В 1984 году была изобретена флеш память в какой стране это произошло
История создания USB-флешки началась в Японии в 1984 году, когда компания Toshiba изобрела полупроводниковую перепрограммируемую флеш-память. А конкретно, первую флешку изобрёл японец Фудзи Масуока. В его компании было всего 5 человек.
Кстати, название « флеш» придумал коллега Фудзи. Стирание информации с носителя сопровождалась вспышкой ( фотовспышка с английского flash), и эта ассоциация легла в основу названия нового гаджета.
Первый чип с флеш-памятью типа NAND появился в 1989 году. У него была большая плотность компоновки, благодаря которой создавались микросхемы внушительных объёмов. В 1994—1996 годах был создан и разработан первый стандарт интерфейса USB.
В Конце 1990-ых возникла необходимость в создании накопителя, который по объёму и надёжности превосходил бы дискеты. Накопители Iomega Zip так и не смогли стать стандартом. Высокой цены и низкой надёжности были миниатюрные жёсткие диски Microdrive. Со временем компакт диски, которые позволяли хранить большой объём информации вытеснили накопители на гибких магнитных дисках, но для их чтения необходим был оптический привод.
В итоге самым популярным способом хранения и переноса информации были признаны накопители, подключаемые по интерфейсу USB с флеш-памятью типа NAND. Картридер или дополнительный привод этим накопителям был не нужен. Тем самым, они завоевали первенство среди накопителей. Компактные, с большим объёмом, разнообразными дизайнами, они теперь как мобильные телефоны есть у всех.
Одновременно с этим сингапурская компания Trek Technology представила свою разработку, повторяющую патент от M-Systems. Свое детище ThumbDrive объёмом 8 Мб они презентовали в феврале 2000 года на выставке CeBIT в Германии. Trek Technology смогла доказать свое первенство в Сингапуре, но проиграла иски, поданные в других странах.
С каждым годом флешки становятся все более емкими. Изменяется и их дизайн. Если несколько лет назад можно было приобрести накопитель стандартного типа ( прямоугольный коробок длиной 2−3 см с преимущественно пластиковым корпусом), то в наши дни ассортимент просто поражает воображение. В продаже представлены флешки с корпусом из дерева, силикона, металла, резины, кожи и даже стекла.
И это не говоря о форме. Тут уж точно есть простор для фантазии— в виде животных, карточек, ручек, брелоков любой сложности, ключей, браслетов Одной из самых новых разработок является флешка с распознаванием отпечатка пальца. Эта защитная функция поможет сохранить всю самую важную информацию, хранящуюся на карте, без возможности доступа к ней постороннего лица.
История развития флешки очень увлекательна. Этот гаджет постоянно находится в состоянии эволюции: увеличивается объём памяти, уменьшается размер устройства. Эти накопители компактные, вместительные. Все операции, производимые с ними, происходят максимально — быстро и экономят наше драгоценное время. Тем более, флешку можно использовать как оригинальный аксессуар, а это так важно в наше время, когда каждый хочет выделиться.
Привет, Гиктаймс! Все мы, в той или иной степени, пользуемся цифровой техникой, но далеко не каждый из нас задумывается о том, благодаря чему эта техника работает именно так, а не иначе. В этой статье я расскажу о неотъемлемой части практически любого устройства – о флеш-памяти. Этот компонент используется везде, где только можно: мы сталкиваемся с флеш-памятью сотни раз на день, сами о том не догадываясь. Флеш-память применяется как в портативных гаджетах (ноутбуки, смартфоны, плееры, часы), так и в стационарной электронике (телевизоры, ПК, мониторы и даже стиральные машины). Но если спросить обычного человека о флеш-памяти, первым делом он назовет самые очевидные вещи: SD- и microSD-карты памяти, флешки и тому подобные вещи. На самом деле, она является конкурентом традиционных жестких дисков (HDD), и полноценные твердотельные накопители на ее основе (SSD) появились относительно недавно – во второй половине 90-х годов (да и то, до конца 2000-х их вытесняли вышеупомянутые жесткие диски на магнитных пластинах, а массовую популярность SSD приобрели и вовсе, только в 2012 году.
Как все начиналось
Старожили Хабра наверняка помнят познавательный материал о зарождении SSD и флеш-памяти. Но если «твердотельники» были изобретены на рубеже веков, то обычная флеш-память родилась гораздо раньше, чем могли бы подумать многие из вас. Еще в середине 20 века в одном из подразделений компании American Bosch Arma ученый-баллистик Вэн Цинг Чоу задался целью улучшить блоки памяти координат бортового компьютера ракетной системы Atlas E/F. Но и тогда, появившаяся на свет технология оставалась засекреченной в течение нескольких лет, так как данная организация работала на правительство США, а существование системы Atlas не подвергалось широкой огласке. Но прошло немного времени, и большинство разработок компании были рассекречены, а вместе с ней и технология, которую разработал Вэн Цинг Чоу – она получила название PROM (programmable read only memory).
Принцип работы PROM был довольно прост: память представляла собой координатную сетку, в узлах (пересечениях) которой проводники были замкнуты специальной перемычкой. В тот момент, когда нужно было определять состояние (значение) ячейки с определенными координатами, достаточно было узнать, есть ли ток в пересечении нужных проводников.
Первые успехи
Итак, начало было положено. Но недостатком нового изобретения была чересчур маленькая емкость. Впрочем, у EPROM были и преимущества – высокая скорость и устойчивость к механическим повреждениям.
Следующее крупное продвижение в области развития флеш-памяти было совершено Довом Фроманом из компании Intel. Изучая повреждения вышедших из строя микросхем, он изобрел новый стандарт памяти EPROM. В новинке для сохранения информации использовалось особое движение электронов по чипу, а для стирания данных – мощное ультрафиолетовое излучение. Память EPROM можно встретить в микросхемах BIOS на компьютерах начала IT-эпохи, например, на популярном в те годы на Западе ZX Spectrum, более известном в СНГ под именами Поиск или Magic.
Парни из Intel решили не останавливаться на достигнутом, и в 1978 от лица инженера Джорджа Перлегоса компания представила микросхему Intel 2816, схожую по характеристикам с EPROM, но благодаря тонкому слою изоляции «2816-я» могла стирать информацию и без помощи ультрафиолетовых лучей. Данная архитектура получила имя EEPROM (Electrically Erasable Programmable Read-only Memory). Но у нее была одна весьма значительная проблема: из-за сложностей с реализацией правильной подачи тока на столь тонкий слой диэлектрика, EEPROM была лишена возможности перезаписи (проще говоря, она была «одноразовой»).
В итоге разработчики приняли решение о создании двух типов микросхем на основе EEPROM: первая из них обладала большой емкостью, но не могла быть перезаписана, а вторая была перезаписываемой, но вмещала меньше информации.
Решение этой проблемы нашел инженер Фудзио Масуока из компании Toshiba. Его коллеге процесс стирания данных показался похожим на фотовспышку – именно так и появилось название flash-memory. Инновацию представили публике в 1984 году, в 1988 Intel представила первые коммерческие образцы памяти NOR-flash, и в 1989 году Toshiba анонсировала привычную нам NAND-память.
Сохраняющие информацию микросхемы, получили название Single-Level-Cell (SLC). Наряду с SLC появились альтернативные микросхемы, вмещающие 2 бита информации – Multi-Level-Cell. MLC-чипы получались более дешевыми в производстве, но работали медленно, и были недолговечны. В последние годы появилась eMLC-память (Enterprise Class MLC), способная противопоставить MLC-чипам более высокую скорость чтения и записи, а также увеличенный срок работы. По соотношению цена/качество современные варианты eMLC лишь незначительно уступают SLC, но стоят при этом вдвое дешевле. Если помните, в прошлом году мы подробно рассказывали об устройстве микросхем.
Если говорить о степени развития тех или иных вариантов использования флеш-памяти, то SSD –диски уже имеют намеченный путь развития и довольно быстро дойдут до совершенных характеристик. Куда более интересно обстоят дела с картами памяти: хотя они и не являются «отстающими», потенциал для наращивания скорости и емкости в них заложен более внушительный. Чтобы понять, почему так происходит, расскажем о появлении наиболее распространенных форматов съемных флеш-накопителей.
SD-карты
Шел 1999 год, когда компании SanDisk, Toshiba и Matsushita (ныне известная как Panasonic) скооперировались и приняли решение о создании нового единого стандарта карт памяти, который получил название SD, или Secure Digital. Именно на слове Secure (безопасный) делался основной акцент в имени нового стандарта – карточки получили поддержку DRM или, проще говоря, с их появлением стала возможна цифровая защита авторских прав. Уже в первый год своего существования объединения трех вышеуказанных компаний, они создали организацию SD Association, в которую один за одним подтянулись новые члены, среди которых были и такие гиганты, как Intel, Kingston, Apple, AMD, Canon, Nikon, Samsung, Hewlett-Packard и многие другие. Максимальная емкость первых моделей SD-карточек была равна всего лишь 2 ГБ, но уже совсем скоро появились варианты на 4 ГБ, хоть их и было тяжело встретить в продаже.
На первых порах этого размера было вполне достаточно, но цифровая индустрия не стояла на месте, объемы контента росли семимильными шагами, и в определенный момент пользователи начали ощущать явную нехватку свободного пространства. Поэтому в 2006 году было представлено второе поколение SD-накопителей, получившее название SDHC (Secure Digital High Capacity, или SD-карты с высокою емкостью); их максимальный объем вырос до 32ГБ. У этого формата был лишь один серьезный недостаток – отсутствие обратной совместимости, то есть они «не дружили» со старыми кард-ридерами. Но опять же, время шло, запросы пользователей росли, и нарастала необходимостью в накопителях большей емкости. Таким образом появились SD-карты версии 3.01, или SDXC – Secure Digital eXtended Capacity. Новинка актуальна по сей день, и может похвастаться номинально возможным объемом в 2 терабайта, которых уж точно хватит надолго.
microSD: навстречу мобильной стихии
В 2000-х годах вслед за бурным развитием мобильных технологий пришла потребность в большем количестве памяти. По аналогии с компьютерным миром, в мобильных гаджетах и прочих портативных девайсах (от GPS-навигатора до наушников) стали использоваться microSD-карты. Этот формат популярен и сегодня, а его характеристики при в 4 раза меньшем физическом размере, чем у SD-накопителей, ничем не хуже аналогичных показателей взрослых карточек памяти. Также проводя параллели с SD-картами существуют microSDHC- и microSDXC-форматы, предлагающие аналогичные объемы вмещаемой информации.
На заре становления мобильной эпохи достаточно часто можно было встретить и следующие не пользующиеся сегодня особым спросом форматы: Compact Flash (1994, отличался самой высокой на тот момент скоростью передачи данных – до 90 МБ/с), Memory Stick (1998, максимальный объем был равен 128 МБ), Memory Stick Pro (анонсирован в 2003м, максимальный объем до 4 ГБ, Memory Stick Duo (2003, первые карты были равны половине обычных MS), Memory Stick Pro Duo (2006, карты достигали объема в 32 ГБ), Memory Stick HG-Duo (2008, формат стал последней итерацией MS Duo-карт).
Продолжение следует
Историю карт памяти невозможно представить в виде прямой времени – это сложная запутанная схема. Одни форматы приживались и начинали развиваться, другие оказывались никому не нужны. В следующей части статьи мы поговорим о более экзотических форматах памяти и о причинах их непопулярности.
Спасибо за внимание и оставайтесь с Kingston на Гиктаймс!
Для получения дополнительной информации о продукции Kingston и HyperX обращайтесь на официальный сайт компании. В выборе своего комплекта HyperX поможет страничка с наглядным пособием.
В Конце 1990-ых возникла необходимость в создании накопителя, который по объёму и надёжности будет превосходить дискеты. Накопители Iomega Zip так и не смогли стать стандартом. Высокой цены и низкой надёжности были миниатюрные жёсткие диски Microdrive. Со временем компакт диски, которые позволяли хранить большой объём информации вытеснили накопители на гибких магнитных досках, но для их чтения необходим был оптический привод. В итоге самым популярным способом хранения и переноса информации были признаны накопители, подключаемые по интерфейсу USB с флеш-памятью типа NAND. Картридер или дополнительный привод этим накопителям был ненужен. Тем самым они зяняли первое место среди накопителей. Компактные, с большим объёмом, разнообразными дизайнами, они теперь как мобильные телефоны есть у всех.
Патент на флешку был зарегестрирован в апреле 1999 года, а сама флешка появилась в 2000 году и была названа DiskOnKey. Изобрели её сотрудники израильской компании M-Sistems. В США эта флешка продавалась совместно с IBM и носила на корпусе логотип американской корпорации. Первая флешка имела объём памяти 8 Мб и стоила 50$. Со временем вышли флешки на 16 и 32 Мб и стоили они 100$. Но была ещё одна разработка. Компания Trek Technology(Сингапур) создал свою флешку, повторяющую патент M-Sistems . Эта флешка называлась ThumbDrive, её объём составлял 8 Мб и презентовалась она в феврале 2000 года в Германии.
Первая флешка 8 Гб? Может, мегабайт?
накопители на гибких магнитных досках
У расчленёнки нет региональной принадлежности!
Законопроект
В госдуму внесён законопроект о запрете СМИ упоминать национальность преступников. Поэтому теперь вы никогда не догадаетесь, кто именно на свадьбе стрелял в воздух.
Когда запретили указывать национальность преступника
Как вас теперь называть?
Внезапное
Усман Нурмагомедов опознан как водитель
“Рокировочка по-братски” не прокатила, Камал Идрисов направлен в СИЗО до 11 января, ему грозит 10 лет тюрьмы.
Попытка брата Хабиба Нурмагомедова, бойца Bellator Усмана Нурмагомедова, уйти от ответственности за наезд на полицейского, возможно, провалилась. Все дело в том, что стоявшие на посту у Каспийского аэропорта сотрудники правопорядка узнали в водителе, сбившем одного из них на КПП, Усмана Нурмагомедова. Об этом сообщает телеграм-канал SHOT.
Автомобиль преступников был полностью тонирован, но в момент проезда через КПП боковое окно со стороны водителя было открыто, и сотрудники по фото опознали, что за рулем сидел именно Усман Нурмагомедов. Эту информацию полицейские внесли в протокол следователя по делу.
Теперь для Усмана и его друга Камала Идрисова ситуация серьезно осложнилась, так как к ДТП и оставлению места наезда на полицейского потенциально добавилось лжесвидетельствование. Ведь ранее приятели заявили, что за рулем находился Камал, а Усман спал на заднем сиденье после тренировки. Ну и прицепом там идет рассказ про то, что ребята очень торопились и решили, что не сбили человека, а слегка задели его зеркалом. А после они поменялись местами и за руль сел уже Усман - просто так захотелось.
Сейчас следователи изучают видео с камер наблюдения, чтобы точно установить водителя. Камала же после получения новых данных из-под домашнего ареста перевели в СИЗО, где он будет находиться до 11 января. СМИ утверждают, что ему грозит до 10 лет тюрьмы.
Благодаря компактности, дешевизне, механической прочности, большому объёму, скорости работы и низкому энергопотреблению, флеш-память широко используется в цифровых портативных устройствах и носителях информации. Серьёзным недостатком данной технологии является ограниченный срок эксплуатации носителей, а также чувствительность к электростатическому разряду [Источник 1] .
Содержание
История
Флеш-память была открыта Фудзи Масуока (Fujio Masuoka), когда он работал в Toshiba в 1984 году. Имя «флеш» было придумано также в Toshiba коллегой Фудзи, Шойи Ариизуми (Shoji Ariizumi), потому что процесс стирания содержимого памяти ему напомнил фотовспышку (англ. flash). Масуока представил свою разработку на IEEE 1984 International Electron Devices Meeting (IEDM), проходившей в Сан-Франциско, Калифорния. Intel увидела большой потенциал в изобретении и в 1988 году выпустила первый коммерческий флеш-чип NOR типа.
Характеристики
Скорость некоторых устройств с флеш-памятью может доходить до 100 Мб/с. В основном флеш-карты имеют большой разброс скоростей и обычно маркируются в скоростях стандартного CD-привода (150 Кб/с). Так указанная скорость в 100x означает 100 × 150 Кб/с = 15 000 Кб/с= 14.65 Мб/с.
В основном объём чипа флеш-памяти измеряется от килобайт до нескольких гигабайт.
В 2005 году Toshiba и SanDisk представили NAND чипы объёмом 1 Гб, выполненных по технологии многоуровневых ячеек, где один транзистор может хранить несколько бит, используя разный уровень электрического заряда на плавающем затворе.
Компания Samsung в сентябре 2006 года представила 8 Гб чип, выполненный по 40-нм технологическому процессу. В конце 2007 года Samsung сообщила о создании первого в мире MLC (multi-level cell) чипа флеш-памяти типа NAND, выполненного по 30-нм технологическому процессу. Ёмкость чипа также составляет 8 Гб. Ожидается, что в массовое производство чипы памяти поступят в 2009 году.
Для увеличения объёма в устройствах часто применяется массив из нескольких чипов. В основном на середину 2007 года USB устройства и карты памяти имеют объём от 512 Мб до 15 Гб. Самый большой объём USB устройств составляет 128 Гб.
В основном объём чипа флеш-памяти измеряется от килобайт до нескольких гигабайт.
В 2005 году Toshiba и SanDisk представили NAND чипы объёмом 1 Гб, выполненных по технологии многоуровневых ячеек, где один транзистор может хранить несколько бит, используя разный уровень электрического заряда на плавающем затворе.
Компания Samsung в сентябре 2006 года представила 8 Гб чип, выполненный по 40-нм технологическому процессу. В конце 2007 года Samsung сообщила о создании первого в мире MLC (multi-level cell) чипа флеш-памяти типа NAND, выполненного по 30-нм технологическому процессу. Ёмкость чипа также составляет 8 Гб. Ожидается, что в массовое производство чипы памяти поступят в 2009 году.
Для увеличения объёма в устройствах часто применяется массив из нескольких чипов. В основном на середину 2007 года USB устройства и карты памяти имеют объём от 512 Мб до 15 Гб. Самый большой объём USB устройств составляет 128 Гб.
NAND тип флеш-памяти был анонсирован Toshiba в 1989 году на International Solid-State Circuits Conference. У него была больше скорость записи и меньше площадь чипа.
Стандартизацией чипов флеш-памяти типа NAND занимается Open NAND Flash Interface Working Group (ONFI). Текущим стандартом считается спецификация ONFI версии 1.0, выпущенная в 28 декабря 2006 года. Группа ONFI поддерживается крупнейшими производителями NAND чипов: Intel, Micron Technology и Sony [Источник 2] .
Принцип работы
Элементарной ячейка хранения данных флэш-памяти представляет из себя транзистор с плавающим затвором. Особенность такого транзистора в том, что он умеет удерживать электроны (заряд). Вот на его основе и разработаны основные типы флэш-памяти NAND и NOR. Конкуренции между ними нет, потому что каждый из типов обладает своим преимуществом и недостатком. Кстати, на их основе строят гибридные версии такие как DiNOR и superAND. Во флэш-памяти производители используют два типа ячеек памяти MLC и SLC. [Источник 3] .
- Флэш-память с MLC (Multi-level cell - многоуровневые ячейки памяти)ячейки более емкие и дешевые, но они с большим временем доступа и меньшим количеством циклов записи/стирания (около 10000).
- Флэш-память, которая содержит в себе SLC (Single-level cell - одноуровневые ячейки памяти) ячейки имеет максимальное количество циклов записи/стирания(100000) и обладают меньшим временем доступа. Изменение заряда (запись/стирание) выполняется приложением между затвором и истоком большого потенциала, чтобы напряженность электрического поля в тонком диэлектрике между каналом транзистора и карманом оказалась достаточна для возникновения туннельного эффекта. Для усиления эффекта тунеллирования электронов в карман при записи применяется небольшое ускорение электронов путем пропускания тока через канал полевого транзистора.
Принцип работы флеш-памяти основан на изменении и регистрации электрического заряда в изолированной области ("карман") полупроводниковой структуры. Чтение выполняется полевым транзистором, для которого карман выполняет роль затвора. Потенциал плавающего затвора изменяет пороговые характеристики транзистора, что и регистрируется цепями чтения. Эта конструкция снабжается элементами, которые позволяют ей работать в большом массиве таких же ячеек.
NOR и NAND
Флеш память различается методом соединения ячеек в массив.
Конструкция NOR использует классическую двумерную матрицу проводников, в которой на пересечении строк и столбцов установлено по одной ячейке. При этом проводник строк подключался к стоку транзистора, а столбцов — ко второму затвору. Исток подключался к общей для всех подложке.
Конструкция NAND — трёхмерный массив. В основе та же самая матрица, что и в NOR, но вместо одного транзистора в каждом пересечении устанавливается столбец из последовательно включенных ячеек. В такой конструкции получается много затворных цепей в одном пересечении. Плотность компоновки можно резко увеличить (ведь к одной ячейке в столбце подходит только один проводник затвора), однако алгоритм доступа к ячейкам для чтения и записи заметно усложняется. Также в каждой линии установлено два МОП-транзистора. Управляющий транзистор разрядной линии (англ. bit line select transistor), расположенный между столбцом ячеек и разрядной линией. И управляющий транзистор заземления, расположенный перед землёй (англ. ground select transistor).
Технология NOR позволяет получить быстрый доступ индивидуально к каждой ячейке, однако площадь ячейки велика. Наоборот, NAND имеют малую площадь ячейки, но относительно длительный доступ сразу к большой группе ячеек. Соответственно, различается область применения: NOR используется как непосредственная память программ микропроцессоров и для хранения небольших вспомогательных данных.
Названия NOR и NAND произошли от ассоциации схемы включения ячеек в массив со схемотехникой микросхем КМОП-логики.
NAND чаще всего применяется для USB флеш накопителей, карт памяти, SSD. NOR в свою очередь во встраиваемых системах.
Существовали и другие варианты объединения ячеек в массив, но они не прижились.
Архитектура NOR получила название благодаря логической операции ИЛИ - НЕ (в переводе с английского NOR). Принцип логической операции NOR заключается в том, что она над несколькими операндами (данные, аргумент операции. ) дает единичное значение, когда все операнды равны нулю, и нулевое значение во всех остальных операциях. В нашем случае под операндами подразумевается значение ячеек памяти, а значит в данной архитектуре единичное значение на битовой линии будет наблюдается только в том случае , когда значение всех ячеек, которые подключены к битовой линии, будут равны нулю (все транзисторы закрыты). В этой архитектуре хорошо организован произвольный доступ к памяти, но процесс записи и стирания данных выполняется относительно медленно. В процессе записи и стирания применяется метод инжекции горячих электронов. Ко всему прочему микросхема флеш-памяти с архитектурой NOR и размер ее ячейки получается большим, поэтому эта память плохо масштабируется.Флеш-память с архитектурой NOR как правило используют в устройствах для хранения программного кода. Это могут быть телефоны, КПК, BIOS системных плат. Применение NOR-флеши, устройства энергонезависимой памяти относительно небольшого объёма, требующие быстрого доступа по случайным адресам и с гарантией отсутствия сбойных элементов:
- Встраиваемая память программ однокристальных микроконтроллеров. Типовые объёмы — от 1 кбайта до 1 Мбайта.
- Стандартные микросхемы ПЗУ произвольного доступа для работы вместе с микропроцессором.
- Специализированные микросхемы начальной загрузки компьютеров (POST и BIOS), процессоров ЦОС и программируемой логики. Типовые объёмы — единицы и десятки мегабайт.
- Микросхемы хранения среднего размера данных, например, DataFlash. Обычно снабжаются интерфейсом SPI и упаковываются в миниатюрные корпуса. Типовые объёмы — от сотен кбайт до технологического максимума.
Максимальное значение объёмов микросхем NOR — до 256 Мбайт.
Данный тип памяти был разработан компанией Toshiba. Эти микросхемы благодаря своей архитектуре применяют в маленьких накопителях , которые получили имя NAND (логическая операция И-НЕ). При выполнении операция NAND дает значение нуль только, когда все операнды равны нулю, и единичное значение во всех других случаях. Как было написано ранее, нулевое значение это открытое состояние транзистора. В следствии этого в архитектуре NAND подразумевается, что битовая линия имеет нулевое значение в том случае, когда все подключенные к ней транзисторы открыты, и значение один, когда хотя бы один из транзисторов закрыт. Такую архитектуру можно построить, если подсоединить транзисторы с битовой линией не по одному (так построено в архитектуре NOR) , а последовательными сериями (столбец из последовательно включенных ячеек).
Данная архитектура по сравнению с NOR хорошо масштабируется потому, что разрешает компактно разместить транзисторы на схеме. Кроме этого архитектура NAND производит запись путем туннелирования Фаулера - Нордхейма, а это разрешает реализовать быструю запись нежели в структуре NOR. Чтобы увеличить скорость чтения, в микросхемы NAND встраивают внутренний кэш. Как и кластеры жесткого диска так и ячейки NAND группируются в небольшие блоки. По этой причине при последовательном чтении или записи преимущество в скорости будет у NAND. Но с другой стороны NAND сильно проигрывает в операции с произвольным доступом и не имеет возможности работать на прямую с байтами информации. В ситуации когда нужно изменить всего несколько бит, система вынуждена переписывать весь блок, а это если учитывать ограниченное число циклов записи, ведет к большому износу ячеек памяти.В последнее время ходят слухи о том, что компания Unity Semiconductor разрабатывает флэш-память нового поколения, которая будет построена на технологии CMOx. Предполагается, что новая память придет на смену флеш-памяти типа NAND и преодолеет ее ограничения, которые в памяти NAND обусловлены архитектурой транзисторных структур. К преимуществам CMOx относят более высокую плотность и скорость записи, а также более привлекательную стоимость. В числе областей применения новой памяти значатся SSD и мобильные устройства. Ну, что же правда это или нет покажет время. [Источник 4]
Запись
Для записи заряды должны попасть в плавающий затвор, однако он изолирован слоем оксида. Для перенесения зарядов может использоваться эффект туннелирования. Для разряда необходимо подать большой положительный заряд на управляющий затвор: отрицательный заряд с помощью туннельного эффекта покинет плавающий затвор. И наоборот, для заряда плавающего затвора необходимо подать большой отрицательный заряд.
Также запись может быть реализована с помощью инжекции горячих носителей. При протекании тока между истоком и стоком повышенного напряжения электроны могут преодолевать слой оксида и оставаться в плавающем затворе. При этом необходимо, чтобы на управляющем затворе присутствовал положительный заряд, который создавал бы потенциал для инжекции.
В MLC для записи разных значений используются разные напряжения и время подачи.
Каждая запись наносит небольшой ущерб оксидному слою, поэтому число записей ограничено.
Запись в NOR и NAND компоновке состоит из двух стадий: вначале все транзисторы в линии устанавливаются в 1 (отсутствие заряда), затем нужные ячейки устанавливаются в 0.
На первой стадии очистка ячеек происходит с помощью туннельного эффекта: на все управляющие затворы подаётся сильное напряжение. Для установки конкретной ячейки в 0 используется инжекция горячих носителей. На разрядную линию подаётся большое напряжение. Вторым важным условием этого эффекта является наличие положительных зарядов на управляющем затворе. Положительное напряжение подаётся лишь на некоторые транзисторы, на остальные транзисторы подаётся отрицательное напряжение. Таким образом ноль записывается только в интересующие нас ячейки.
Первая стадия в NAND аналогична NOR. Для установки нуля в ячейку используется туннельный эффект, в отличие от NOR. На интересующие нас управляющие затворы подаётся большое отрицательное напряжение.
Технологическое масштабирование
Из-за своей высокорегулярной структуры и высокого спроса на большие объёмы техпроцесс при изготовлении флеш-памяти NAND уменьшается более быстро, чем для менее регулярной DRAM-памяти и почти нерегулярной логики (ASIC). Высокая конкуренция между несколькими ведущими производителями лишь ускоряет этот процесс. В варианте закона Мура для логических микросхем удвоение количества транзисторов на единицу площади происходит за три года, тогда как NAND-флеш показывала удвоение за два года. В 2012 году 19 нм техпроцесс был освоен совместным предприятием Toshiba и SanDisk. В ноябре 2012 года Samsung также начала производство по техпроцессу 19 нм (активно используя в маркетинговых материалах фразу «10нм-класс», обозначавшую какой-то процесс из диапазона 10—19 нм).
По мере уменьшения техпроцесса и его приближению к физическим пределам текущих технологий изготовления, в частности, фотолитографии, дальнейшее увеличение плотности данных может быть обеспечено переходом на большее количество бит в ячейке (например, переход с 2-битной MLC на 3-битную TLC), заменой FG-технологии ячеек на CTF технологию или переходом на трёхмерную компоновку ячеек на пластине (3D NAND, V-NAND; однако при этом увеличивается шаг техпроцесса). Например, приблизительно в 2011—2012 годах всеми производителями были внедрены воздушные промежутки между управляющими линиями, позволившие продолжить масштабирование далее 24—26 нм, а Samsung с 2013—2014 года начала массовый выпуск 24- и 32-слойной 3D NAND на базе CTF технологии, в том числе, в варианте с 3-х битными (TLC) ячейками. Проявляющееся с уменьшением техпроцесса уменьшение износостойкости (ресурса стираний), а также увеличение темпа битовых ошибок потребовало применение более сложных механизмов коррекции ошибок и снижения гарантированных объёмов записи и гарантийных сроков. Однако, несмотря на принимаемые меры, вероятно, что возможности дальнейшего масштабирования NAND-памяти будут экономически не оправданы или физически невозможны. Исследуется множество возможных замен технологии флеш-памяти, в частности, FeRAM, MRAM, PMC, PCM, ReRAM и т. п.
3D NAND
Схемотехника NAND оказалась удобна для построения вертикальной компоновки блока ячеек на кристалле. На кристалл послойно напыляют проводящие и изолирующие слои, которые образуют проводники затворов и сами затворы. Затем в этих слоях формируют множество отверстий на всю глубину слоев. На стенки отверстий наносят структуру полевых транзисторов — изоляторы и плавающие затворы. Таким образом формируют столбец кольцеобразных полевых транзисторов с плавающими затворами.
Такая вертикальная структура оказалась очень удачна и обеспечила качественный рывок плотности флеш-памяти. Некоторые компании продвигают технологию под своими торговыми марками, например V-NAND, BiCS. На 2016 год количество слоев топовых изделий достигло 64-х. [Источник 5] .
Срок хранения данных
Изоляция кармана неидеальна, заряд постепенно изменяется. Срок хранения заряда, заявляемый большинством производителей для бытовых изделий, не превышает 10—20 лет, хотя гарантия на носители даётся не более чем на 5 лет. При этом память MLC имеет меньшие сроки, чем SLC.
Специфические внешние условия, например, повышенные температуры или радиационное облучение (гамма-радиация и частицы высоких энергий), могут катастрофически сократить срок хранения данных.
У современных микросхем NAND при чтении возможно повреждение данных на соседних страницах в пределах блока. Осуществление большого числа (сотни тысяч и более) операций чтения без перезаписи может ускорить возникновение ошибки.
По данным Dell, длительность хранения данных на SSD, отключенных от питания, сильно зависит от количества прошедших циклов перезаписи (P/E) и от типа флеш-памяти и в худших случаях может составлять 3—6 месяцев.
Иерархическая структура
Стирание, запись и чтение флеш-памяти всегда происходит относительно крупными блоками разного размера, при этом размер блока стирания всегда больше, чем блок записи, а размер блока записи не меньше, чем размер блока чтения. Собственно это — характерный отличительный признак флеш-памяти по отношению к классической памяти EEPROM.
Как следствие — все микросхемы флеш-памяти имеют ярко выраженную иерархическую структуру. Память разбивается на блоки, блоки состоят из секторов, секторы из страниц. В зависимости от назначения конкретной микросхемы глубина иерархии и размер элементов может меняться.
Например, NAND-микросхема может иметь размер стираемого блока в сотни кбайт, размер страницы записи и чтения — 4 кбайт. Для NOR-микросхем размер стираемого блока варьируется от единиц до сотен кбайт, размер сектора записи — до сотен байт, страницы чтения — единицы—десятки байт.
Читайте также: