что это может означать? (Помните, что 25-й порт соответствует почтовому серверу?) Это означает то, что ваш компьютер установил соединение с каким-то почтовым сервером (серверами) и шлет через него какие-то письма. И если ваш почтовый клиент (Outlook например) в это время не запущен, да если еще таких соединений на 25-й порт много, то, вероятно, в вашем компьютере завелся вирус, который рассылает от вашего имени спам или пересылает номера ваших кредитных карточек вкупе с паролями злоумышленникам.
Также понимание принципов работы Интернета необходимо для правильной настройки файерволла (проще говоря брандмауэра :)). Эта программа (которая часто поставляется вместе с антивирусом), предназначенна для фильтрации пакетов - "своих" и "вражеских". Своих пропускать, чужих не пущать. Например, если ваш фаерволл сообщает вам, что некто хочет установить соединение с каким-либо портом вашего компьютера. Разрешить или запретить?
Ну и самое главное — эти знания крайне полезны при общении с техподдержкой.
Напоследок приведу список портов, с которыми вам, вероятно, придется столкнуться:
Несколько специальных IP адресов:
Что такое маска подсети и шлюз по умолчанию (роутер, маршрутизатор)?
(Эти параметры задаются в настройках сетевых подключений).
Все просто. Компьютеры объединяются в локальные сети. В локальной сети компьютеры напрямую «видят» только друг друга. Локальные сети соединяются друг с другом через шлюзы (роутеры, маршрутизаторы). Маска подсети предназначена для определения — принадлежит ли компьютер-получатель к этой же локальной сети или нет. Если компьютер-получатель принадлежит этой же сети, что и компьютер-отправитель, то пакет передается ему напрямую, в противном случае пакет отправляется на шлюз по умолчанию, который далее, по известным ему маршрутам, передает пакет в другую сеть, т.е. в другое почтовое отделение (по аналогии с советской почтой).
Напоследок рассмотрим что же означают непонятные термины:
TCP/IP — это название набора сетевых протоколов. На самом деле передаваемый пакет проходит несколько уровней. (Как на почте: сначала вы пишете писмо, потом помещаете в конверт с адресом, затем на почте на нем ставится штамп и т.д.).
IP протокол — это протокол так называемого сетевого уровня. Задача этого уровня — доставка ip-пакетов от компьютера отправителя к компьютеру получателю. По-мимо собственно данных, пакеты этого уровня имеют ip-адрес отправителя и ip-адрес получателя. Номера портов на сетевом уровне не используются. Какому порту, т.е. приложению адресован этот пакет, был ли этот пакет доставлен или был потерян, на этом уровне неизвестно — это не его задача, это задача транспортного уровня.
TCP и UDP — это протоколы так называемого транспортного уровня. Транспортный уровень находится над сетевым. На этом уровне к пакету добавляется порт отправителя и порт получателя.
TCP — это протокол с установлением соединения и с гарантированной доставкой пакетов. Сначала производится обмен специальными пакетами для установления соединения, происходит что-то вроде рукопожатия (-Привет. -Привет. -Поболтаем? -Давай.). Далее по этому соединению туда и обратно посылаются пакеты (идет беседа), причем с проверкой, дошел ли пакет до получателя. Если пакет не дошел, то он посылается повторно («повтори, не расслышал»).
UDP — это протокол без установления соединения и с негарантированной доставкой пакетов. (Типа: крикнул что-нибудь, а услышат тебя или нет — неважно).
Как посмотреть текущие соединения?
Текущие соединения можно посмотреть с помощью команды
(параметр n указывает выводить IP адреса вместо доменных имен).
Запускается эта команда следующим образом:
«Пуск» - «Выполнить» - набираем cmd - «Ок». В появившейся консоли (черное окно) набираем команду netstat -an и жмем <Enter>. Результатом будет список установленных соединений между сокетами нашего компьютера и удаленных узлов.
Имя | Локальный адрес | Внешний адрес | Состояние |
TCP | 0.0.0.0:135 | 0.0.0.0:0 | LISTENING |
TCP | 91.76.65.216:139 | 0.0.0.0:0 | LISTENING |
TCP | 91.76.65.216:1719 | 212.58.226.20:80 | ESTABLISHED |
TCP | 91.76.65.216:1720 | 212.58.226.20:80 | ESTABLISHED |
TCP | 91.76.65.216:1723 | 212.58.227.138:80 | CLOSE_WAIT |
TCP | 91.76.65.216:1724 | 212.58.226.8:80 | ESTABLISHED |
В этом примере 0.0.0.0:135 — означает, что наш компьютер на всех своих IP адресах слушает (LISTENING) 135-й порт и готов принимать на него соединения от кого угодно (0.0.0.0:0) по протоколу TCP.
91.76.65.216:139 — наш компьютер слушает 139-й порт на своем IP-адресе 91.76.65.216.
Третья строка означает, что сейчас установлено (ESTABLISHED) соединение между нашей машиной (91.76.65.216:1719) и удаленной (212.58.226.20:80). Порт 80 означает, что наша машина обратилась с запросом к веб-серверу (у меня, действительно, открыты страницы в браузере).
В следующих статьях мы рассмотрим, как применять эти знания, например общаясь с техподдержкой.
Cтек протоколов TCP/IP широко распространен. Он используется в качестве основы для глобальной сети интернет. Разбираемся в основных понятиях и принципах работы стека.
Основы TCP/IP
Стек протоколов TCP/IP (Transmission Control Protocol/Internet Protocol, протокол управления передачей/протокол интернета) — сетевая модель, описывающая процесс передачи цифровых данных. Она названа по двум главным протоколам, по этой модели построена глобальная сеть — интернет. Сейчас это кажется невероятным, но в 1970-х информация не могла быть передана из одной сети в другую, с целью обеспечить такую возможность был разработан стек интернет-протоколов также известный как TCP/IP.
Разработкой этих протоколов занималось Министерство обороны США, поэтому иногда модель TCP/IP называют DoD (Department of Defence) модель. Если вы знакомы с моделью OSI, то вам будет проще понять построение модели TCP/IP, потому что обе модели имеют деление на уровни, внутри которых действуют определенные протоколы и выполняются собственные функции. Мы разделили статью на смысловые части, чтобы было проще понять, как устроена модель TCP/IP:
Уровневая модель TCP/IP
Три верхних уровня — прикладной, транспортный и сетевой — присутствуют как в RFC, так и у Таненбаума и других авторов. А вот стоит ли говорить только о канальном или о канальном и физическом уровнях — нет единого мнения. В RFC они объединены, поскольку выполняют одну функцию. В статье мы придерживаемся официального интернет-стандарта RFC и не выделяем физический уровень в отдельный. Далее мы рассмотрим четыре уровня модели.
Канальный уровень (link layer)
Предназначение канального уровня — дать описание тому, как происходит обмен информацией на уровне сетевых устройств, определить, как информация будет передаваться от одного устройства к другому. Информация здесь кодируется, делится на пакеты и отправляется по нужному каналу, т.е. среде передачи.
Этот уровень также вычисляет максимальное расстояние, на которое пакеты возможно передать, частоту сигнала, задержку ответа и т.д. Все это — физические свойства среды передачи информации. На канальном уровне самым распространенным протоколом является Ethernet, но мы рассмотрим его на примере в конце статьи.
Межсетевой уровень (internet layer)
Каждая индивидуальная сеть называется локальной, глобальная сеть интернет позволяет объединить все локальные сети. За объединение локальных сетей в глобальную отвечает сетевой уровень. Он регламентирует передачу информации по множеству локальных сетей, благодаря чему открывается возможность взаимодействия разных сетей.
Межсетевое взаимодействие — это основной принцип построения интернета. Локальные сети по всему миру объединены в глобальную, а передачу данных между этими сетями осуществляют магистральные и пограничные маршрутизаторы.
Маска подсети и IP-адреса
Маска подсети помогает маршрутизатору понять, как и куда передавать пакет. Подсетью может являться любая сеть со своими протоколами. Маршрутизатор передает пакет напрямую, если получатель находится в той же подсети, что и отправитель. Если же подсети получателя и отправителя различаются, пакет передается на второй маршрутизатор, со второго на третий и далее по цепочке, пока не достигнет получателя.
Протокол интернета — IP (Internet Protocol) используется маршрутизатором, чтобы определить, к какой подсети принадлежит получатель. Свой уникальный IP-адрес есть у каждого сетевого устройства, при этом в глобальной сети не может существовать два устройства с одинаковым IP. Он имеет два подвида, первым был принят IPv4 (IP version 4, версии 4) в 1983 году.
IPv4 предусматривает назначение каждому устройству 32-битного IP-адреса, что ограничивало максимально возможное число уникальных адресов 4 миллиардами (2 32 ). В более привычном для человека десятичном виде IPv4 выглядит как четыре блока (октета) чисел от 0 до 255, разделенных тремя точками. Первый октет IP-адреса означает его класс, классов всего 4: A, B, C, D.
IPv6 имеет вид восьми блоков по четыре шестнадцатеричных значения, а каждый блок разделяется двоеточием. IPv6 выглядит следующим образом:
Так как IPv6 адреса длинные, их разрешается сокращать по следующим правилам: ведущие нули допускается опускать, например в адресе выше :00FF: позволяется записывать как :FF:, группы нулей, идущие подряд тоже допустимо сокращать и заменять на двойное двоеточие, например, 2DAB:FFFF::01AA:00FF:DD72:2C4A. Допускается делать не больше одного подобного сокращения в адресе IPv6.
IP предназначен для определения адресата и доставки ему информации, он предоставляет услугу для вышестоящих уровней, но не гарантирует целостность доставляемой информации.
ICMP и IGMP
ICMP никогда не вызывается сетевыми приложениями пользователя, кроме случаев диагностики сети, к примеру, пинг (ping) или traceroute (tracert). ICMP не передает данные, это отличает его от транспортных TCP и UDP, расположенных на L3, которые переносят любые данные. ICMP работает только с IP четвертой версии, с IPv6 взаимодействует ICMPv6.
Сетевые устройства объединяются в группы при помощи IGMP, используемый хостами и роутерами в IPv4 сетях. IGMP организует multicast-передачу информации, что позволяет сетям направлять информацию только хостам, запросившим ее. Это удобно для онлайн-игр или потоковой передаче мультимедиа. IGMP используется только в IPv4 сетях, в сетях IPv6 используется MLD (Multicast Listener Discovery, протокол поиска групповых слушателей), инкапсулированный в ICMPv6.
Транспортный уровень (transport layer)
Постоянные резиденты транспортного уровня — протоколы TCP и UDP, они занимаются доставкой информации.
TCP (протокол управления передачей) — надежный, он обеспечивает передачу информации, проверяя дошла ли она, насколько полным является объем полученной информации и т.д. TCP дает возможность двум хостам производить обмен пакетами через установку соединения. Он предоставляет услугу для приложений, повторно запрашивает потерянную информацию, устраняет дублирующие пакеты, регулируя загруженность сети. TCP гарантирует получение и сборку информации у адресата в правильном порядке.
UDP (протокол пользовательских датаграмм) — ненадежный, он занимается передачей автономных датаграмм. UDP не гарантирует, что всех датаграммы дойдут до получателя. Датаграммы уже содержат всю необходимую информацию, чтобы дойти до получателя, но они все равно могут быть потеряны или доставлены в порядке отличном от порядка при отправлении.
UDP обычно не используется, если требуется надежная передача информации. Использовать UDP имеет смысл там, где потеря части информации не будет критичной для приложения, например, в видеоиграх или потоковой передаче видео. UDP необходим, когда делать повторный запрос сложно или неоправданно по каким-то причинам.
Протоколы L3 не интерпретируют информацию, полученную с верхнего или нижних уровней, они служат только как канал передачи, но есть исключения. RSVP (Resource Reservation Protocol, протокол резервирования сетевых ресурсов) может использоваться, например, роутерами или сетевыми экранами в целях анализа трафика и принятия решений о его передаче или отклонении в зависимости от содержимого.
Прикладной уровень (application layer)
В модели TCP/IP отсутствуют дополнительные промежуточные уровни (представления и сеансовый) в отличие от OSI. Функции форматирования и представления данных делегированы библиотекам и программным интерфейсам приложений (API) — своего рода базам знаний. Когда службы или приложения обращаются к библиотеке или API, те в ответ предоставляют набор действий, необходимых для выполнения задачи и полную инструкцию, каким образом эти действия нужно выполнять.
Зачем нужен порт и что означает термин сокет
Приложения прикладного уровня, общаются также с предыдущим, транспортным, но они видят его протоколы как «черные ящики». Для приема-передачи информации они могут работать с TCP или UDP, но понимают только конечный адрес в виде IP и порта, а не принцип их работы.
IP присваивается каждому компьютеру межсетевым уровнем, но обмен данными происходит не между компьютерами, а между приложениями, установленными на них. Чтобы получить доступ к тому или иному сетевому приложению недостаточно только IP, для идентификации приложений применяют порты. Комбинация IP-адреса и порта называется сокетом или гнездом (socket). Поэтому обмен информацией происходит между сокетами. Нередко слово сокет употребляют как синоним для хоста или пользователя, также сокетом называют гнездо подключения процессора.
Из привилегий у приложений на прикладном уровне можно выделить наличие собственных протоколов для обмена данными, а также фиксированный номер порта для обращения к сети. Администрация адресного пространства интернет (IANA), занимающаяся выделением диапазонов IP-адресов, отвечает еще за назначение сетевым приложениям портов.
Процесс, кодирования данных на прикладном уровне, передача их на транспортном, а затем на межсетевом и, наконец, на канальном уровне называется инкапсуляцией данных. Обратная передача битов информации по иерархии, с канального на прикладной уровни, называют декапсуляцией. Оба процесса осуществляются на компьютерах получателя и отправителя данных попеременно, это позволяет долго не удерживать одну сторону канала занятой, оставляя время на передачу информации другому компьютеру.
Стек протоколов, снова канальный уровень
О канальном уровне модели TCP/IP мы рассказали меньше всего, давайте вернемся еще раз к началу, чтобы рассмотреть инкапсуляцию протоколов и, что значит «стек».
Большинству пользователей знаком протокол Ethernet. В сети, по стандарту Ethernet, устройства отправителя и адресата имеют определенный MAC-адрес — идентификатор «железа». MAC-адрес инкапсулируется в Ethernet вместе с типом передаваемых данных и самими данными. Фрагмент данных, составленных в соответствии с Ethernet называется фреймом или кадром (frame).
MAC-адрес каждого устройства уникален и двух «железок» с одинаковым адресом не должно существовать, хотя порой такое случается, что приводит к сетевым проблемам. Таким образом, при получении сетевой адаптер занимается извлечением полученной информации из кадра и ее дальнейшей обработкой.
После ознакомления с уровневой структурой модели становится понятно, что информация не может передаваться между двумя компьютерами напрямую. Сначала кадры передаются на межсетевой уровень, где компьютеру отправителя и компьютеру получателя назначается уникальный IP. После чего, на транспортном уровне, информация передается в виде TCP-фреймов либо UDP-датаграмм.
На каждом этапе, подобно снежному кому, к уже имеющейся информации добавляется служебная информация, например, порт на прикладном уровне, необходимый для идентификации сетевого приложения. Добавление служебной информации к основной обеспечивают разные протоколы — сначала Ethernet, поверх него IP, еще выше TCP, над ним порт, означающий приложение с делегированным ему протоколом. Такая вложенность называется стеком, названным TCP/IP по двум главным протоколам модели.
Point-to-Point протоколы
Отдельно расскажем о Point-to-Point (от точки к точке, двухточечный) протоколе также известном как PPP. PPP уникален по своим функциям, он применяется для коммуникации между двумя маршрутизаторами без участия хоста или какой-либо сетевой структуры в промежутке. При необходимости, PPP обеспечивает аутентификацию, шифрование, а также сжатие данных. Он широко используется при построении физических сетей, например, кабельных телефонных, сотовых телефонных, сетей по кабелю последовательной передачи и транк-линий (когда один маршрутизатор подключают к другому для увеличения размера сети).
У PPP есть два подвида — PPPoE (PPP по Ethernet) и PPPoA (PPP через асинхронный способ передачи данных — ATM), интернет-провайдеры часто их используют для DSL соединений.
PPP и его старший аналог SLIP (протокол последовательной межсетевой связи) формально относятся к межсетевому уровню TCP/IP, но в силу особого принципа работы, иногда выделяются в отдельную категорию. Преимущество PPP в том, что для установки соединения не требуется сетевая инфраструктура, а необходимость маршрутизаторов отпадает. Эти факторы обуславливают специфику использования PPP протоколов.
Заключение
Стек TCP/IP регламентирует взаимодействие разных уровней. Ключевым понятием в здесь являются протоколы, формирующие стек, встраиваясь друг в друга с целью передать данные. Рассмотренная модель по сравнению с OSI имеет более простую архитектуру.
Сама модель остается неизменной, в то время как стандарты протоколов могут обновляться, что еще дальше упрощает работу с TCP/IP. Благодаря всем преимуществам стек TCP/IP получил широкое распространение и использовался сначала в качестве основы для создания глобальной сети, а после для описания работы интернета.
Протокол TCP является одним из важнейших протоколов связи в компьютерных сетях. В этой статье познакомимся с ним поближе.
Что такое транспортные протоколы
Транспортные протоколы (TCP и UDP) используются для передачи информации. Информация передаётся маленькими частями – сетевыми пакетами. То есть поток информации разбивается на много маленьких пакетов.
Каждый пакет состоит из заголовка и самих данных. Заголовок содержит служебную информацию, например порт источника и назначения.
Особенности TCP
Главной особенностью TCP (Transmission Control Protocol) является то, что он гарантирует доставку всех отправленных пакетов. При этом проверяется целостность пакетов и их порядок. Если пакет потерялся или испортился, то получатель запросит эти пакеты у отправителя снова. Если пакеты пришли не в том порядке, то они на принимающей стороне всё равно обработаются в правильном. Этот механизм контроля доставки накладывает дополнительную нагрузку в виде увеличения служебной информации, которую нужно передать вместе с полезными данными.
TCP делит поток информации на сегменты. В одном сегменте может быть несколько пакетов. Каждый сегмент проверяется на целостность, и если все хорошо, отправляется подтверждение передающей стороне. Таким образом подтверждается не каждый пакет, а каждый сегмент, но в сегменте может оказаться и всего лишь один пакет.
Поверх протокола TCP работают многие прикладные протоколы:
TCP пакеты передаются не просто так, а в рамках установленного соединения – которое называют TCP сессией.
Подключение можно выполнить только если вторая сторона прослушивает порт, к которому будет выполняться подключение.
Алгоритм работы TCP
Алгоритм работы TCP следующий:
- Используя трехкратное рукопожатие, между двумя узлами создаётся сеанс связи.
- При отправке пакетов узлы последовательно нумеруют их и рассчитывают контрольную сумму.
- Поскольку все пакеты имеют последовательные номера, то становится видно если какие-то из них отсутствуют. В этом случае отправляется запрос на повторную отправку пакета.
- Если для какого-то пакета не совпала контрольная сумма, то отправляется запрос на повторную отправку пакета.
При открытии даже одной веб странички создаются несколько TCP соединений для:
- html страницы;
- каждого CSS и JavaScript файлов;
- каждого изображения.
И для каждого такого соединения вначале устанавливается сеанс, что замедляет передачу данных.
Заголовок TCP пакета
Заголовок TCP пакета состоит из следующих полей:
- Порт отправителя.
- Порт получателя.
- Порядковый номер в сегменте (sequence number). В целях безопасности это значение генерируется случайным образом и может быть равно от 0 до 4294967295;
- Номер подтверждения (acknowledgment number). Когда мы подтверждаем определённый пакет, в нем записывается sequence number подтверждаемого пакета.
- Длина заголовка (data offset). В этом поле указывается длина заголовка TCP пакета и где начинаются фактические данные.
- Зарезервированное поле. Эти биты зарезервированы для будущего использования.
- Флаги. Необходимы для дополнительной функциональности. Например, позволяют установить или разорвать соединение, включить или выключить защиту от перегрузки сети и тому подобное.
- Размер окна (Window Size). Указывается количество байт, считая от последнего номера подтверждения, которые готов принять отправитель данного пакета. То есть, какой у него в данный момент времени размер буфера.
- Контрольная сумма (Checksum). Используется для проверки на наличие ошибок при приеме или передачи пакетов. Рассчитывается с учетом заголовка (кроме контрольной суммы) и самих данных.
- Указатель срочности (Urgent pointer). Используется, если стоит флаг URG. По этому значению определяются срочные данные и они сразу же передаются приложению. Остальные данные попадают в буфер.
- Дополнительные опции. Необязательно, но используются почти всегда.
- Заполнение (Padding). Дополняет заголовок, пока он не закончится на 32-разрядной границе. Всегда состоит только из нулей.
Флаги в заголовке TCP
Создание TCP сессии
Для установления соединения использует трехкратное рукопожатие.
Первый этап. Клиент отправляет на сервер пакет с флагом SYN. При этом клиент устанавливает порядковый номер сегмента на случайное значение A.
Второй этап. В ответ сервер отвечает пакетом с флагами SYN и ACK. Номер подтверждения установлен на единицу больше принятого (A+1). Поскольку сервер также будет отправлять данные, то для себя он тоже выбирает номер первого пакета, который будет другим случайным числом B.
Третий этап. Клиент отправляет ACK на сервер. Порядковый номер устанавливается равным A+1, а номер подтверждения устанавливается на B+1.
На этом этапе клиент и сервер получили подтверждение соединения и образовали двухстороннюю связь.
Передача данных в TCP
Теперь разберём пример передачи данных в уже установленном сеансе.
Клиент отравляет запрос к серверу. Поскольку данные поместились в один пакет TCP, он получил флаг PSH, чтобы сервер не ждал продолжение получения данных. При этом пакет получил 2 флага: ACK (подтвердил предыдущею передачу пакетов от сервера) и PSH.
В ответ на это сервер отправляет пакет ACK с номером успешно полученных данных.
Далее сервер обработал запрос и отправляет данные клиенту. Эти данные делятся на пакеты и отправляются сегментами.
Далее клиент подтверждает, что данные получены отправляя пакеты с флагом ACK.
Завершение сеанса TCP
Завершение сеанса использует четырёхкратное рукопожатие, причём каждая сторона завершает своё соединение независимо.
Когда одна из сторон хочет остановить свою половину соединения, она передаёт пакет FIN, который другая сторона подтверждает пакетом с ACK.
После того, как сторона, отправившая первый FIN, ответила с последним ACK, она ожидает некоторое время прежде чем окончательно закрыть соединение. В течение этого времени локальный порт недоступен для новых соединений.
Соединение может быть «полуоткрытым», и в этом случае одна сторона завершила свою часть, а другая — нет. Завершившая сторона больше не может отправлять какие-либо данные, но другая сторона может. Завершающая сторона должна продолжить чтение данных, пока другая сторона также не завершит свою работу.
Также возможно разорвать соединение трёхкратным рукопожатием, когда первая сторона отправляет FIN, а вторая отвечает FIN и ACK (просто объединяет 2 шага в один). Дальше первая сторона подтверждает завершение сеанса с помощью ACK.
Состояния сеанса TCP
Сеанс TCP может находится в следующих состояниях:
- CLOSED – начальное состояние;
- LISTEN – сервер ожидает запросы от клиента;
- SYN-SENT – клиент хочет установить соединение с сервером и ожидает подтверждение;
- SYN-RECEIVED – сервер получил запрос на создание сеанса, отправил ответный запрос и ожидает подтверждение;
- ESTABLISHED – соединение установлено, идёт передача данных;
- FIN-WAIT-1 – одна из сторон завершает соединение, отправив флаг FIN;
- CLOSE-WAIT – другая сторона переходит в это состояние, отправив подтверждение на FIN, но продолжает передачу;
- FIN-WAIT-2 – первый узел получил ACK, разорвал свое соединение, но еще читает данные;
- LAST-ACK – второй узел заканчивает передачу и отправляет флаг FIN;
- TIME-WAIT – сервер получил пакет с флагом FIN, отправил флаг ACK и ждёт некоторое время, перед окончательным закрытием соединения;
- CLOSING – обе стороны инициировали закрытие соединения одновременно.
Вот мы и познакомились с одним из самых важных протоколов сети Интернет. Разобрались с его особенностями, алгоритмом работы. Узнали про сеансы TCP, пакеты и сегменты.
Прошлый материал был, как раз посвящен TCP IP, сегодня же мы разберем за что отвечает протокол TCP и что это вообще такое.
TCP протокол
Это стандарт, который определяет как нужно устанавливать связь и поддерживать ее, чтобы две программы могли обмениваться данными между собой.
Интересно! Существует еще один транспортный протокол UDP, о нем мы поговорим в следующей отдельной статье, там же и разберем, чем они вообще отличаются друг от друга.
Является именно надежным протоколом так как:
Заголовок TCP протокола
Весит 20 байт, если нет дополнительных опций, вот как он выглядит:
Также, вам может быть интересна статья о том, что такое dns сервер. В ней очень подробно и интересно описано об этой глобальной системе.
Как работает TCP соединение
Соединение отправителя и получателя (два узла) происходит так:
1. Отправитель отсылает получателю специальный пакет, именуемый SYN, т.е. пригашает к соединению
2. Получатель отвечает уже пакетом SYN-ACK, т.е. соглашается
3. Отправитель отсылает спец. пакет ACK, т.е. подтверждает, что согласие получено
На этом TCP-соединение успешно установлено и получатель с отправителем могут спокойно обмениваться информацией. При передаче все пакеты данных нумеруются, отсылаются подтверждения о получении каждого из них, а потерянные пересылаются заново.
TCP порты
На каждом компьютере установлено, как минимум несколько программ. И сразу несколько из них могут обмениваться информацией, как же их различать? Именно для этого и были придуманы TCP порты, это по сути уникальный идентификатор соединения между двумя программами.
Есть целый ряд уже зарезервированных портов, которые являются стандартом:
Также, стоит отметить, что порты данного протокола никак не пересекаются с такими же, но у UDP. Так, например, порт: 1234 не пересечется с таким же, но у UDP.
В заключение
Вот вы и узнали, что это такое, постарался написать, как можно более понятно, без лишних терминов. Главное знать, как это работает и серфинг в интернете станет еще куда интереснее.
Читайте также: