Кокс своими руками
Коксование - это разложение при высокой температуре без доступа воздуха твердых и жидких горючих ископаемых с образованием летучих веществ и твердого остатка - кокса.
Коксование - это разложение при высокой температуре без доступа воздуха твердых и жидких горючих ископаемых с образованием летучих веществ и твердого остатка - кокса.
Сырье для получения нефтяного кокса
Качество сырья оказывает первостепенное влияние на характеристики конечного продукта − нефтяного кокса.
Производство кокса в СНГ в основном осуществляется на установках замедленного коксования (УЗК).
Характерной особенностью условий работы УЗК является использование в качестве сырья разнообразных смесей, остающихся на заводах в результате переработки нефти.
- тяжелые фракции нефти, образующиеся в результате атмосферной и вакуумной перегонки нефти (мазут, полугудрон, гудрон),
- тяжелые нефтяные остатки (ТНО):
-
-остатки от термического крекинга мазута и гудрона,
- тяжелый газойль каталитического крекинга,
- остатки масляного производства (асфальт пропановой деасфальтизации гудрона, экстракты фенольной очистки масел и др.).
Из всех нефтяных остатков, склонных к образованию различных видов структур кокса, предпочтительными считаются ароматические концентраты (дистиллятный крекинг-остаток) и некоторые другие высокомолекулярные углеводороды.
По этой причине дистиллятное сырье относят к перспективным видам сырья.
НПЗ имеют разные производственные условия и работают на различной нефти, поэтому для каждого НПЗ установки замедленного коксования строились с учетом конкретных условий.
Среди основных параметров, определяющих качество нефти, таких как плотность, фракционный и химический состав нефтепродуктов, наиболее значимыми являются плотность и показатель сернистости.
Сера − одна из самых нежелательных примесей в составе сырой нефти и конечного продукта − кокса.
В зависимости от массовой доли серы кокс, так же как и нефть, классифицируется на малосернистый, сернистый, высокосернистый.
Сернистый кокс отличается менее благоприятными свойствами, по сравнению с малосернистым коксом: вызывает коррозию оборудования, повышенное количество трещин в электродных изделиях, разрушение огнеупорной кладки печей прокаливания, вследствие чего его использование ограничено определенными областями.
Нефть, поступающая на нефтеперерабатывающие заводы, различается по составу, особенно по содержанию серы.
Для для России характерна переработка в основном сернистой и высокосернистой нефти.
К малосернистым (нефть с содержанием серы менее 0,5%) относят большую часть бакинской, грозненской, сахалинской, туркменской и некоторой украинской нефти, а также казахстанской нефти.
Сернистую нефть с содержанием серы 0,5-2,5% добывают в Урало-Поволжском районе (Туймазинское, Ромашинское месторождения и другие), в Западной Сибири (Самотлорское, Нижневартовское, Мегионское и другие).
К высокосернистым (нефть с содержанием серы более 2,5%) относятся месторождения − Арланское, Радаевское, Покровское (Урало-Поволжский район).
В настоящее время основным сырьем для получения кокса являются сернистая нефть.
Применение технологий, позволяющих получать качественный кокс независимо от состава исходной нефти, решает многие проблемы:
- обеспечивает электродную промышленность качественным сырьем,
- позволяет задействовать в производстве более широкий диапазон нефти,
- углубить процесс переработки нефти на НПЗ.
С целью обессеривания конечного продукта применяется прокаливание кокса.
Еще один путь получения обессеренного нефтяного кокса из высокосернистых марок нефти − это предварительное удаление серы из сырой нефти методом гидрообессеривания, гидрокрекинга, или деасфальтизации.
Этот вариант считается более действенным, несмотря на то, что является более сложным и требует дополнительных затрат.
На российские заводы нефть поставляется, главным образом, по системе магистральных нефтепроводов (МНП) Транснефти, в которой Западно-Сибирская нефть, марки Siberian Light смешивается с более тяжелой и сернистой нефтью марки Urals.
Способы получения сырого и обожженного нефтяного кокса
Коксование нефтяного сырья − наиболее жесткая форма термического крекинга нефтяных остатков.
Осуществляется при низком давлении и температуре 480-560 оС, с целью получения нефтяного кокса, а также углеводородных газов, бензинов и керосино-газойлевых фракций.
При коксовании происходит расщепление всех компонентов сырья с образованием жидких дистиллятных фракций и углеводородных газов; деструкция и циклизация углеводородов с интенсивным выделением керосино-газойлевых фракций; конденсация и поликонденсация углеводородов и глубокое уплотнение высокомолекулярных соединений с образованием сплошного коксового остатка.
Промышленный процесс коксования осуществляется на установках 3 х типов: периодическое коксование в коксовых кубах, замедленное коксование в камерах, непрерывное коксование в псевдоожиженном слое кокса-носителя.
Замедленное коксование
Замедленное (полунепрерывное) коксование наиболее широко распространено в мировой практике.
Сырье, предварительно нагретое в трубчатых печах до 350-380 оС, непрерывно поступает на каскадные тарелки ректификационной колонны (работающей при атмосферном давлении), стекая по которым, контактирует с поднимающимися навстречу парами, подаваемыми из реакционных аппаратов.
В результате тепло- и массообмена часть паров конденсируется, образуя с исходным сырьем так называемое вторичное сырье, которое нагревается в трубчатых печах до 490-510 о С и поступает в коксовые камеры − полые вертикальные цилиндрические аппараты диаметром 3-7 м и высотой 22-30 м.
В камеру реакционная масса непрерывно подается в течение 24-36 часов и благодаря аккумулированной ею теплоте коксуется.
После заполнения камеры коксом на 70-90% его удаляют, обычно струей воды под высоким давлением (до 15 МПа).
Кокс поступает в дробилку, где измельчается на куски размером не более 150 мм, после чего подается элеватором на грохот, где разделяется на фракции 150-25, 25-6 и 6-0,5 мм.
Камеру, из которой выгружен кокс, прогревают острым водяным паром и парами из работающих коксовых камер и снова заполняют коксуемой массой.
Летучие продукты коксования, представляющие собой парожидкостную смесь, непрерывно выводятся из действующих камер и последовательно разделяются в ректификационной колонне, водоотделителе, газовом блоке и отпарной колонне на газы,
Типичные параметры процесса: температура в камерах 450-480 о С, давление 0,2-0,6 МПа, продолжительность до 48 часов.
Достоинства замедленного коксования − высокий выход малозольного кокса.
Из одного и того же количества сырья этим методом можно получить в 1,5-1,6 раза больше кокса, чем при непрерывном коксовании.
На российских НПЗ эксплуатируются 1-блочные и 2-блочные установки коксования (каждый блок состоит из 2 х или 3 х реакторов) нескольких типов.
Компоновка, проектирование установок произведены по проектам институтов Гипронефтезаводы и ВНИПИнефть.
Периодическое коксование
Проводят в горизонтальных цилиндрических аппаратах диаметром 2-4 м и длиной 10-13 м.
Сырье в кубе постепенно нагревают снизу открытым огнем.
Далее обычным способом выделяют дистилляты, кокс подсушивают и прокаливают (2-3 часа).
После этого температуру в топке под кубом постепенно снижают и охлаждают куб сначала водяным паром, а затем воздухом.
Когда температура кокса понизится до 150-200 о С, его выгружают.
Типичные параметры процесса: температура в паровой фазе 360-400 о С, давление атмосферное.
Этим способом получают электродный и специальный виды высококачественного кокса с низким содержанием летучих.
Однако способ малопроизводителен, требует большого расхода топлива, а также значительных затрат ручного труда и поэтому почти не используется в промышленности.
Непрерывное коксование в кипящем слое (термоконтактный крекинг)
Сырье, предварительно нагретое в теплообменнике, контактирует в реакторе с нагретым и находящимся во взвешенном состоянии инертным теплоносителем и коксуется на его поверхности в течение 6-12 минут.
В качестве теплоносителя используется обычно порошкообразный кокс с размером частиц до 0,3 мм, реже более крупные гранулы.
Образовавшийся кокс и теплоноситель выводят из зоны реакции и подают в регенератор (коксонагреватель).
Там слой теплоносителя поддерживается во взвешенном состоянии с помощью воздуха, в токе которого выжигается до 40% кокса, а большая его часть направляется потребителю.
Благодаря теплоте, выделившейся при выжигании части кокса, теплоноситель нагревается и возвращается в реактор.
Для перемещения теплоносителя используется пневмотранспорт частиц кокса, захватываемых потоком пара или газа.
Дистиллятные фракции и газы выводят из реактора и разделяют так же, как при замедленном коксовании.
Типичные параметры процесса: температура в теплообменнике 300-320 о С, реакторе 510-540 о С и регенераторе 600-620 о С, давление в реакторе и регенераторе 0,14-0,16 и 0,12-0,16 МПа соответственно, теплоноситель - (6,5-8,0)
Коксование в кипящем слое используют для увеличения выхода светлых нефтепродуктов. Кроме того, сочетание непрерывного коксования с газификацией образующегося кокса может быть применено для получения дизельного и котельного топлива.
Прокаливание
Перед использованием нефтяной кокс обычно подвергается облагораживанию, включающему несколько процессов.
При прокаливании удаляются летучие вещества и частично гетероатомы (например, сера и ванадий), снижается удельное электрическое сопротивление.
При графитировании 2-мерные кристаллиты превращаются в кристаллические образования 3-мерной упорядоченности.
В общем виде стадии облагораживания можно представить следующей схемой: Кристаллиты → карбонизация (прокаливание при 500-1000 о С) → 2-мерное упорядочение структуры (1000-1400 о С) → предкристаллизация (трансформация кристаллитов при 1400 о С и выше) → кристаллизация, или графитированние (2200-2800 о С).
Оборудование, используемое для преобразования различных видов твердого топлива в кокс, называется коксовой печью. Полученный продукт представляет собой жесткий материал с высокой концентрацией углерода (96-98%) и широко используется в черной металлургии в качестве топлива для доменных печей и вагранок. Кокс производится путем нагревания сырья до высоких температур (≈1000 °С) без доступа кислорода. Чаще всего для этого процесса используют каменный уголь, однако возможно применение торфа и других видов сырья. Низшая теплота сгорания кокса близка к показателям условного топлива и составляет около 7000 ккал/кг (29 МДж/кг).
Схема, устройство и конструкция коксовой печи
Основными составляющими элементами подобного оборудования являются камеры коксования, в которые закладывается сырье, и отопительные промежутки, где происходит горение топлива. Уголь от зоны горения отделен стенками из огнеупорного кирпича, благодаря чему удается избежать окисления сырья. Камера коксования обладает следующими размерами: длина 12-16 м, высота 4-5 м, ширина 40-45 см.
Такая печь имеет целую батарею камер коксования, которых насчитывается несколько десятков штук. Уголь загружается через отверстия вверху с помощью тележки. Процесс переработки топлива длится около 15 часов. После его завершения готовый продукт выгружается через боковые отверстия с помощью выталкивателя. При этом температура полученного материала составляет 1000 °С, а дым в отопительных промежутках достигает показателей в 1300-1400 °С. Чтобы не произошло возгорания кокса, его помещают в специальный вагон, где происходит тушение. Оно бывает мокрое и сухое.
В качестве горючего при производстве кокса используется доменный или коксовый газ. Последний является продуктом переработки твердого топлива путем нагревания без доступа кислорода. В печи предусмотрены керамические регенераторы, позволяющие утилизировать теплоту продуктов сгорания.
Регенератор – это вид теплообменного устройства, в котором теплоноситель в циклическом процессе контактирует с определенными поверхностями оборудования. При этом горячее вещество нагревает холодные стену и насадку, после чего они отдают тепло теплоносителю, имеющему низкую температуру. Регенераторная насадка используется для накапливания тепловой энергии и последующей ее передачи газу или воздуху.
Существует иной вид теплообменников – рекуператор. В нем горячий и холодный теплоносители обмениваются теплом через разделяющую их стену.
В печных регенераторах сначала опускаются горячие дымовые газы, затем происходит переключение перекидных клапанов, и снизу вверх идет поток холодного воздуха. Перекидной клапан – это механизм, позволяющий менять направление движения газообразных веществ. В результате поверхности регенератора поочередно нагреваются от дымовых газов и охлаждаются воздухом, и такой процесс идет непрерывно.
Переключение клапанов осуществляется с интервалом в 15-30 минут. Очевидно, что при меньшем промежутке времени между перекидками происходит экономия горючего на отопление печи. Вместе с тем при частом переключении оборудование быстрее изнашивается. Через теплообменник можно пропускать и топливо перед его подачей в камеру для сжигания. Если этого не требуется, газ через горелку сразу же поступает в зону горения.
Коксовые печи производят с двумя вариантами отопительных промежутков:
- Устройства с перекидными каналами (ПК).
- Агрегаты с парными вертикалами и рециркуляцией продуктов горения (ПВР).
В отопительных промежутках печей ПК установлены перегородки. Над камерой коксования смежные с нею отсеки соединяются коллектором. Таким образом формируются перекидные каналы. Данная конструкция несовершенна, потому она используется не очень часто. В качестве недостатков этого варианта печей можно отметить следующее: в таких устройствах коксовая масса нагревается по вертикали неравномерно; создается значительное гидравлическое сопротивление; отопительная система недостаточно герметична; наблюдается перерасход топлива. Чтобы содержимое камеры коксования нагревалось равномернее, кладку стены в нижней части делают более толстой.
Каждый из отопительных промежутков в печах ПВР разделен на две части (вертикалы), по которым рециркулируют продукты сгорания. Попарно они соединены внизу рециркуляционными отверстиями. Вещества, полученные путем химической реакции окисления топлива, рециркулируют благодаря тому, что они имеют разную с горючим плотность. Кроме того, этому способствует инжектирующий эффект топливовоздушной смеси.
Конструкция печей ПВР позволяет сжигать до 40% продуктов горения. Потому для них характерна равномерность нагревания коксовой массы. По высоте разница в температуре полученной продукции не превышает 50 °С. Этот фактор делает печи ПВР более предпочтительными, чем устройства ПК. Продуктами коксования одной тонны сухого каменного угля являются около 750 кг кокса, более 300 куб. м коксового газа, 35 кг смолы, 10 кг бензольных углеводородов и 3 кг аммиака в виде сульфата аммония.
Коэффициент использования химической энергии топлива при производстве кокса превышает 80%. Удельный расход теплоты составляет около 3,5 МДж/кг.
К способам снижения потребления топлива при его переработке путем нагревания без доступа кислорода можно отнести следующее:
Кокс – это остаток, который получается при нагреве без доступа воздуха любого органического материала. Нагрели дерево до температур 500 – 700ºС градусов в закрытой реторте – получили древесный кокс, или как его по началу назвали – древесный уголь. А, если нагреть уголь, тоже без доступа воздуха до температуры 1000ºС – получится каменноугольный кокс.
Почему каменноугольный кокс в металлургии вытеснил древесный уголь? Пользуясь древесным углем, невозможно было удовлетворить потребности промышленности в металле. Во-первых, это обратило бы земной шар в безлесную пустыню. Во-вторых, древесный уголь имел малую прочность. Для производства большого количества металла необходимо было строить доменные печи больших размеров. Чем выше доменная печь, тем больше столб руды, флюсов, угля, тем большая нагрузка приходится на уголь. Не выдерживая нагрузки, уголь крошится. Образовавшаяся при этом угольная пыль набивается между кусками руды. Газы не могут преодолеть сопротивление столба шихты, плавка замедляется, а то и прекращается полностью. Хрупкость, недостаточная прочность древесного угля не позволяла сооружать большие домны. Для этого необходим был более прочный углеродистый материал.
Все это не значит, естественно, что неизбежная победа каменноугольного кокса оказалась простой и легкой. Путь кокса в домны оказался длиной почти в двести лет.
После сгорания древесного угля остаются всего десятые доли процента золы. А зольность каменного угля и тем более кокса намного выше. В среднем, зольность металлургического кокса, полученного из каменного угля, составляет 10 – 12%. Зола является балластом, и ее обращают в плавкий шлак. А для этого в доменную печь надо добавлять дополнительно флюсы, в основном, известняки и доломиты, а значит расходовать больше тепла на плавление шлака.
Что же такое кокс? Сравним каменный уголь и приготовленный из него кокс. Уголь – вещество черного цвета. В нем заметны блестящие и матовые прослойки. Кокс – серо-стального цвета, плотный, оплавленный, намного прочнее угля. Уголь горит коптящим пламенем, а кокс дает розовато-голубое пламя без следов копоти. Отличаются они и по химическому составу.
Кокс – точнее его горючая масса – почти чистый углерод. В угле же содержится много водорода и кислорода. Получают кокс путем нагрева каменного угля без доступа воздуха. При этом разлагается вещество угля, выделяются газообразные продукты распада.
Как топливо уголь известен человечеству более 25 столетий, а поделочный камень (гагат), тот же уголь по происхождению, известен намного раньше.
В Европе добыча угля как топлива велась уже римлянами на территории Британии. Имеются сведения, что более двух тысяч лет назад в Китае, в провинции Юннань, производили кокс. Письменные источники указывают на подземную добычу угля в XII в. на территории Бельгии и Моравии (тогдашней Чехии). С XIII в. в Европе известны случаи применения каменного угля в кузнечных горнах. Эти сорта угля и в настоящее время в Западной Европе называют кузнечными.
Первые патенты по коксованию углей относятся к концу XVII в. Пионерами в этом деле не зря стали англичане.
Тяжелое положение, в котором оказалась в связи с этим английская промышленность, вынудило металлургов искать замену древесному углю. И, прежде всего их взоры обратились к каменному углю, которым природа, не скупясь, одарила британские острова. Крупные угольные залежи располагались близко к поверхности земли. После прядения и ткачества добыча угля и металлургия была одной из главных отраслей развивающейся промышленности.
К этому времени каменный уголь, выделявший при сгорании больше тепла, чем древесный, уже успел снискать репутацию отличного топлива, но… не для доменных печей. Все попытки выплавить чугун на каменном угле кончались неудачей: металл содержал вредные примеси — серу и фосфор, расход топлива был очень большим.
И все же слишком заманчивой была идея замены в доменной плавке древесного угля каменным, крупные залежи которого могли надолго обеспечить топливом металлургическую промышленность. Не мудрено, что многие англичане, да и не только они, пытались решить эту задачу.
Долгая жизнь, прожитая Додлеем, была до краев наполнена драматическими событиями. Чего только не довелось ему испытать: конкуренты разрушили его завод, он сидел в лондонской долговой тюрьме, принимал участие в гражданской войне, дважды попадал в плен и приговаривался к расстрелу, но оба раза бежал, получил тяжелое ранение, был коварно обманут своими компаньонами — словом, скучать ему не приходилось. Но, к сожалению, в этом жизненном калейдоскопе Додлей так и не смог осуществить на практике свое изобретение. Он никому не пожелал открыть секрет, и после его смерти металлургия вновь осталась без минерального топлива.
Используя каменноугольный кокс, Додлей получил хороший чугун. Но ему не повезло. Повсеместного распространения его способ не получил, а патент был составлен, вероятно, не совсем понятно и поэтому не был расшифрован.
Лишь в 1735 г., т. е. спустя 116 лет после выдачи патента Додлею, доменный процесс был впервые осуществлен полностью на коксе — полученном из каменного угля – топливе, без которого немыслимы сегодня ни доменная плавка, ни ряд других металлургических процессов.
Изобретение коксования — важное событие в истории техники, связанное с именем английского железопромышленника Абрахама Дерби-сына. Семейный клан Дерби владел железоделательным заводом в Колбрукдейле.
Опыты по превращению каменного угля в кокс и использованию его при выплавке чугуна начал проводить еще родоначальник династии — Абрахам Дерби-отец, но до конца решить проблему ему не удалось.
Каменноугольный кокс получали также как и древесный – коксованием в кучах различных видов угля, но пригодного для доменной плавки получить никак не удавалось.
Работу отца продолжил сын, прекрасно понимавший значение перевода доменной плавки на минеральное топливо. Однако получить отвечающий всем требованиям кокс оказалось необычайно сложно. На эксперименты, проводившиеся один за другим, понадобился не один год. Когда же желаемый кокс, наконец, был получен, его тут же загрузили в доменную печь
Как пишет С.А. Венецкий, по семейному преданию, Дерби круглые сутки, не зная сна, дежурил у печи в ожидании результатов плавки. Прошло несколько дней, наполненных волнением и тревогой, надеждами и разочарованиями. Лишь на шестой день, под вечер, домна дала отличный чугун. И тут же прямо у печи счастливый Дерби уснул мертвецким сном. Так и отнесли его, спящего, домой.
Еще в 1711 г. англичанин Томас Ньюкомен изобрел пароатмосферную поршневую машину для подъема воды из шахт. Спустя четыре десятилетия все тот же Абрахам Дерби-сын применил эту машину для привода доменной воздуходувки. Но машина была далека от совершенства и работала с частыми перебоями. Усовершенствованием машины Ньюкомена в одно и то же время занимались два замечательных изобретателя — англичанин Джеймс Уатт и наш соотечественник И. И. Ползунов.
К работам Д. Уатта судьба оказалась благосклоннее: в 1784 г. он получил патент на универсальную паровую машину двойного действия. К этому периоду относится и появление первой паровой воздуходувки на доменных печах английских заводов.
Следующий значительный шаг в развитии доменного производства был сделан спустя примерно полвека, когда шотландский изобретатель Джеймс Бомон Нилсон предложил нагревать воздух, прежде чем подавать его в доменную печь. Как это часто бывает, это замечательное открытие, произведшее подлинную революцию в металлургии, возродило английскую железоделательную индустрию и открыло широкие перспективы перед каменноугольной промышленностью и металлургией, сразу не было оценено.
Воздухонагреватель Нилсона был далек от совершенства: проходя по чугунным трубам, расположенным в топке, воздух мог нагреваться лишь до 300 — 400С (иначе трубы перегорали и быстро выходили из строя). В 1857 г. английский инженер Эдуард Альфред Каупер предложил оригинальную конструкцию доменного воздухонагревателя — высокую цилиндрическую башню из стальных листов, внутри которой по всей ее высоте была выложена решетка из огнеупорного кирпича. Кирпичи нагревались докрасна горячими газами, а затем подачу газов прекращали, и через решетку, или, точнее, насадку, пропускали воздух. Благодаря большой поверхности кирпичей воздух теп0ерь мог нагреваться до 600 — 700С. Спустя несколько лет Каупер развил свою идею, предложив для нагрева огнеупорной насадки сжигать отходящие газы доменной печи.
Были заложены первые основы неразрывного союза этих двух гигантских областей производства. Логическим продолжением изобретения Додлея и Дерби явилось применение каменного угля при переработке чугуна в ковкое железо и сталь, осуществленное Генри Кортом в его пудлинговых печах.
Угольная промышленность Англии (особенно в окрестности Нью-Касла) становится центром мировой добычи угля. Удобный порт, он быстро становится центром добычи и торговли углем двух обширных графств – Нортумберленда и Дергема.
В XVIII в. топливная проблема черной металлургии в Европе была разрешена, кокс начинают применять и в других отраслях промышленности.
Лучшая раскоксовка поршневых колец – возможна ли она, как её сделать, тонкости и нюансы процесса. Всё что я напишу в этой статье, будет основываться на моем восьмилетнем опыте работы с автохимией и смазочными материалами, и на опыте моих клиентов.
В самом начале необходимо чётко понять, что раскоксовка – это процедура, действие, процесс, но никак не название какого-либо препарата для проведения процедуры.
Раскоксовка – это процедура удаления кокса (углеродистых отложений) с каких-либо поверхностей, которые подвержены закоксовыванию
В случае с двигателем – удаление кокса из камеры сгорания, и из области поршневых колец.
В процессе эксплуатации двигателя, в камере сгорания неминуемо образуется нагар. Это может быть вызвано несколькими причинами:
– топливо не надлежащего качества, содержащее в себе вредные примеси;
– эксплуатация двигателя в неблагоприятных режимах ( частые поездки на короткие расстояния, длительная работа на холостом ходу, прогревы, когда двигатель работает на обогащённой топливовоздушной смеси);
– горение масла в камере сгорания (причин несколько);
– большая наработка двигателя (более 100 – 150 тыс.км. или большая наработка моточасов. Двигатель работает, а пробег при этом не растёт).
При длительной эксплуатации образование в камере сгорания нагара – неизбежно.
Нагар в камере сгорания
Отложения нагара в камере сгорания (кокс) снижают отвод тепла от её элементов (поршень, стенка цилиндра, ГБЦ), что ведёт к повышению рабочей температуры деталей. Нередким следствием закоксованности камеры сгорания является преждевременное воспламенение топливовоздушной смеси (калильное зажигание, детонация).
Нагар в канавках компрессионных колец мешает нормальному перемещению колец, что мешает нормальной их работе. Как следствие, снижается компрессия и тяговые/ мощностные характеристики мотора.
Закоксованные поршневых кольца
Нагар в канавках маслосъёмных колец так же мешает нормальному перемещению колец во время работы мотора, и, как следствие, кольца не в полной мере справляются со своей главной функцией – снимать масло со стенок цилиндра во время работы двигателя. Далее это масло попадает уже к компрессионным кольцам, где температура намного выше и там сгорает, оставляя после себя нагар. При залегании маслосъёмных колец, дальнейшему залеганию будут подвержены и компрессионные кольца. Из-за повышенного попадания масла в камеру сгорания так же будет ускоренными темпами образовываться нагар и в камере сгорания.
Несмотря на закоксованность колец, канавка для отвода масла всё ещё открыта. Современные поршни имеют очень маленькие отверстия для отвода масла.
Для борьбы с нагаром различные фирмы уже давно выпускают множество препаратов, большинство из которых, к сожалению, малоэффективны и не дают нужного результата. Во многом из-за этого у многих автолюбителей и профессионалов укрепилось мнения, что автохимия в таких случаях бессильна.
Расход масла не всегда стоит списывать исключительно на закоксованные маслосъёмные кольца.
Причинами повышенного расхода масла могут быть:
– износ ЦПГ ( цилиндро-поршневой группы);
– износ маслосъёмных колпачков;
– масло не подходящего уровня качества.
Раскоксовывать двигатель или сразу ремонтировать?
Второй вариант – это практически 100% гарантия успеха при квалифицированном ремонте, но не каждый из нас готов выложить круглую сумму за ремонт.
Лучшие средства для раскоксовки на сегодняшний день
Промывка BG-109 добавляется в моторное масло и, уже перемешавшись с ним, оказывает воздействие на кокс на маслосъёмных кольцах. Не оказывает влияния на ЛКП деталей двигателя. Нейтральна к сальникам и прокладкам.
Очистка камеры сгорания и раскоксовка компрессионных колец
Для раскоксовки камеры сгорания и компрессионных колец рекомендуется применять пенные очистители:
– Pro Tec Carbon X
– Mitsubishi Shumma Engine Conditioner
– Gzox Injection Carb Cleaner.
Выбирать нужно исходя из конкретного случая, в каком будет целесообразно применить то или иное средство.
Эффективная раскоксовка колец – комплексная
Лучшие препараты для очистки камеры сгорания от нагара , такие, как Pro Tec Carbon X, Mitsubishi Shumma Engine Conditioner, Gzox Injection Carb Cleaner не в полной мере могут воздействовать на причину всех бед – закоксованные маслосъёмные кольца. Это обусловлено самой конструкцией двигателя, где маслосъёмное кольцо , практически изолировано от камеры сгорания двумя верхними компрессионными кольцами. Из-за этого рекомендуется делать раскоксовку в комплексе. Очистку камеры сгорания и раскоксовку компрессионных колец проводить препаратами что указаны немного выше, а для раскоксовки маслосъёмных колец и промывки масляной системы, применять BG-109. Процедура выполненная в комплексе (через камеру сгорания, и через масло) будет иметь гораздо больший эффект.
Выполнять процедуру нужно всегда средствами и по методу, который даст наибольший эффект в конкретном случае. Если остаются какие-то вопросы, то лучше их задать тем, кто может дать ответ по делу, и кто основывается на личном опыте и опыте других. У меня уже скопилась некоторая статистика от клиентов, при необходимости готов ей поделиться, задавайте вопросы, с удовольствием отвечу.
Для тех кто решит раскоксовывать мотор при помощи BG-109 и Gzox-Shumma, есть инструкция с общими рекомендациями.
Читайте также: