Латр с гальванической развязкой своими руками
Первым рассмотрим однофазный ЛАТР и его принцип работы
Если собрать схему “латр + трансформатор напряжения”, то, регулируя напряжение на латре, будем регулировать и трансформированное напряжение после ТНа. Тем самым можно добиться высокого значения выходной величины.
А если собрать схему “латр + НТ-12”, то можно создать ток большой величины и, например, прогрузить автоматы.
Основными параметрами ЛАТРа при его выборе выступают следующие:
Сейчас существуют разные модели регуляторов. Но, как у российских, так и у китайских расположение клемм для подключения будет примерно одинаковым. Слева подключается сеть (источник питания, вход, input, большие буквы), а справа подключается нагрузка (выход, output, малые буквы), на которой и будет регулироваться напряжение. На последних моделях чуть выше клемм подключения располагается миниатюрный вольтметр для контроля величины выходного напряжения.
Подключение от сети стоит производить через автоматический выключатель, ибо, так мы обезопасим себя в случае возможной аварийной ситуации. Провода между ЛАТРом и автоматом и между автоматом и сетью должны быть подобраны согласно допустимого сечения. Не следует забывать заземлять прибор.
Также помните о том, что в автотрансформаторе отсутствует гальваническая развязка. Пример, возьмем схему однофазного ЛАТРа (на рисунке снизу слева).
Видим, что Х и х связаны между собой физически. То есть положение ручки прибора может находиться в нулевом положении, а фаза уже будет на выходе, следует быть начеку и не касаться руками выходов ЛАТРа при поданном напряжении. Для подстраховки покупают ЛАТРы с гальванической развязкой или используют разделительный трансформатор (трансформатор с коэффициентом трансформации равным единице; рисунок справа сверху).
Регулирование производится плавным движением ручки, расположенной сверху или сбоку регулятора. Так, перед началом подачи, ручка должна быть выведена в нулевое положение (против часовой стрелки до упора).
ЛАТР-1М
Вот, например, ЛАТР-1М. Легкий, компактный с током до 9А. Кстати, чем меньше ток у прибора, тем больше шансов его спалить. Прибор предназначен для плавного регулирования напряжения от 0 до 250В без разрыва цепи. В легкое замешательство может ввести наличие шести колков для подсоединения проводов. Но пугаться не стоит, сейчас всё поясню.
Принцип работы этого и подобных ЛАТРов заключается в изменении коэффициента трансформации при движении графитового элемента по незаизолированной дорожке обмотки при вращении ручки регулятора. При ручке выкрученной до конца получится не 220В, а 250 за счет дополнительных витков (это продемонстрировано на схеме справа на рисунке выше). Если на входы 0-250 подать 127В, то вся шкала уменьшится пропорционально. Если подать больше вольт, то ЛАТР может испортиться за счет большего тока.
Ниже приведу примерные намоточные данные (количество витков) для различных точек для ЛАТР-1М (9А) и 2М (2А).
Обозначения | витки на ЛАТР-1М | витки на ЛАТР-2М |
А | 267 | 578 |
Б, Д | 4 | 4 |
Г | 133 | 294 |
Е | 233 | 505 |
Точки Б и Д являются одной точкой и находятся в самом начале (на 4 витках). Точка А является концом обмотки. Точка Г отвечает за 127В на нашем регуляторе. Точка Е отвечает за 220 вольт при подключении сети. А точка В является положением ручки регулятора, то есть это переменная, которая меняется при повороте ручки, догадаться можно по стрелке, которая отходит на схеме от этой буквы.
еще один ЛАТР (неопознанный)
Вариант более дружелюбного к конечному пользователю интерфейса.
В данном варианте по схеме видно, что он может подключаться как к 220В, так и к 127В. А на выходе всегда можно будет получить от 0 до 250В. Это происходит за счет подключения входов к разным коэффициентам трансформации.
На фотке выше можно увидеть дорожку и ролик, который ходит при движении колеса ЛАТРа. Вот так можно наглядно представить, как происходить регулирование напряжения.
ЛАТРы серии TSGC2 и ТDGC2
Основные технические данные приведены ниже. Три однофазных латра подключаются на 220В.
Электрические схемы 1ф и 3 ф:
Сохраните в закладки или поделитесь с друзьями
Часто доводилось лицезреть, как между ЛАТРом и сетью подключают автоматический выключатель АП-50
Единицы измерения физвеличин
Схемы групп соединения обмоток трансформатора
Изолированная, эффективно заземленная и глухозаземленная нейтраль
Подключение ЛАТРа
Лабораторный автотрансформатор (ЛАТР) — это устройство, предназначенное для плавного регулирования напряжения в заданных пределах в однофазной (220 В) или трехфазной (380 В) сети.
Лабораторные автотрансформаторы широко используются научными институтами, производственными и образовательными учреждениями для проведения всевозможных тестов, а также в быту для подключения к электросети оборудования, которому требуется напряжение отличное от стандартного (например, приборы, рассчитанные на 110 Вольт).
Компания SUNTEK выпускает лабораторные автотрансформаторы (ЛАТРы) двух модификаций.
Классические модели выполнены в черном металлическом корпусе. На передней панели они имеют ЖК-дисплей, отображающий значение выходного напряжения, и клеммы для подключения к сети и нагрузке. Сверху располагается регулировочная ручка. Поворот ручки направо или налево меняет значение выходного напряжения.
ЛАТРы SUNTEK серии RED выполнены в корпусе красного цвета. Они также имеют ЖК-дисплей и поворотную ручку регулировки, но отличаются наличием предохранителя по току, который позволяет уберечь прибор от поломки при перегрузке. К тому же у моделей 500ВА, 1000ВА, 2000ВА серии RED упрощена система подключения. Вместо клеммной колодки здесь провод с вилкой для подключения в сеть и встроенная розетка на корпусе для подключения электроприборов.
ЛАТРы SUNTEK имеют целый ряд преимуществ:
Лабораторный автотрансформатор (ЛАТР) — это наиболее удобный и легкий способ регулировать напряжение. Но для долгой бесперебойной работы его в первую очередь необходимо правильно разместить и подключить.
Место размещения ЛАТРа:
При выборе места для установки лабораторного автотрансформатора, особое внимание следует уделить вопросу пожарной безопасности. Прибор может эксплуатироваться только в условиях невзрывоопасной окружающей среды. Его нельзя размещать в помещениях, где присутствуют легко воспламеняющиеся материалы, жидкости, где возможно скопление химически активных паров и газов, способных повредить изоляцию проводов или токоведущие части прибора. Также следует учитывать температурный режим и уровень влажности в помещении. ЛАТР не предназначен для использования в минусовую температуру. Допустимый рабочий диапазон от 0 до +40С. Влажность воздуха не более 80%.
Для обеспечения надлежавшей вентиляции, место размещения ЛАТРа должно быть открытым, чтобы потоки воздуха могли беспрепятственно проходить через корпус прибора и вокруг него. Запрещается накрывать прибор во время работы или размещать вплотную к каким-либо поверхностям, перекрывающим вентиляционные отверстия на корпусе.
Оптимальным местом для ЛАТРа будет рабочий стол или полка. Хотя прибор можно установить и на любое другое ровное не скользкое основание, при условии его достаточной прочности.
Подключение ЛАТРа:
Для подключения ЛАТРов с клеммной колодкой рекомендуется использовать специальный Комплект для подключения. Необжатые провода без клемм не обеспечат надежный контакт, что может привести к искрению и стать причиной возгорания. В Комплект для подключения от компании SUNTEK входят два провода длиной 1,5 м: провод с клеммами и вилкой для подключения в сеть и провод с клеммами и розеткой для подключения нагрузки.
Прежде чем приступать к работе с ЛАТРом его необходимо осмотреть на предмет повреждений. Запрещается эксплуатировать прибор при наличии трещин на корпусе, вмятин и других деформаций. Внутри корпуса опасное напряжение!
Порядок подключения ЛАТРа:
2. Подключить ЛАТР в сеть (При включенном в сеть автотрансформаторе категорически запрещается прикасаться к клеммной колодке. Это опасно для жизни!).
3. Установить при помощи поворотной ручки необходимое значение выходного напряжения*.
4. Подключить нагрузку.
Что такое лабораторный автотрансформатор (ЛАТР)
Очень часто в среде электриков и электронщиков звучит аббревиатура ЛАТР. Помните, мы как-то с вами рассматривали блок питания и даже делали его сами. Блок питания выдавал нам постоянное напряжение от нуля и до какого-то конечного значения, которое, конечно же, зависело от крутизны блока питания. Согласитесь, очень удобная штука. Но есть один минус – он нам выдает только постоянное напряжение.
Но, раз есть блок питания на постоянное напряжение, то должен быть блок питания и на переменное напряжение. И называется такой блок питания лабораторный автотрансформатор или сокращенно ЛАТР. Что это за вещь и с чем ее едят?
ЛАТР – это тот же трансформатор. Он преобразовывает переменное напряжение одной величины в переменное напряжение другой величины. Но вся фишка в том, что мы можем менять при необходимости напряжение на выходе ЛАТРа.
Повышение переменного напряжения
Разновидности трансформаторов
Наиболее простой способ увеличения переменного напряжения – установка между выходом сети и питаемой нагрузкой повышающего трансформатора. Применяемые на практике устройства делятся на две основные разновидности. Первая — классические трансформаторы, вторая — автотрансформаторы. Схемы этих устройств приведены на рисунке 2.
Рис. 2. Схемы трансформатора и автотрансформатора
Классический трансформатор содержит две обмотки: первичную или входную с числом витков W1, а также вторичную или выходную с числом витков W2. Для трансформатора действует правило Uвыхода = K×Uвхода, где K = W2/W1 – коэффициент трансформации. Таким образом, в повышающем трансформаторе количество витков вторичной обмотки превышает таковое у первичной.
Повышающий авторансформатор содержит единственную обмотку с W2 витками. Сеть подключается на часть W1 ее витков. Повышение U происходит за счет того, что магнитное поле, создаваемое при протекании тока через входную часть общей обмотки, наводит ток уже во всей обмотке W2. Расчетная формула автотрансформатора аналогична обычному: Uвыхода = K×Uвхода, где K = W2/W1 – коэффициент трансформации.
Особенности трансформаторов
Эффективность функционирования трансформаторов наращивают применением сердечника из электротехнической стали. Этот компонент
- увеличивает КПД устройства за счет уменьшения рассеяния магнитного поля в окружающем пространстве;
- выполняет функцию несущей силовой основы для обмоток.
Виды ЛАТРов
Однофазные
Такой типа ЛАТРов выдает однофазное переменное регулируемое напряжение. Он очень часто используется радиолюбителями, так как позволяет подобрать любое низковольтное переменное напряжение.
Трехфазные
Такой тип ЛАТРов используется в промышленной электронике. На его вход подается трехфазное напряжение, а на выходе получаем те же самые три фазы, но уже меньшей амплитуды. Этот ЛАТР позволяет изменять амплитуду напряжения всех трех фаз одновременно. Грубо говоря, это три однофазных ЛАТРа, которые находятся в одном корпусе и которые одинаково изменяют напряжение.
Описание работы ЛАТРа РЕСАНТА
Давайте рассмотрим однофазный ЛАТР латвийского производства РЕСАНТА (читается по-русски) марки TDGC2-0.5 kVA.
Сверху наш ЛАТР выглядит вот так:
Мы видим регулятор, с помощью которого можем выставить нужное нам напряжение.
На лицевой стороне видим какое-то подобие вольтметра переменного напряжения. На клеммы слева заводим напряжение из сети 220 В, а с клемм справа – напряжение, которое требуется нам на данный момент.
Режимы работы
- В автотрансформаторных режимах (а) возможна передача номинальной мощности из обмотки ВН в обмотку НН или наоборот. В обоих режимах последовательная и общая обмотки загружены типовой мощностью, что допустимо.
- В трансформаторных режимах возможна передача мощности из обмотки НН в обмотку СН или ВН, причем обмотку НН можно загрузить не более чем на Sтип. В этих режимах АТ недогружен, что допустимо, но неэкономично.
- В комбинированном режиме (б) возможна передача мощности не более S тип из сети НН в сеть ВН и при этом ( Sном Sтип) автотрансформаторным путем из сети СН в сеть ВН. Этот режим является допустимым и экономичным, т.к. загрузка общей обмотки может в пределе равной 0, а через АТ в сумме передается Sном.
Переменный автотрансформатор имеет несколько первичных обмоток для создания вторичного напряжения, которое регулируется в диапазоне от нескольких вольт до долей вольт за оборот. Это достигается благодаря тому, что угольная щётка или ползунок находятся в контакте с одним или несколькими витками первичной обмотки. Поскольку витки первичной катушки равномерно распределены по её длине, то выходное значение пропорционально угловому вращению щётки.
Как работает ЛАТР на практике
Давайте проведем опыты с лампочкой накаливания в 95 Ватт 220 Вольт. Для этого цепляем ее к выходным клеммам справа.
Интересно, при каком напряжении начнет светится спираль лампочки? Давайте узнаем! Крутим регулятор, пока не заметим слабое свечение лампочки.
Смотрим на шкалу регулятора. 35 Вольт!
А вы знаете, что в США сетевое напряжение 110 Вольт? Интересно, как бы светилась тогда наша лампочка? Выставляем 110 Вольт.
Светится, как говорится, в пол накала.
А теперь сравните, как она светится при 220 В
Дальше повышать напряжение нет смысла. Лампочка может перегореть.
Если хотите выставить напряжение с большой точностью, то конечно же, здесь не обойтись без мультиметра. Для этого ставим крутилку мультиметра на положение измерения переменного напряжения
Цепляемся и меряем переменное напряжение. Заодно подгоняем с помощью регулятора ЛАТРа. Ровно 110 Вольт!
Техника безопасности при работе с ЛАТРом
Хочется также добавить пару слов о технике безопасности. Есть ЛАТРы без гальванической развязки. Это означает, что фазный провод из сети идет прямо на выход такого ЛАТРа. Схема ЛАТРа без гальванической развязки выглядит вот так:
В этом случае на выходной клемме ЛАТРа может появиться напряжение сети 220 Вольт с вероятностью 50/50. Все зависит от того, как вы воткнете сетевую вилку ЛАТРа в розетку 220 Вольт.
Если присмотреться к схемотехническому изображению на самой лицевой панели ЛАТРа Ресанта, то можно увидеть, что клемма “Х” и “х” (те, которые два нижних) связаны между собой проводником.
То есть если на клемме “Х” фаза, то и на клемме “х” тоже будет фаза! Вы ведь не будете каждый раз замерять фазу в розетке, чтобы воткнуть правильно вилку? Поэтому БУДЬТЕ крайне ОСТОРОЖНЫ! Старайтесь не задевать голыми руками выходные клеммы ЛАТРа!
В принципе я задевал и ничего со мной такого не произошло. Дело оказалось в том, что у меня деревянный пол, который почти является диэлектриком. Замерял напряжение между мной и фазой – вышло около 40 Вольт. Поэтому я и не чувствовал эти 40 Вольт. Если бы я взялся одной рукой за батарею или встал бы голыми ногами на землю, а другой рукой взялся бы за выход “х” ЛАТРа, то меня тряхануло бы очень и очень сильно, так как через меня бы прошли все полноценные 220 Вольт.
Разделительный трансформатор и ЛАТР
Есть также более безопасные виды ЛАТРов. В своем составе они имеют развязывающий трансформатор. Схема такого ЛАТРа выглядит примерно вот так:
Как мы видим, фазный провод изолирован от выходных клемм такого ЛАТРа, благодаря трансформатору, принцип работы которого вы можете прочитать в этой статье. В этом случае нас может тряхануть, если мы на выходе ЛАТРа с помощью крутилки выставим высокое напряжение и возьмемся сразу за два выходных провода ЛАТРа. То есть здесь типичная гальваническая развязка.
Применение
ЛАТРы применяют в исследовательских центрах, лабораториях для проведения тестирования оборудования переменного тока. Иногда подобные приборы необходимы для стабилизации сетевого напряжения. Например, в момент недостаточного его уровня в сети в данный момент.
Однако сфера его применения ограничена. Если в сети наблюдаются постоянные перепады, скачки, применение автотрансформатора будет бессмысленным. В этом случае потребуется установить стабилизатор. Главным предназначением ЛАТРа является точная настройка напряжения для выполнения различных исследовательских задач, тестов.
Подобное оборудование может потребоваться в процессе наладки приборов промышленного назначения, высокочувствительной аппаратуры, радиоэлектроники. Они обеспечивают правильное питание техники, работающей на низком напряжении. Также их применяют при выполнении зарядки аккумуляторов.
Рассмотрев основные особенности лабораторных автотрансформаторов, можно правильно применять агрегат в различных целях, повышая эффективность и удобство настройки различного оборудования.
Очень часто в среде электриков и электронщиков звучит аббревиатура ЛАТР. Помните, мы как-то с вами рассматривали блок питания и даже делали его сами. Блок питания выдавал нам постоянное напряжение от нуля и до какого-то конечного значения, которое, конечно же, зависело от крутизны блока питания. Согласитесь, очень удобная штука. Но есть один минус – он нам выдает только постоянное напряжение.
Но, раз есть блок питания на постоянное напряжение, то должен быть блок питания и на переменное напряжение. И называется такой блок питания лабораторный автотрансформатор или сокращенно ЛАТР. Что это за вещь и с чем ее едят?
ЛАТР – это тот же трансформатор. Он преобразовывает переменное напряжение одной величины в переменное напряжение другой величины. Но вся фишка в том, что мы можем менять при необходимости напряжение на выходе ЛАТРа.
Изготовление ЛАТРа
Можно приступать к сборке регулятора.
Схему из журнала я немного доработал, и получилось вот что:
С такой схемой можно значительно повышать верхний порог напряжения. С добавлением автоматического кулера, снизился риск перегрева регулирующего транзистора.
Корпус можно взять от старого компьютерного блока питания.
Сразу нужно прикинуть порядок размещения блоков устройства внутри корпуса и предусмотреть возможность их надёжного закрепления.
Если нет предохранителя, то обязательно нужно предусмотреть другую защиту от короткого замыкания.
Высоковольтный клеммник надёжно крепим к трансформатору.
На выход я поставил розетку для подключения нагрузки и контроля напряжения. Вольтметр можно поставить любой другой, на соответствующее напряжение, но не меньше 300 Вольт.
Виды ЛАТРов
Однофазные
Такой типа ЛАТРов выдает однофазное переменное регулируемое напряжение. Он очень часто используется радиолюбителями, так как позволяет подобрать любое низковольтное переменное напряжение.
Трехфазные
Такой тип ЛАТРов используется в промышленной электронике. На его вход подается трехфазное напряжение, а на выходе получаем те же самые три фазы, но уже меньшей амплитуды. Этот ЛАТР позволяет изменять амплитуду напряжения всех трех фаз одновременно. Грубо говоря, это три однофазных ЛАТРа, которые находятся в одном корпусе и которые одинаково изменяют напряжение.
Простой прибор для регулирования
Существует весьма простенький вариант ЛАТРа, который доступен даже для начинающих, его схема изображена на рис. 1. Регулируемый таким прибором диапазон напряжений находится в пределах 0-220 вольт. Данный самодельный регулятор обладает мощностью 25-500 Вт. Увеличение мощности устройства может быть проведено посредством установки тиристоров VD1 и VD2 на радиаторы.
Полупроводниковые приборы (речь идет о тиристорах ВД1 и ВД2) следует подключить параллельно с нагрузкой R1. Пропускаемый ими ток имеет противоположные направления. Когда прибор включается в сеть, тиристоры остаются закрытыми, в отличие от конденсаторов С1 и С2, зарядка которых производится резистором R5. Если есть потребность, с помощью резистора R5 можно изменить напряжение, которое получается во время нагрузки. Резистор и конденсаторы создают фазосдвигающую цепь.
Рисунок 2. ЛАТР с биполярным транзистором.
Фазосдвигающая цепь – это электрический четырехполюсник, гармонический сигнал на выходе которого сдвигается по фазе относительно входного сигнала. Распространены в САУ в качестве устройств корректировки, которые обеспечивают устойчивость и необходимое качество управления. Частными случаями являются дифференцирующие и интегрирующие цепи.
Данное техническое решение позволяет использовать для нагрузки не половинную мощность, а полную. Достигается это благодаря тому, что используются оба полупериода переменного тока.
К недостаткам можно отнести форму переменного напряжения на нагрузке. В этом варианте она не строго синусоидальная. Специфика работы полупроводниковых приборов является основной причиной. Наличие такой особенности способно вызвать помехи в сети. Но их можно устранить путем дополнительной установки дросселей (фильтров последовательной нагрузки) на схему. Такие фильтры можно найти даже в неисправном телевизоре.
Описание работы ЛАТРа РЕСАНТА
Давайте рассмотрим однофазный ЛАТР латвийского производства РЕСАНТА (читается по-русски) марки TDGC2-0.5 kVA.
Сверху наш ЛАТР выглядит вот так:
Мы видим регулятор, с помощью которого можем выставить нужное нам напряжение.
На лицевой стороне видим какое-то подобие вольтметра переменного напряжения. На клеммы слева заводим напряжение из сети 220 В, а с клемм справа – напряжение, которое требуется нам на данный момент.
Самодельный сварочный аппарат из ЛАТРа
Режимы работы задают с помощью потенциометра. Совместное конденсаторами C2 и C3 он образует фазосдвигающие цепочки, каждая из которых, срабатывая во время своего полупериода, открывает соответствующий тиристор на некоторый промежуток времени. В результате на первичной обмотке сварочного Т1 оказываются регулируемые 20-215 В. Трансформируясь во вторичной обмотке, требуемые -Uсв позволяют легко зажечь дугу для сварки на переменном (клеммы Х2, Х3) или выпрямленном (Х4, Х5) токе.
Рис.1. Самодельный сварочный аппарат на основе ЛАТРа.
Сварочный трансформатор на базе широко распространённого ЛАТР2 (а), его подключение к принципиальной электрической схеме самодельного регулируемого аппарата для сварки на переменном или постоянном токе (б) и эпюра напряжении поясняющая работу транзисторного регулятора режима горения злектродуги.
Резисторы R2 и R3 шунтируют цепи управления тиристоров VS1 и VS2. Конденсаторы C1, C2 снижают до допустимого уровень радиопомех, сопровождающих дуговой разряд. В роли светового индикатора HL1, сигнализирующего о включении аппарата в бытовую электросеть, используется неоновая лампочка с токоограничительным резистором R1.
Как показывает практика, устанавливать на сварочном аппарате какие бы то ни было предохранители (противоперегрузочные автоматы) не имеет смысла. Здесь приходится иметь дело с такими токами, при превышении которых обязательно сработает защита на вводе сети в квартиру.
Для изготовления вторичной обмотки с базового ЛАТР2 снимают кожух-ограждение, токосъёмный ползунок и крепежную арматуру. Затем на имеющуюся обмотку 250 В (отводы 127 и 220 В остаются невостребованными) накладывают надёжную изоляцию (например, из лакоткани), поверх которой размещают вторичную (понижающую) обмотку. А это 70 витков изолированной медной или алюминиевой шины, имеющей в поперечнике 25 мм2. Приемлемо выполнение вторичной обмотки из нескольких параллельных проводов с таким же общим сечением.
Намотку удобнее осуществлять вдвоём. В то время как один, стараясь не повредить изоляцию соседних витков, осторожно протягивает и укладывает провод, другой удерживает свободный конец будущей обмотки, предохраняя её от скручивания. Модернизированный ЛАТР2 помещают в защитный металлический кожух с вентиляционными отверстиями, на котором располагают монтажную плату из 10-мм гетинакса или стеклотекстолита с пакетным выключателем SB1, тиристорным регулятором напряжения (с резистором R6), светоиндикатором HL1 включения аппарата в сеть и выходными клеммами для сварки на переменном (Х2, Х3) или постоянном (Х4, Х5) токе.
И еще несколько весьма существенных особенностей. Увеличение тока дуги при неизменной скорости сварки приводит к росту глубины провара. Причем если работа ведется на переменном токе, то последний из названных параметров становится на 15-20 процентов меньше, чем при использовании постоянного тока обратной полярности. Напряжение же сварки мало влияет на глубину провара. Зато от Uсв зависит ширина шва: с ростом напряжения она увеличивается.
Отсюда важный вывод для занимающихся, скажем, сварочными работами при ремонте кузова легкового автомобиля из тонколистовой стали: наилучшие результаты даст сварка постоянным током обратной полярности при минимальном (но достаточном для устойчивого горения дуги) напряжении.
Дугу необходимо поддерживать минимально короткой, электрод тогда расходуется равномерно, а глубина проплавления свариваемого металла — максимальна. Сам же шов получается чистым и прочным, практически лишенным шлаковых включений. А от редких брызг расплава, трудно удаляемых после остывания изделия, можно защититься, натерев мелом околошовную поверхность (капли будут скатываться, не приставая к металлу).
В любом случае работу можно выполнять как вертикально расположенным электродом, так и наклонённым вперед или назад. Но искушенные профессионалы утверждают: при сварке углом вперед (имеется в виду острый угол между электродом и готовым швом) обеспечиваются более полный провар и меньшая ширина самого шва. Сварка же углом назад рекомендуется лишь для соединения внахлестку, особенно когда приходится иметь дело с профильным прокатом (уголком, двутавром и швеллером).
М.Вевиоровский, Московская обл.
Как работает ЛАТР на практике
Давайте проведем опыты с лампочкой накаливания в 95 Ватт 220 Вольт. Для этого цепляем ее к выходным клеммам справа.
Интересно, при каком напряжении начнет светится спираль лампочки? Давайте узнаем! Крутим регулятор, пока не заметим слабое свечение лампочки.
Смотрим на шкалу регулятора. 35 Вольт!
А вы знаете, что в США сетевое напряжение 110 Вольт? Интересно, как бы светилась тогда наша лампочка? Выставляем 110 Вольт.
Светится, как говорится, в пол накала.
А теперь сравните, как она светится при 220 В
Дальше повышать напряжение нет смысла. Лампочка может перегореть.
Если хотите выставить напряжение с большой точностью, то конечно же, здесь не обойтись без мультиметра. Для этого ставим крутилку мультиметра на положение измерения переменного напряжения
Цепляемся и меряем переменное напряжение. Заодно подгоняем с помощью регулятора ЛАТРа. Ровно 110 Вольт!
Техника безопасности при работе с ЛАТРом
Хочется также добавить пару слов о технике безопасности. Есть ЛАТРы без гальванической развязки. Это означает, что фазный провод из сети идет прямо на выход такого ЛАТРа. Схема ЛАТРа без гальванической развязки выглядит вот так:
В этом случае на выходной клемме ЛАТРа может появиться напряжение сети 220 Вольт с вероятностью 50/50. Все зависит от того, как вы воткнете сетевую вилку ЛАТРа в розетку 220 Вольт.
Если присмотреться к схемотехническому изображению на самой лицевой панели ЛАТРа Ресанта, то можно увидеть, что клемма “Х” и “х” (те, которые два нижних) связаны между собой проводником.
То есть если на клемме “Х” фаза, то и на клемме “х” тоже будет фаза! Вы ведь не будете каждый раз замерять фазу в розетке, чтобы воткнуть правильно вилку? Поэтому БУДЬТЕ крайне ОСТОРОЖНЫ! Старайтесь не задевать голыми руками выходные клеммы ЛАТРа!
В принципе я задевал и ничего со мной такого не произошло. Дело оказалось в том, что у меня деревянный пол, который почти является диэлектриком. Замерял напряжение между мной и фазой – вышло около 40 Вольт. Поэтому я и не чувствовал эти 40 Вольт. Если бы я взялся одной рукой за батарею или встал бы голыми ногами на землю, а другой рукой взялся бы за выход “х” ЛАТРа, то меня тряхануло бы очень и очень сильно, так как через меня бы прошли все полноценные 220 Вольт.
Схема электронного ЛАТРа
Я решил по возможности избавиться от некоторых недостатков регуляторов, перечисленных выше и сохранить их главные достоинства.
От ЛАТРа возьмём принцип автотрансформации и применим его на обычном трансформаторе, тем самым повысим напряжение выше напряжения сети. Мне понравился трансформатор от блока бесперебойного питания. В основном тем, что его не нужно перематывать. Всё нужное в нём есть. Марка трансформатора: RT-625BN.
Как видно из схемы, в нём присутствует, помимо основной обмотки на 220 вольт, ещё две, выполненные обмоточным проводом того же диаметра, и две вторичные мощные. Вторичные обмотки отлично подходят для питания цепи управления и работы кулера охлаждения силового транзистора. Две дополнительные обмотки соединяем последовательно с первичной обмоткой. На фотографиях видно, как это сделано по цветам.
На красный и чёрный провода подаём питание.
Добавляется напряжение с первой обмотки.
Плюс две обмотки. Итого получается 280 вольт.
Если нужно большее напряжение, то можно домотать ещё провода до заполнения окна трансформатора, предварительно сняв вторичные обмотки. Только мотать нужно обязательно в том же направлении, что и предыдущая обмотка, и соединять конец предыдущей обмотки с началом следующей. Витки обмотки должны, как бы продолжать предыдущую обмотку. Если намотаете навстречу, то при включении нагрузки будет большая неприятность!
Повышать напряжение можно, лишь бы регулирующий транзистор выдержал это напряжение. Транзисторы из импортных телевизоров встречаются до 1500 вольт, так что простор есть.
Трансформатор можно взять и любой другой, подходящий вам по мощности, удалить вторичные обмотки и домотать провод до нужного вам напряжения. В этом случае, напряжение управления можно получить от дополнительного вспомогательного маломощного трансформатора на 8 – 12 вольт.
Если кому – то захочется повысить КПД регулятора, то можно и здесь найти выход. Транзистор бесполезно расходует электроэнергию на нагрев тогда, когда ему приходится сильно убавлять напряжение. Чем сильнее нужно убавить напряжение, тем сильнее нагрев. В открытом состоянии, нагрев незначителен.
Если изменить схему автотрансформатора и сделать на нём много выводов нужных вам уровней напряжения, то можно при помощи переключения обмоток подать на транзистор напряжение близкое к нужному вам в данный момент. Ограничения в количестве выводов трансформатора не имеется, нужен только соответствующий количеству выводов переключатель.
Транзистор в этом случае будет нужен только для незначительной точной корректировки напряжения и КПД регулятора повысится, а нагрев транзистора уменьшится.
Разделительный трансформатор и ЛАТР
Есть также более безопасные виды ЛАТРов. В своем составе они имеют развязывающий трансформатор. Схема такого ЛАТРа выглядит примерно вот так:
Как мы видим, фазный провод изолирован от выходных клемм такого ЛАТРа, благодаря трансформатору, принцип работы которого вы можете прочитать в этой статье. В этом случае нас может тряхануть, если мы на выходе ЛАТРа с помощью крутилки выставим высокое напряжение и возьмемся сразу за два выходных провода ЛАТРа. То есть здесь типичная гальваническая развязка.
ЛАТРа своими руками и способы сборки
Схема импульсного ЛАТРа для самостоятельной сборки. Оглавление :: Поиск Техника безопасности :: Помощь. Материал является пояснением и дополнением к статье: Импульсный преобразователь, источник синусоидального напряжения из постоянного или меандра, прямоугольного Импульсный силовой преобразователь напряжения в чисто синусоидальное. Принципиальная схема, расчет. Импульсный источник синусоидального напряжения.
В основе этого аппарата — легко поддающийся модернизации 9-амперный лабораторный автотрансформатор ЛАТР 2 и самодельный тиристорный мини-регулятор с выпрямительным мостом.
Трансформатор имеющий электрическую связь между обмотками называют лабораторным автотрансформатором, или ЛАТРом. Вольтаж цепи нагрузки прямо пропорционален обмотке вторичной цепи. В зависимости от конструкции, получение нужного выходного напряжения производиться подключением к соответствующим выводам или вращением ручного регулятора (рис. 1). В этой статье описывается как сделать ЛАТР в домашних условиях.
Подготовка материала
Для сборки ЛАТРа понадобятся следующие материалы и устройства:
- Медная обмотка;
- Тороидальный или стержневой магнитопровод. Можно приобрести в специализированном магазине или извлечь из испорченной техники;
- Термоустойчивый лак;
- Тряпичная изолента;
- Корпус с закрепленными разъемами для подключения нагрузки и питания.
Для лабораторного ЛАТРа с переменным коэффициентом трансформации могут дополнительно понадобиться:
- Цифровой или аналоговый вольтметр.
- Поворотный механизм, включающий в себя ручку и ползунок с угольной щеткой. Он будет регулировать напряжение.
Первым рассмотрим однофазный ЛАТР и его принцип работы
Основная задача ЛАТРа — плавное регулирование величины напряжения в заданных пределах. Не всегда, если подается 220В, то максимальной величиной на выходе будет 220В.
Если собрать схему “латр + трансформатор напряжения”, то, регулируя напряжение на латре, будем регулировать и трансформированное напряжение после ТНа. Тем самым можно добиться высокого значения выходной величины.
А если собрать схему “латр + НТ-12”, то можно создать ток большой величины и, например, прогрузить автоматы.
Основными параметрами ЛАТРа при его выборе выступают следующие:
- однофазный или трехфазный
- напряжение сети: 127; 220; 380В
- максимальный ток нагрузки (за этой величиной надо следить, ведь именно из-за превышения допустимого выходного тока регуляторы выходят из строя); чем больше ток, тем габаритнее устройство и тем тяжелее его тягать по объекту при пусконаладке =(
- ток холостого хода (ток, который протекает по ЛАТРу без подключенной нагрузки)
- КПД
- мощность
- наличие защитных устройств в конструкции
- наличие гальванической развязки
Сейчас существуют разные модели регуляторов. Но, как у российских, так и у китайских расположение клемм для подключения будет примерно одинаковым. Слева подключается сеть (источник питания, вход, input, большие буквы), а справа подключается нагрузка (выход, output, малые буквы), на которой и будет регулироваться напряжение. На последних моделях чуть выше клемм подключения располагается миниатюрный вольтметр для контроля величины выходного напряжения.
Подключение от сети стоит производить через автоматический выключатель, ибо, так мы обезопасим себя в случае возможной аварийной ситуации. Провода между ЛАТРом и автоматом и между автоматом и сетью должны быть подобраны согласно допустимого сечения. Не следует забывать заземлять прибор.
Также помните о том, что в автотрансформаторе отсутствует гальваническая развязка. Пример, возьмем схему однофазного ЛАТРа (на рисунке снизу слева).
Видим, что Х и х связаны между собой физически. То есть положение ручки прибора может находиться в нулевом положении, а фаза уже будет на выходе, следует быть начеку и не касаться руками выходов ЛАТРа при поданном напряжении. Для подстраховки покупают ЛАТРы с гальванической развязкой или используют разделительный трансформатор (трансформатор с коэффициентом трансформации равным единице; рисунок справа сверху).
Регулирование производится плавным движением ручки, расположенной сверху или сбоку регулятора. Так, перед началом подачи, ручка должна быть выведена в нулевое положение (против часовой стрелки до упора).
Всегда стоит следить, чтобы ручка находилась в нулевом положении — потому что иначе произойдет включение под нагрузкой и ток неизвестной величины отправится в вашу схему. А это не есть нормальный режим.
Хотя, если подаете с ретома-11 ток или напряжение толчком на реле, то это норм. Ретом-11 — это вообще просто набор ЛАТРов с различными параметрами.
Расчет провода
Автотрансформатор нецелесообразно использовать для больших трансформаций по следующим причинам:
- Большой риск получить токи, близкие к короткому замыканию. Это компенсируется специальными электронными схемами или дополнительным сопротивлением. Для маленьких нагрузок выгоднее использовать электронный ЛАТР.
- Теряются преимущества перед трансформаторами: высокий КПД, экономия проводника и стали, малые габариты и вес, стоимость.
Определяемся в каких пределах будет работать ЛАТР. Питание сети выбираем 220 В. В качестве вторичных напряжений выбираем 127, 180 и 250 В. Мощность ограничиваем в 300 Вт. Можете выбрать свои значения и произвести аналогичные расчеты на примере этой статьи.
Обмотка рассчитывается по большему току. Наибольший ток будет при преобразовании напряжения 220 в 127 В. Автотрансформатор в этом случае является понижающим, и к нему подходит схема 1. Исходя из предоставленной схемы, рассчитываем максимальный ток I проходящий в обмотке обеих цепей:
I = I2 – I1 = P / U2 – P / U1 = 300 / 127 – 300 / 220 = 1 А
- где I, I2, I3 – токи в соответствующих участках цепи, А;
- P – мощность, Вт;
- U1, U2 – напряжения первичной и вторичной цепи, В.
Диаметр провода рассчитываем по формуле:
d = 0,8 * √I = 1 мм.
Из таблицы 1 выбираем тип провода и сечение. Выбор делаем с учетом расчетного тока и среднего значения плотности тока для трансформаторов – 2 А/мм².
Коэффициент трансформации ЛАТРа n вычисляем по формуле:
n = U1 / U2 = 220 / 127 = 1,73
Для дальнейшего расчета вычисляем расчетную мощность Pр:
Pр = P * k * (1 – 1/n) = 300 * 1,2 * (1 – 1/1,73) = 151,92 Вт
где к – коэффициент, учитывающий КПД автотрансформатора.
Для определения количества витков приходящихся на 1 вольт, необходимо посчитать площадь поперечного сечения сердечника S и определиться с типом магнитопровода:
S = √ Pр = √ 151,92 = 12,325 см²
W0 = m / S = 35 / 12,325 = 2,839
- где W0 – количество витков, приходящихся на 1 вольт;
- m – 50 для стержневого и 35 для тороидального магнитопроводов.
Если сталь не очень высокого качества стоит увеличить значение W0 на 20-30 %. Так же при расчете витков следует увеличить их количество на 5-10 %, чтобы избежать просадки напряжения. Рассчитываем количество витков для выбранных напряжений 127, 180, 220 и 250 В:
w = W0 * U
Получаем 360, 511, 624 и 710 витков.
Для расчета длины провода обматываем один виток на магнитопровод и измеряем его длину. Затем умножаем на максимальное количество витков и прибавляем по 25-30 сантиметров для каждого вывода к клемме.
Особенности
Рассматривая, что это такое ЛАТР, следует отметить, что это разновидность автотрансформаторов. Он характеризуется невысокой мощностью, ему не требуется госреестр. Принцип работы, которым обладает лабораторный регулировочный автотрансформатор, заключается в настройке напряжения переменного типа однофазной(слева на фото) или трехфазной сети(справа).
Схема ЛАТРа включает в себя стальной сердечник тороидального типа. На нем присутствует всего один контур. Двух отдельных обмоток у этого устройства нет. Контуры совмещены. Одна часть может быть отнесена к виткам первичного типа, а другая – к виткам вторичного типа. Регулировочный автотрансформатор ЛАТР имеет достаточно простую схему. Пользователь может самостоятельно настраивать количество витков вторичной обмотки. Это отличает представленную разновидность агрегатов от других трансформаторов. О том как собрать ЛАТР своими руками мы писали здесь.
Процесс сборки
Для сборки регулируемого ЛАТРа выбираем тороидальный магнитопровод (рис. 2). Место наложения обмотки изолируем тряпичной изолентой. Выводим провод для первой клеммы питания. Все последующие провода выводим не разрывая. Закрепляем первый виток на магнитопроводе и начинаем накручивать рассчитанное количество. При достижении витка соответствующего одному из выбранных напряжений, выводим петлю, и продолжаем наматывать провод. На рисунке 3 изображен процесс намотки на деревянном каркасе.
После наложения обмотки лакируем ЛАТР. Наполняем емкость выбранным лаком, и окунаем в него автотрансформатор. Оставляем на длительную просушку.
После просушки помещаем автотрансформатор в корпус. Первый выведенный провод присоединяем к разъему питания. Этот разъем должен быть электрически связан с общей клеммой нагрузки, поэтому соединяем их между собой каким-нибудь проводником. Петлю выведенную для 220 В, соединяем со второй клеммой питания. Остальные провода подключаем к соответствующим клеммам вторичной цепи. На “схеме” 2 изображены выводы проводов.
Для лабораторного автотрансформатора с переменным коэффициентом трансформации добавляем корпус, и делаем крепление для ручки регулятора. К ручке прикрепляем ползунок с угольной щеткой. Щетка должна плотно касаться верхней части обмотки. Помечаем область по которой будет передвигаться щетка, и в этом месте избавляемся от изоляции. Так щетка будет иметь прямой электрический контакт с вторичной обмоткой. Клеммы вторичных напряжений, кроме общей, заменяем одной, соединенной с угольной щеткой (схема 3). При подсоединяем закрепляем вольтметр.
Если следовать написанной статье, то ЛАТР можно с легкостью сделать своими руками.
Что представляет собой прибор
Стоит упомянуть, что лабораторные автотрансформаторы (ЛАТР) широко использовались еще полвека тому назад. Прежние варианты прибора обладали токосъемным контактом, который был расположен на вторичной обмотке. Это позволяло плавно изменять выходное напряжение (его значение).
Если подключались всевозможные лабораторные приборы, был вариант оперативной смены напряжения. Например, при необходимости легко можно было повлиять на степень нагрева паяльника, регулировать яркость освещения, обороты электродвигателя и многое другое. Вот такой своеобразный регулирующий блок питания.
Рисунок 1. Схема простого варианта ЛАТРа.
Нынешний вариант ЛАТРа обладает различными модификациями. В целом его можно считать трансформатором, в котором происходит трансформация переменного напряжения одной величины в переменное напряжение другой. Устройство широко используется в качестве стабилизатора напряжения. Основной особенностью является возможность изменения напряжения на выходе из прибора. ЛАТРы бывают нескольких вариантов исполнения:
Трехфазный вариант представляет собой вмонтированные в едином корпусе три однофазных лабораторных автотрансформатора. Кстати, желающих стать обладателем трехфазного варианта значительно меньше.
Проверка
Что бы убедиться в бесперебойной и надежной работе устройства, выполняем следующие пункты:
- Подключаем автотрансформатор к сети 220 В;
- Проверяем на отсутствие задымления, запаха гари, сильных шумов;
- Вольтметром проверяем соответствие выходных значений;
- Через 10 — 20 минут работы отключаем ЛАТР. Проверяем не перегрелась ли обмотка.
- Снова включаем ЛАТР в сеть и подключаем нагрузку на длительное время.
При отсутствии проблем автотрансформатор готов к работе.
Простой прибор для регулирования
Существует весьма простенький вариант ЛАТРа, который доступен даже для начинающих, его схема изображена на рис. 1. Регулируемый таким прибором диапазон напряжений находится в пределах 0-220 вольт. Данный самодельный регулятор обладает мощностью 25-500 Вт. Увеличение мощности устройства может быть проведено посредством установки тиристоров VD1 и VD2 на радиаторы.
Полупроводниковые приборы (речь идет о тиристорах ВД1 и ВД2) следует подключить параллельно с нагрузкой R1. Пропускаемый ими ток имеет противоположные направления. Когда прибор включается в сеть, тиристоры остаются закрытыми, в отличие от конденсаторов С1 и С2, зарядка которых производится резистором R5. Если есть потребность, с помощью резистора R5 можно изменить напряжение, которое получается во время нагрузки. Резистор и конденсаторы создают фазосдвигающую цепь.
Рисунок 2. ЛАТР с биполярным транзистором.
Фазосдвигающая цепь – это электрический четырехполюсник, гармонический сигнал на выходе которого сдвигается по фазе относительно входного сигнала. Распространены в САУ в качестве устройств корректировки, которые обеспечивают устойчивость и необходимое качество управления. Частными случаями являются дифференцирующие и интегрирующие цепи.
Данное техническое решение позволяет использовать для нагрузки не половинную мощность, а полную. Достигается это благодаря тому, что используются оба полупериода переменного тока.
К недостаткам можно отнести форму переменного напряжения на нагрузке. В этом варианте она не строго синусоидальная. Специфика работы полупроводниковых приборов является основной причиной. Наличие такой особенности способно вызвать помехи в сети. Но их можно устранить путем дополнительной установки дросселей (фильтров последовательной нагрузки) на схему. Такие фильтры можно найти даже в неисправном телевизоре.
Эксплуатация
Лабораторные автотрансформаторы в большинстве случаев используются в лабораториях и различных исследовательских центрах.
Основное предназначение заключается в проведении тестирования различного оборудования переменного тока. Достаточно часто подобные агрегаты используются для обеспечения стабилизации сетевого напряжения. К примеру, в случае возникновения недостаточных показателей на текущий момент в электросети.
Сфера эксплуатации лабораторного трансформатора весьма ограничена:
- при редких перепадах напряжения в электросети устройство гарантирует свою стабильную, бесперебойную работу;
- при наличии регулярных перепадов напряжения либо вовсе скачков, использование трансформатора не несет за собой какой-либо эффективности. В данном случае возникает необходимость дополнительно приобретать стабилизатор.
Основным предназначением лабораторного автотрансформатора считается наличие возможности выполнить точную настройку показателей напряжения для реализации поставленных задач:
- проведения опытов;
- тестирование различного оборудования и пр.
Рассматриваемый тип оборудования вполне может быть нужен во время проведения пуско-наладочных работ приборов (с повышенными показателями чувствительности к напряжению) в сфере промышленности. Нередко используется радиоэлектрониками, которые с помощью аппарата позволяют обеспечить правильное питание для техники (к примеру, если она работает исключительно при небольшом напряжении) или заряда аккумуляторной батареи.
Читайте также: