Sas поддержка горячей замены
Твердотельные диски с интерфейсом Serial-Attached SCSI (SAS) отличаются простой процедурой установки. Чтобы обеспечить правильную работу этих дисков, не требуется производить установку каких-либо переключателей, терминаторов или выполнять другие настройки.
Каждый твердотельный диск с интерфейсом SAS снабжен отдельным кабелем, который подключается напрямую к хост-адаптеру (контроллеру) SAS. С некоторыми видами контроллеров SAS может использоваться кабель для подключения нескольких устройств (или порт-репликатор). В отличие от дисков с интерфейсом (Parallel) SCSI, в данном случае нет необходимости назначать идентификаторы, так как каждый диск подключается к отдельному порту и все идентификаторы назначаются контроллером.
Диски SAS можно использовать одновременно с дисками SCSI или Serial ATA (SATA), если материнская плата и хост-адаптер поддерживают оба эти интерфейса. Более того, при наличии подходящих портов можно подключать к контроллеру диски SATA одновременно с дисками SAS (однако диски SAS, подключенные к контроллеру SATA, работать не будут).
Конфигурация BIOS
В большинстве современных компьютеров благодаря программам настройки системы (CMOS или BIOS) обнаружение устройств осуществляется автоматически. При запуске системы будет выполнена функция автоматического обнаружения, после чего номер модели диска может появиться на экране компьютера. Номера моделей жестких дисков Seagate начинаются с букв ST.
Специальное примечание для пользователей хост-адаптера RAID. Для многих RAID-контроллеров с интерфейсом SAS требуется назначить диск для массива, чтобы операционная система смогла работать с диском. Для получения информации о назначении диска для массива см. документацию к контроллеру SAS.
Прочие рекомендации
Убедитесь, что каналы SAS включены. В большинстве системных утилит настройки BIOS существует возможность отключения портов SAS. Если контроллер не определяет диск, убедитесь, что все порты SAS включены.
Меры предосторожности/защита от электростатики
- Твердотельные диски требуют бережного отношения. Предохраняйте диск от ударов и тряски. Берите дисковод только за края корпуса.
- Электроника диска чрезвычайно чувствительна к статическому электричеству. До установки храните диск в антистатической упаковке. Наденьте контактную манжету с заземлением. Убедитесь, что контактирующие с диском элементы не несут заряда статического электричества. Не используйте омметр на монтажных платах.
- Соблюдайте осторожность при работе с оборудованием, находящимся под напряжением.
- Не разбирайте жесткий диск, в противном случае гарантийные обязательства будут аннулированы.
- Диск для гарантийной замены следует возвращать в комплекте, даже если неисправны только отдельные элементы.
- Не надавливайте на монтажную плату или на верхнюю крышку диска и не прикрепляйте на них ярлыки.
Инструкции по установке
-
Закрепите диск на подставке или в лотке.
Большинство систем, поддерживающих интерфейс SAS, снабжены лотками или подставками для диска, которые позволяют устанавливать диск «на горячую».
Закрепите диск на лотке или подставке при помощи четырех монтажных винтов 6-32 UNC. Не затягивайте винты слишком сильно. Диск можно установить как горизонтально, так и вертикально.
Установите лоток или подставку в соответствующий отсек системы. Таким образом диск подключится к разъему SAS. Разъем SAS, как правило, расположен на задней панели устройства.
Диск поставляется отформатированным на низком уровне. Выполнять низкоуровневое форматирование еще раз не требуется, за исключением случаев проведения диагностики контроллера. Процесс низкоуровневого форматирования нельзя прерывать, так как это может привести к повреждению диска.
Предусмотрите защиту на случай сбоя питания и отключения электроэнергии во время форматирования.
Вы также можете воспользоваться ПО Seagate SeaTools для DOS, чтобы выполнить полное форматирование. Но следует помнить, что данный инструмент может не работать с дисками, подключенными к RAID-массиву.
Форматирование диска ведет к стиранию всех данных. Это следует принимать во внимание, приступая к форматированию. Диски, на которых хранится информация, следует форматировать только в том случае, если вы намерены удалить все данные. Компания Seagate не несет ответственности за потерю данных.
Операционные системы
Твердотельные диски совместимы с различными операционными системами. Информация о форматировании и подготовке жесткого диска для работы в конкретной операционной системе содержится в руководстве пользователя ОС или хост-адаптера (контроллера) SAS.
«Горячая замена» диска
Функция горячей замены позволяет устанавливать и извлекать диск, не выключая систему.
Параметры раскрутки диска
Большинство систем, к которым подключено всего несколько дисков, позволяют всем дискам запускаться сразу же в момент подачи на них питания. Системы с большим числом дисков можно настроить так, чтобы диски включались в разное время. Это позволит избежать перегрузки системы питания компьютера.
Информация о том, как изменить параметры запуска диска, содержится в документации, входящей в комплект поставки компьютера или хост-адаптера SAS.
Устранение неисправностей
Проблема: компьютер не может распознать диск.
- Убедитесь, что диск включен с помощью утилиты настройки хост-адаптера SAS.
- Если это так, значит, контроллер распознает диск. Убедитесь, что драйверы контроллера SAS загрузились правильно. Инструкции по загрузке драйверов контроллера см. в документации для платы контроллера.
При установке операционной системы на жесткий диск необходимо загрузить компьютер с установочного компакт-диска операционной системы и нажать F6, когда появится соответствующий запрос (обычно такой запрос остается на экране всего несколько секунд).
Установка Windows 8/7/Vista: нажмите кнопку Load Driver, когда это будет предложено. Описанная выше процедура с нажатием клавиши F6 может потребоваться или не потребоваться в зависимости от конкретных условий.
В прошлой части цикла «Введение в SSD» мы рассказали про историю появления дисков. Вторая часть расскажет про интерфейсы взаимодействия с накопителями.
Общение между процессором и периферийными устройствами происходит в соответствии с заранее определенными соглашениями, называемыми интерфейсами. Эти соглашения регламентируют физический и программный уровень взаимодействия.
Интерфейс — совокупность средств, методов и правил взаимодействия между элементами системы.
Физическая реализация интерфейса влияет на следующие параметры:
- пропускная способность канала связи;
- максимальное количество одновременно подключенных устройств;
- количество возникающих ошибок.
Дисковые интерфейсы построены на портах ввода-вывода, что является противоположностью вводу-выводу через память и не занимает место в адресном пространстве процессора.
Параллельные и последовательные порты
По способу обмена данными порты ввода-вывода делятся на два типа:
Как следует из названия, параллельный порт отправляет за раз машинное слово, состоящее из нескольких бит. Параллельный порт — самый простой способ обмена данными, так как не требует сложных схемотехнических решений. В самом простом случае каждый бит машинного слова отправляется по своей сигнальной линии, а для обратной связи используются две служебные сигнальные линии: Данные готовы и Данные приняты.
Последовательные порты — противоположность параллельным. Отправка данных происходит по одному биту за раз, что сокращает общее количество сигнальных линий, но усложняет контроллер ввода-вывода. Контроллер передатчика получает машинное слово за раз и должен передавать по одному биту, а контроллер приемника в свою очередь должен получать биты и сохранять в том же порядке.
Small Computer Systems Interface (SCSI) появился в далеком 1978 году и был изначально разработан, чтобы объединять устройства различного профиля в единую систему. Спецификация SCSI-1 предусматривала подключение до 8 устройств (вместе с контроллером), таких как:
- сканеры;
- ленточные накопители (стримеры);
- оптические приводы;
- дисковые накопители и прочие устройства.
Изначально SCSI имел название Shugart Associates System Interface (SASI), но стандартизирующий комитет не одобрил бы название в честь компании и после дня мозгового штурма появилось название Small Computer Systems Interface (SCSI). «Отец» SCSI, Ларри Баучер (Larry Boucher) подразумевал, что аббревиатура будет произноситься как «sexy», но Дал Аллан (Dal Allan) прочитал «sсuzzy» («скази»). Впоследствии произношение «скази» прочно закрепилось за этим стандартом.
В терминологии SCSI подключаемые устройства делятся на два типа:
Инициатор отправляет команду целевому устройству, которое затем отправляет ответ инициатору. Инициаторы и целевые устройства подключены к общей шине SCSI, пропускная способность которой в стандарте SCSI-1 составляет 5 МБ/с.
Используемая топология «общая шина» накладывает ряд ограничений:
- на концах шины необходимы специальные устройства — терминаторы;
- пропускная способность шины делится между всеми устройствами;
- максимальное количество одновременно подключенных устройств ограничено.
Устройства на шине идентифицируются по уникальному номеру, называемому SCSI Target ID. Каждый SCSI-юнит в системе представлен минимум одним логическим устройством, адресация которого происходит по уникальному в пределах физического устройства номеру Logical Unit Number (LUN).
Команды в SCSI отправляются в виде блоков описания команды (Command Descriptor Block, CDB), состоящих из кода операции и параметров команды. В стандарте описано более 200 команд, разделенных в четыре категории:
- Mandatory — должны поддерживаться устройством;
- Optional — могут быть реализованы;
- Vendor-specific — используются конкретным производителем;
- Obsolete — устаревшие команды.
Среди множества команд только три из них являются обязательными для устройств:
- TEST UNIT READY — проверка готовности устройства;
- REQUEST SENSE — запрашивает код ошибки предыдущей команды;
- INQUIRY — запрос основных характеристик устройства.
После получения и отработки команды целевое устройство отправляет инициатору статус-код, которым описывается результат выполнения.
Дальнейшее усовершенствование SCSI (спецификации SCSI-2 и Ultra SCSI) расширило список используемых команд и увеличило количество подключаемых устройств до 16-ти, а скорость обмена данными по шине до 640 МБ/c. Так как SCSI — параллельный интерфейс, повышение частоты обмена данными было сопряжено с уменьшением максимальной длины кабеля и приводило к неудобству в использовании.
Начиная со стандарта Ultra-3 SCSI появилась поддержка «горячего подключения» — подключение устройств при включенном питании.
Первым известным SSD диском с интерфейсом SCSI можно считать M-Systems FFD-350, выпущенный в 1995 году. Диск имел высокую стоимость и не имел широкой распространенности.
В настоящее время параллельный SCSI не является популярным интерфейсом подключения дисков, но набор команд до сих пор активно используется в интерфейсах USB и SAS.
ATA / PATA
Интерфейс ATA (Advanced Technology Attachment), так же известный как PATA (Parallel ATA) был разработан компанией Western Digital в 1986 году. Маркетинговое название стандарта IDE (англ. Integrated Drive Electronics — «электроника, встроенная в привод») подчеркивало важное нововведение: контроллер привода был встроен в привод, а не на отдельной плате расширения.
Решение разместить контроллер внутри привода решило сразу несколько проблем. Во-первых, уменьшилось расстояние от накопителя до контроллера, что положительным образом повлияло на характеристики накопителя. Во-вторых, встроенный контроллер был «заточен» только под определенный тип привода и, соответственно, был дешевле.
Разъемы PATA на материнской плате
ATA, как и SCSI, использует параллельный способ ввода-вывода, что отражается на используемых кабелях. Для подключения дисков с использованием интерфейса IDE необходимы 40-жильные кабели, также именуемые шлейфами. В более поздних спецификациях используются 80-жильные шлейфы: более половины из которых — заземления для уменьшения интерференции на высоких частотах.
На шлейфе ATA присутствует от двух до четырех разъемов, один из которых подключается в материнскую плату, а остальные — в накопители. При подключении двух устройств одним шлейфом, одно из них должно быть сконфигурировано как Master, а второе — как Slave. Третье устройство может быть подключено исключительно в режиме «только чтение».
Положение перемычки задает роль конкретного устройства. Термины Master и Slave по отношению к устройствам не совсем корректны, так как относительно контроллера все подключенные устройства — Slaves.
Особенным нововведением в ATA-3 считается появление Self-Monitoring, Analysis and Reporting Technology (S.M.A.R.T.). Пять компаний (IBM, Seagate, Quantum, Conner и Western Digital) объединили усилия и стандартизировали технологию оценки состояния накопителей.
Поддержка твердотельных накопителей появилась с четвертой версии стандарта, выпущенной в 1998 году. Эта версия стандарта обеспечивала скорость обмена данными до 33.3 МБ/с.
Стандарт выдвигает жесткие требования к шлейфам ATA:
- шлейф обязательно должен быть плоским;
- максимальная длина шлейфа 18 дюймов (45.7 сантиметров).
Короткий и широкий шлейф был неудобен и мешал охлаждению. Повышать частоту передачи с каждой следующей версией стандарта становилось все сложнее, и ATA-7 решил проблему радикально: параллельный интерфейс был заменен последовательным. После этого ATA приобрёл слово Parallel и стал называться PATA, а седьмая версия стандарта получила иное название — Serial ATA. Нумерация версий SATA началась с единицы.
Стандарт Serial ATA (SATA) был представлен 7 января 2003 года и решал проблемы своего предшественника следующими изменениями:
- параллельный порт заменен последовательным;
- широкий 80-жильный шлейф заменен 7-жильным;
- топология «общая шина» заменена на подключение «точка-точка».
Несмотря на то, что стандарт SATA 1.0 (SATA/150, 150 МБ/с) был незначительно быстрее, чем ATA-6 (UltraDMA/130, 130 МБ/с), переход к последовательному способу обмена данными был «подготовкой почвы» к повышению скоростей.
Шестнадцать сигнальных линий для передачи данных в ATA были заменены на две витые пары: одна для передачи, вторая для приема. Коннекторы SATA спроектированы для большей устойчивости к множественным переподключениям, а спецификация SATA 1.0 сделала возможным «горячее подключение» (Hot Plug).
Некоторые пины на дисках короче, чем все остальные. Это сделано для поддержки «горячей замены» (Hot Swap). В процессе замены устройство «теряет» и «находит» линии в заранее определенном порядке.
Чуть более, чем через год, в апреле 2004-го, вышла вторая версия спецификации SATA. Помимо ускорения до 3 Гбит/с в SATA 2.0 ввели технологию Native Command Queuing (NCQ). Устройства с поддержкой NCQ способны самостоятельно организовывать порядок выполнения поступивших команд для достижения максимальной производительности.
Последующие три года SATA Working Group работала над улучшением существующей спецификации и в версии 2.6 появились компактные коннекторы Slimline и micro SATA (uSATA). Эти коннекторы являются уменьшенной копией оригинального коннектора SATA и разработаны для оптических приводов и маленьких дисков в ноутбуках.
Несмотря на то, что пропускной способности второго поколения SATA хватало для жестких дисков, твердотельные накопители требовали большего. В мае 2009 года вышла третья версия спецификации SATA с увеличенной до 6 Гбит/с пропускной способностью.
Особое внимание твердотельным накопителям уделили в редакции SATA 3.1. Появился коннектор Mini-SATA (mSATA), предназначенный для подключения твердотельных накопителей в ноутбуках. В отличие от Slimline и uSATA новый коннектор был похож на PCIe Mini, хотя и не был электрически совместим с PCIe. Помимо нового коннектора SATA 3.1 мог похвастаться возможностью ставить команды TRIM в очередь с командами чтения и записи.
Команда TRIM уведомляет твердотельный накопитель о блоках данных, которые не несут полезной нагрузки. До SATA 3.1 выполнение этой команды приводило к сбросу кэшей и приостановке операций ввода-вывода с последующим выполнением команды TRIM. Такой подход ухудшал производительность диска при операциях удаления.
Спецификация SATA не успевала за бурным ростом скорости доступа к твердотельным накопителям, что привело к появлению в 2013 году компромисса под названием SATA Express в стандарте SATA 3.2. Вместо того, чтобы снова удвоить пропускную способность SATA, разработчики задействовали широко распространенную шину PCIe, чья скорость превышает 6 Гбит/с. Диски с поддержкой SATA Express приобрели собственный форм-фактор под названием M.2.
«Конкурирующий» с ATA стандарт SCSI тоже не стоял на месте и всего через год после появления Serial ATA, в 2004, переродился в последовательный интерфейс. Имя новому интерфейсу — Serial Attached SCSI (SAS).
Несмотря на то, что SAS унаследовал набор команд SCSI, изменения были значительные:
- последовательный интерфейс;
- 29-ти жильный кабель с питанием;
- подключение «точка-точка».
Терминология SCSI также была унаследована. Контроллер по-прежнему называется инициатором, а подключаемые устройства — целевыми. Все целевые устройства и инициатор образуют SAS-домен. В SAS пропускная способность подключения не зависит от количества устройств в домене, так как каждое устройство использует свой выделенный канал.
Максимальное количество одновременно подключенных устройств в SAS-домене по спецификации превышает 16 тысяч, а вместо SCSI ID для адресации используется идентификатор World-Wide Name (WWN).
Несмотря на схожесть разъемов SAS и SATA, эти стандарты не являются полностью совместимыми. Тем не менее, SATA-диск может быть подключен в SAS-коннектор, но не наоборот. Совместимость между SATA-дисками и SAS-доменом обеспечивается при помощи протокола SATA Tunneling Protocol (STP).
Первая версия стандарта SAS-1 имеет пропускную способность 3 Гбит/с, а самая современная, SAS-4, улучшила этот показатель в 7 раз: 22,5 Гбит/с.
Peripheral Component Interconnect Express (PCI Express, PCIe) — последовательный интерфейс для передачи данных, появившийся в 2002 году. Разработка была начата компанией Intel®, а впоследствии передана специальной организации — PCI Special Interest Group.
Последовательный интерфейс PCIe не был исключением и стал логическим продолжением параллельного PCI, который предназначен для подключения карт расширения.
PCI Express значительно отличается от SATA и SAS. Интерфейс PCIe имеет переменное количество линий. Количество линий равно степеням двойки и колеблется в диапазоне от 1 до 16.
Термин «линия» в PCIe обозначает не конкретную сигнальную линию, а отдельный полнодуплексный канал связи, состоящий из следующих сигнальных линий:
- прием+ и прием-;
- передача+ и передача-;
- четыре жилы заземления.
Количество PCIe-линий напрямую влияет на максимальную пропускную способность соединения. Современный стандарт PCI Express 4.0 позволяет достичь 1.9 Гбайт/с по одной линии, и 31.5 Гбайт/с при использовании 16 линий.
«Аппетиты» твердотельных накопителей растут очень быстро. И SATA, и SAS не успевают увеличивать свою пропускную способность, чтобы «угнаться» за SSD, что привело к появлению SSD-дисков с подключением по PCIe.
Хотя PCIe Add-In карты прикручиваются винтом, PCIe поддерживает «горячую замену». Короткие пины PRSNT (англ. present — присутствовать) позволяют удостовериться, что карта полностью установлена в слот.
Твердотельные накопители, подключаемые по PCIe регламентируются отдельным стандартом Non-Volatile Memory Host Controller Interface Specification и воплощены в множестве форм-факторов, но о них мы расскажем в следующей части.
Удаленные накопители
При создании больших хранилищ данных появилась потребность в протоколах, позволяющих подключить накопители, расположенные вне сервера. Первым решением в этой области был Internet SCSI (iSCSI), разработанный компаниями IBM и Cisco в 1998 году.
Идея протокола iSCSI проста: команды SCSI «оборачиваются» в пакеты TCP/IP и передаются в сеть. Несмотря на удаленное подключение, для клиентов создается иллюзия, что накопитель подключен локально. Сеть хранения данных (Storage Area Network, SAN), основанная на iSCSI, может быть построена на существующей сетевой инфраструктуре. Использование iSCSI значительно снижает затраты на организацию SAN.
У iSCSI существует «премиальный» вариант — Fibre Channel Protocol (FCP). SAN с использованием FCP строится на выделенных волоконно-оптических линиях связи. Такой подход требует дополнительного оптического сетевого оборудования, но отличается стабильностью и высокой пропускной способностью.
Существует множество протоколов для отправки команд SCSI по компьютерным сетям. Тем не менее, есть только один стандарт, решающий противоположную задачу и позволяющий отправлять IP-пакеты по шине SCSI — IP-over-SCSI.
Большинство протоколов для организации SAN используют набор команд SCSI для управления накопителями, но есть и исключения, например, простой ATA over Ethernet (AoE). Протокол AoE отправляет ATA-команды в Ethernet-пакетах, но в системе накопители отображаются как SCSI.
С появлением накопителей NVM Express протоколы iSCSI и FCP перестали удовлетворять быстро растущим требованиям твердотельных накопителей. Появилось два решения:
- вынос шины PCI Express за пределы сервера;
- создание протокола NVMe over Fabrics.
Вынос шины PCIe сопряжен с созданием сложного коммутирующего оборудования, но не вносит изменения в протокол.
Протокол NVMe over Fabrics стал хорошей альтернативой iSCSI и FCP. В NVMe-oF используются волоконно-оптическая линии связи и набор команд NVM Express.
Стандарты iSCSI и NVMe-oF решают задачу подключения удаленных дисков как локальные, а компания Intel® пошла другой дорогой и максимально приблизила локальный диск к процессору. Выбор пал на DIMM-слоты, в которые подключается оперативная память. Максимальная пропускная способность канала DDR4 составляет 25 ГБ/с, что значительно превышает скорость шины PCIe. Так появился твердотельный накопитель Intel® Optane™ DC Persistent Memory.
Для подключения накопителя в DIMM слоты был изобретен протокол DDR-T, физически и электрически совместимый с DDR4, но требующий специального контроллера, который видит разницу между планкой памяти и накопителем. Скорость доступа к накопителю меньше, чем к оперативной памяти, но больше, чем к NVMe.
Протокол DDR-T доступен только с процессорами Intel® поколения Cascade Lake или новее.
Заключение
Почти все интерфейсы прошли долгий путь развития от последовательного до параллельного способа передачи данных. Скорости твердотельных накопителей стремительно растут, еще вчера твердотельные накопители были в диковинку, а сегодня NVMe уже не вызывает особого удивления.
В нашей лаборатории Selectel Lab вы можете самостоятельно протестировать SSD и NVMe диски.
Вытеснят ли NVMe-диски классические SSD в ближайшее время? Ждем вас в комментариях.
SAS (Serial Attached SCSI) - последовательный компьютерный интерфейс, разработанный для подключения различных устройств хранения данных, например, жёстких дисков и ленточных накопителей. SAS разработан для замены параллельного интерфейса SCSI и использует тот же набор команд SCSI.
SAS обратно совместим с интерфейсом SATA: устройства SATA II и SATA 6 Gb/s могут быть подключены к контроллеру SAS, но устройства SAS нельзя подключить к контроллеру SATA. Последняя реализация SAS обеспечивает передачу данных со скоростью до 12Гбит/с на одну линию. К 2017-му году ожидается появление спецификации SAS со скоростью передачи данных 24Гбит/с
SAS сочетает преимущества интерфейсов SCSI (глубокая сортировка очереди команд, хорошая масштабируемость, высокая помехозащищённость, большая максимальная длина кабелей) и Serial ATA(тонкие, гибкие дешёвые кабели, возможность горячего подключения, топология типа «точка-точка», позволяющая достигать большей производительности в сложных конфигурациях) с новыми уникальными возможностями – такими, как продвинутая топология подключения с использованием хабов, именуемых SAS-расширителями (SAS- экспандерами), подключение к одному диску двух SAS-каналов (как для повышения надёжности, так и производительности), работа на одном контроллере дисков как с SAS, так и с SATA-интерфейсом.
В сочетании с новой системой адресации это позволяет подключать до 128 устройств на один порт и иметь до 16256 устройств на контроллере, при этом не требуются какие-либо манипуляции с перемычками и т.п. Снято ограничение в 2 Терабайта на объём логического устройства.
Максимальная длина кабеля между двумя SAS-устройствами –10 м при использовании пассивных медных кабелей.
Собственно под протоколом передачи данных SAS подразумевается сразу три протокола - SSP (Serial SCSI Protocol), обеспечивающий передачу SCSI-команд, SMP (SCSI Management Protocol), работающий с управляющими SCSI-командами и отвечающий, к примеру, за взаимодействие с SAS-расширителями, и STP (SATA Tunneled Protocol), с помощью которого реализована поддержка SATA-устройств.
Производимые в данный момент SAS контроллеры имеют внутренние разъёмы типа SFF-8643 (так же может называться mini SAS HD), но все еще могут встретиться разъемы типа SFF-8087 (mini SAS), на который выведено 4 SAS канала.
Контроллер с четырьмя внутренними портами SFF-8643 и двумя внешними SFF-8644
Внешний вариант интерфейса использует разъём SFF-8644, но все еще может встретиться разъем SFF-8088. Он так же поддерживает четыре SAS канала.
SAS контроллеры полностью совместимы с SATA дисками и SATA-корзинами/бэкплейнами – подсоединение обычно осуществляется при помощи кабелей : кабелей SFF-8643 - Multilane SAS/SATA. Кабель выглядит примерно вот так:
SFF-8643 -> 4 x SAS/SATA
Обычно SAS корзины/объединительные панели (backplane) снаружи имеют SATA-разъёмы и в них всегда можно вставлять обычные SATA диски, поэтому их (такие корзины) обычно и называют SAS/SATA.
Однако существуют реверсивные варианты такого кабеля для подключения бэкплейна с внутренними разъёмами SFF-8087 к SAS-контроллеру, имеющему обычные SATA-разъёмы. Между собой такие кабели невзаимозаменяемы.
SAS диски нельзя подключить к SATA контроллеру или установить в SATA корзину/объединительную панель (backplane).
Отличия в физическом интерфейсе между SAS и SATA-дисками
Для подключения SAS дисков к контроллеру с внутренними разъёмами SFF-8643 или SFF-8087 без использования SAS корзин необходимо использовать кабель типа SFF-8643->SFF-8482 или SFF-8087->SFF-8482 соответственно.
Существующие версии интерфейса SAS (1.0, 2.0, и 3.0) имеют совместимость между собой, то есть диск SAS2.0 можно подключать к контроллеру SAS 3.0 и наоборот. Кроме того будущая версия 24 Gb/s так же будет иметь обратную совместимость.
- поддержка нескольких доменов и серверов электронной почты;
- собственные правила пересылки писем;
- антивирусная защита и спам-фильтрация;
- расширенное управление всеми функциями и пользовательским доступом;
- SSL/TLS-шифрование;
- календари, напоминания, массовые рассылки.
В этой статье мы не будем долго говорить о причинах, по которым компании среди иных вариантов организации внутренней и внешней переписки выбирают локальный почтовый сервер, поскольку все эти нюансы и без нас должны быть известны людям, уже принявшим решение включить в актив предприятия собственное оборудование и функционал, из которого не будет выглядывать вездесущий Гугл с навязчивыми рекламными предложениями. Осталось определиться с тем, купить ли готовую сборку или сконфигурировать её самостоятельно из того, что скопилось на стеллажах в серверной?
Купить или собрать — вот в чем вопрос
Если вы работаете в крупной организации на 100+ человек, где каждому надо предоставить собственную почту, то к вопросу о выборе решения приходится подходить со всей ответственностью. Надо ли собирать оборудование самостоятельно, вникать в особенности SAS-накопителей, IOPS, RAID-контроллеров? С одной стороны, надо, ведь от этого напрямую зависит скорость и безотказность работы. С другой — гораздо проще заказать готовый сервер для электронной почты, который уже будет включать в себя:
- процессор;
- соответствующее нагрузке количество ОЗУ;
- отсек для накопителей в нужном объеме;
- стабильно работающую сетевую карту;
- аппаратный и программный RAID-контроллер;
- повышенную безопасность комплектующих;
- возможность дальнейшего апгрейда;
- официальную гарантию.
Поскольку крупная уважаемая компания зачастую не может себе позволить «самосбор», рекомендуем обратиться к брендовым решениям. А под «брендовыми» мы понимаем готовые сборки от тех производителей, которые, выражаясь фигурально, «собаку съели» на производстве серверного образования, то есть такие производители, как HPE, Lenovo, DELL и другие мастодонты первого эшелона. И, принимая как данность, что непроверенные решения вам не нужны, далее мы поговорим о том, какой почтовый сервер лучше выбрать из находящихся на слуху популярных конфигураций.
Выбираем первый почтовый сервер для предприятия
Неоднократно замечено, что у подавляющего большинства администраторов сети познания о «почтовиках» остались на уровне 2000-х, где балом правили Athlon на 1 ГГц, а 2 ГБ ОЗУ было за глаза. Современные требования к почтовому серверу сильно изменились по нескольким причинам:
- связка из Postfix + Dovecot + MySQL + SpamAssasin + ClamAV + RoundCube + fail2ban оттягивает немало ресурсов (ПО для примера, у каждого свой сетап);
- большой объем данных требует пространство не менее 1-2 ТБ на диске под задел на будущее;
- современные системы потребляют не менее 16 ГБ ОЗУ на 100 человек;
- RAID 10 для этих целей просто незаменим, а значит количество HDD или SSD смело умножайте на 4.
При расчёте параметров вашего почтового сервера отталкивайтесь от нагрузки: числа пользователей и объема отправляемых данных. Мы же для примера возьмем за эталон конфигурацию на 100 человек с дневным количеством писем до 2000, для которых нужно:
- процессор — от 4 ядер (частота не играет особой роли, важна поддержка x64-архитектуры);
- ОЗУ — не менее 8 ГБ;
- дисковое пространство — 200-300 ГБ х4 для организации RAID 1+0 (самый надежный из простых);
- сетевой контроллер — аппаратный, с резервным источником (2 входа);
Требования к почтовому серверу предельно простые — тишина, быстрота и безотказность. Хостинг, доменное имя, антиспам-фильтры и прочее разное ложится уже на ваши плечи, как и ОС для обслуживания клиента.
И по-хорошему, серверов желательно два на случай, если один из них начнут активно DDoS-ить, а встроенное ПО ляжет смертью храбрых.
И еще пара слов о дисках. Классические HDD на 7200 оборотов исключите сразу — слишком низкая скорость чтения/записи. Только SAS от 10000 об/мин, а лучше — 15000 об/мин. К тому же, они более отказоустойчивые и поддерживают горячую замену. SSD — на ваше усмотрение, они вообще вне конкуренции.
Почтовый сервер для 100 человек
В эту категорию просто идеально вписывается многими любимый микросервер HPE ProLiant Gen10 Plus. И это хороший выбор по нескольким причинам:
- энергоэффективный процессор Intel Xeon E-2224 4C на 3.4 ГГц;
- 16 ГБ ОЗУ DDR4;
- 4 полноценных слота под HDD 3.5” (в комплекте 1 ТБ);
- а благодаря фирменной технологии iLO им еще и управлять удаленно можно;
- сетевых порта целых 4, для резервного канала более чем достаточно.
Почтовый сервер для 200 человек
Для этих целей подойдет классическая «башня», а именно HPE ProLiant ML110 Gen10 P10812-421. Его характеристики:
- 8 слотов для установки HDD с поддержкой горячей замены (здравствуй, SAS 15000 rpm);
- процессор Intel Xeon Silver 4208 на 8 ядер;
- 16 ГБ ОЗУ DDR4 2933 МГц c возможностью апгрейда до 192 ГБ (что необязательно, ибо зачем вам столько?);
- пара гигабитных сетевых портов HPE 332i;
- поддержка удаленного доступа iLO.
К тому же, ему не нужна стойка для работы, корпус выглядит как типичный системный блок под столом админа.
Если предпочтительнее Rack-версия, то присмотритесь к HPE ProLiant DL160 Gen10 P19561-B21 с высотой 1U.
Его характеристики идентичны, включая ЦП и объем ОЗУ. А вот возможность установки второго процессора на будущее подкупает. Сокета здесь два, а значит и чипов, и памяти можно разместить вдвое больше.
Почтовый сервер на 400-500 человек
Такие берут на вооружение крупные компании с обилием филиалов и внушительным количеством входящей/исходящей почты. Стоит оговориться, что и атаки на подобные учреждения совершаются чаще, а значит необходимо учесть два фактора:
- ядер много не бывает;
- отказоустойчивость на первом месте.
Первым делом на ум приходит вот этот красавец — HPE ProLiant DL360 Gen10 867964-B21.
На первый взгляд не самое однозначное решение, поскольку занимает всего один юнит в стойке и физически не сможет разместить много HDD. Но ведь на первом месте всегда стабильность:
- 2хIntel Xeon Gold 6130 (суммарно 32 ядра на 2.1 ГГц, солидный запас прочности);
- 64 ГБ ОЗУ DDR4;
- максимальная вместимость до 16 NVMe SSD с запредельными показателями IOPS и минимальным энергопотреблением (еще и не шумят);
- поддержка горячей замены накопителей и БП;
- сумасшедшая производительность.
В пике он обработает и десяток тысяч писем в сутки, при этом ни вы, ни руководство даже не заикнетесь о том, что почтовый клиент как-то подтормаживает. Сервер не из дешевых, но оправдывает каждую вложенную копейку.
Вводные мы дали, примеры предоставили. Если этого недостаточно, то за подбором подходящей конфигурации вы всегда можете обратиться к специалистам нашей компании, поскольку лучший почтовый сервер — это тот, который рассчитан точно под ваши потребности.
Читайте также: