Что является преобразователем информации в компьютере
Именно эти составные компоненты, которые находятся внутри блока, в совокупности принято называть системным блоком. Остальные же устройства, такие как монитор, периферийные устройства, мышь, являются внешними компонентами или устройствами. Причем каждый из компонентов выполняет свою определенную функцию, например, монитор предназначен для вывода информации на дисплей, клавиатура – для ввода информации, принтер – для вывода на бумажный носитель информации, изображаемой на дисплее компьютера.
Считаю, что каждый пользователь желает сам разбираться в своей компьютерной технике, а именно самостоятельно производить профилактическую работу своего компьютера, иметь представление о строении компьютера, а также оперативно находить и исправлять неисправности, которые вызвали сбой в работе. Ведь умение разбираться в самом компьютере начинается именно с самой покупки компьютера, поскольку пользователь должен определиться с функциональным назначением своего компьютера. При покупке компьютера нужно четко определиться, для чего он Вам нужен?
Подбор компьютера напрямую зависит от выбора конфигурации составных частей. Можно купить первый попавшийся компьютер, «напичканный» высокими требованиями по конфигурации, который не будет соответствовать вашей выполняемой работы за ним, при этом Вы, конечно, заплатите высокую цену за него. Зачем, спрашивается? Ведь проще всего иметь хоть малейшее представление о компьютере, достаточно изучив его составные части, требования, а также подбор элементов системы на отсутствие возникновения конфликтов в компьютере.
Ну ладно, пора перейти к изучению этих самых составных частей компьютера. Ну а если Вас интересует история создания компьютера, тогда Вам сюда.
Системный блок – является центральной частью компьютера, в который входит блок питания и компоненты, обеспечивающие функционирования компьютера.
1. Блок питания – обеспечивает электрическое питание всех компонентов системного блока. Стоит отметить, что на момент написания данного урока выпускают блоки питания мощностью 450, 550 и 750 Вт. К примеру, блоки питания мощностью 1500 Вт целесообразно применять в серверах. Покупая блок питания, прежде всего, необходимо учитывать требования, которые предъявляются видеокарте. Если блок питания подходит под параметры видеокарты, то тогда распределение мощности происходит равномерно и для других элементов системы.
2. Материнская плата — считается «основой» компьютера, поскольку именно материнская плата осуществляет объединение и функционирование всех составных частей компьютера. Также материнскую плату называют еще – системная плата или основная плата. Такая согласованная работа обеспечивается благодаря – чипсету, который в основном состоит из двух микросхем, которые называются северным и южным мостом. Итак, предлагаю рассмотреть эти две микросхемы.
Северный мост – называется системный контроллер, который содержит в себе элементы логики для обеспечения взаимосвязи и функционирования основных компонентов компьютера (видеокарта, модули памяти).
Южный мост – называется периферийный контроллер, служащий своеобразным устройством ввода-вывода для подключения дополнительных составных компонентов. К примеру, клавиатура обеспечивается соединением с системой через южный мост. Поэтому когда вы выбираете для себя компьютер, желательно узнать, на какой основе чипсета была изготовлена материнская плата. В настоящее время чипсеты производятся такими крупными фирмами: Nvidia, ATI/AMD, Intel, SiS. То есть чипсет на материнской плате должен быть изготовлен более известной фирмой. На рисунке представлен вид материнской платы.
Габаритные размеры материнских плат бывают разными. Существует такое понятие как форм-фактор платы, который определяет не только размеры основной платы, но и конфигурацию расположения элементов, разъемов на плате. На основе форм-фактора основной платы осуществляют подбор корпуса системного блока.
Как видите, плата содержит различные виды разъемов и слотов для подключения, например, внешних, дополнительных устройств (начинаю с флешки и заканчивая принтером, сканером). Кроме того, на плате присутствуют контакты для подключения различных кнопок, такие как питание, перезагрузка, микрофон, отображение индикаторов.
Еще следует отметить присутствие на материнской плате микросхемы ПЗУ или, как ее еще называют, базовая система ввода-вывода BIOS (Basic Input Output System). BIOS считается фундаментом управления и взаимодействия всех элементов системного блока. Другим словами процесс запуска компьютера и обеспечение взаимодействия с внешними устройствами происходит за счет определенных настроек, которые заранее заложены в самой системе.
Например, в BIOS мы можем установить запрет чтения и распознавания флешек, оптических дисков, а также полностью изменить порядок загрузки операционной системы. Причем сам BIOS может запускаться даже при отсутствии в системном блоке жесткого диска. Также существует такое понятие как «обнуление BIOS», что это значит? Отвечаю Вам, что обнуление BIOS представляет собой возврат системы к первоначальным настройкам. Для обнуления достаточно извлечь батарейку из материнской платы на 10-15 минут. На плате эта батарейка одна, думаю Вы найдете ее, не ошибетесь.
3. Процессор – является главной частью компьютера, можно сказать, что является «мозгом» компьютера, которое выполняет вычисления и обработку информации. Процессор характеризуется двумя параметрами:
1. Разрядность – количество информации, обрабатываемые процессором за один прием.
2. Быстродействие – частота, с которой происходит данная обработка. В настоящее время для увеличения данных параметров широко используют два, три, четыре процессора. К примеру, в двухядерном процессоре находятся два процессора, которые располагаются на одном кристалле.
4. Видеокарта – служит своеобразным звеном для связи монитора с материнской платой. Основным назначением видеокарты в компьютере является обработка графической информации. Еще видеокарту называют графическим редактором. В настоящее время производителями видеокарт являются американская компания Nvidia (также известны как GeForce ) и канадская ATI Technologies. Видеокарты компании ATI Technologies еще называют Radeon. Далее рассмотрим основные части графического адаптера:
1. Графический процессор – процессор, основной задачей которого является обеспечение выполнение всевозможных расчетов с целью отображение заданной графической информации на дисплее.
2. Видеоконтроллер – обеспечивает формирование и передачу данных из видеопамяти на цифро-аналоговый преобразователь (ЦАП).
3. Видеопамять – служит кеш-памятью, где временно хранятся изображения, выводимые на дисплей.
4. Цифро-аналоговый преобразователь (ЦАП) – основная задача является преобразование цифровых сигналов видеокарты в аналоговый.
5. Видео — (постоянное запоминающее устройство) – представляет собой микросхему, которая хранит в себе определенные правила и алгоритмы для обеспечения работы и взаимодействия с другими элементами платы.
6. Радиаторы – это система охлаждения, осуществляющая отвод тепла от видеопроцессора, видеопамяти, чтобы обеспечить заданный режим температуры на элементах видеокарты.
5. Модули ОЗУ (оперативно запоминающие устройства) — представляют собой платы с размещенными на них микросхемы. Основная задача оперативной памяти является временное хранение данных для процессора. Другими словами ОЗУ осуществляют обработку команд процессора. Модули ОЗУ можно расположить на плате в зависимости от конфигурации материнской платы.
Скорость оперативной памяти представляется частотой ее шины. Существуют следующие виды ОЗУ: SDRAM, DDR2, DDR3.
Устанавливаются модули ОЗУ в специальные разъемы в материнской плате, которые называются слотами.
Кроме того следует отметить, что основной характеристикой ОЗУ является скорость обработки и объем. Объем оперативной памяти при покупке компьютера должен соответствовать в зависимости от назначения данного компьютера, а также от установленной операционной системы. Если же на компьютере будет недостаточно оперативной памяти, то при запуске ресурсоемких приложений быстродействие компьютера значительно снизится, поскольку компьютер из-за нехватки памяти обратится в файл подкачки .
6. Винчестер (Жесткий диск) - это устройство, в котором хранятся все наши данные. По сравнению с оперативной памятью, данные на жестком диске хранятся постоянно, даже после перезагрузки или выключения компьютера. По конструкции винчестер представляет собой небольшую плату, на которой расположены микросхемы, а также одну или несколько пластин, которые вращаются с высокой скоростью и движок, обеспечивающий вращения пластин. Жесткий диск отличается высокой надежностью, долговечностью и не высокой стоимостью.
Также еще существует еще один вид запоминающего устройства – это SSD (твердотельный накопитель), отличается от винчестера тем, что в нем отсутствуют движущиеся части. Данный тип устройства имеет низкое потребление энергии, небольшие габариты по сравнению с винчестерами, а также отсутствие шума. Но стоимость таких устройств хранение информации во многом превышает стоимости жестких дисков, да и выходят из строя гораздо чаще.
Перечислим основные характеристики запоминающих устройств:
1. Объем хранения данных – данный параметр определяет количество информации, которое может помещаться на диск.
2. Скорость вращения шпинделя – представляет собой количество оборотов, совершаемое пластиной за одну минуту. Характеристика определяет такие параметры как надежность, производительность. Следует отметить, что в стационарных компьютерах скорость вращения шпинделя составляет до 15 000 об/мин. Если Вы покупаете ноутбук, то рекомендую Вам обращать внимание на скорость вращения шпинделя (чем меньше тем лучше), чтобы обеспечить себе работу за компьютером без шума и вибрации.
3. Взаимосвязь с основной платой – предполагает собой способ подключение к основной плате. Первые жесткие диски соединялись при помощи интерфейса PATA. В настоящее же время все большей популярностью является SATA интерфейс.
7. Сетевая карта – предназначена для объединения нескольких компьютеров между собой с помощью кабелей (витая пара) с целью обмена данными.
8. Оптический привод (CD-ROM, DVD-RW) назначение привода является считывание и запись данных в зависимости от конфигурации самого привода. Информация записывается на компакт диск в виде дорожек, которые имеют углубления (называемые питами) и промежутки (называемые лендами). Считывание данных осуществляется за счет лазера.
Также следует отметить, что существует так называемый оптический носитель Blue ray Disc (что в переводе означает – синий луч). Отличается от предыдущих носителей тем, что запись и чтение осуществляется за счет синего лазера, а также возможностью увеличения объема записанной информации.
9. Другие устройства – здесь можно перечислить такие устройства, которые предназначены для выполнения дополнительных задач (вебкамера, TV- тюнер, микрофон и др.)
На этом данный урок я завершаю, надеюсь информация в этом уроке для Вас была полезной и Вы узнали из каких компонентов состоит Ваш компьютер! До встречи в следующем уроке!
Итак, на сегодня это собственно все, о чем я хотел вам рассказать в сегодняшнем выпуске. Мне остается надеяться, что вы нашли интересную и полезную для себя информацию в этой статье. Ну а я в свою очередь, жду ваши вопросы, пожелания или предложения относительно данной статьи.
Информация, хранящаяся на внешнем носителе компьютера под одним
именем называется .
а) файлом;
б) каталогом;
в) данными;
г) множеством;
д) блоком.
9.Информация, хранящаяся в компьютере становится активной (может
быть подвергнута обработке) лишь в случае .
а) интерпретации ее человеком;
б) загрузки информации из внешней памяти в оперативную;
в) приведения компьютера в рабочее состояние;
г) наличия управляющих сигналов;
д) возможности программного управления.
10.Преобразователем информации в компьютере в соответствующие сиг-,
налы выступает .
а) процессор;
б) монитор;
в) дисковод;
г) контроллер;
д) клавиатура.
11.Носителем информации в компьютере выступает.. .
а) знак;
б) код;
в) сигнал;
г) память;
д) процессор.
12.Информация, передаваемая по магистрали, сопровождается .
а) своим адресом;
б) интерпретацией сигнала;
в) контроллером;
г) физическими параметрами сигнала;
д) способом обработки.
13.Одним из видов системной информации являются .
а) блоки;
б) адреса;
в) программы;
г) данные;
д) файлы.
14.Процесс коммуникации между пользователем и компьютером называют .
а) активизацией программ;
б) активацией программ;
в). пользовательским интерфейсом;
г) интерактивным режимом;
д) режимом внутренней активации.
15.Неразрывность информации с сигналом предполагает .
а) одинаковое смысловое содержание информации и сигнала;
б) однозначность интерпретации сигнала разными приемниками ин¬
формации;
в) использование обеих понятий в качестве синонимов;
г) отсутствие информации в сигнале;
д) неумение выделять смысл сигнала приемником информации.
16.Тип информации хранящейся в файле можно определить по .
а) имени файла;
б) расширению файла;
в) файловой структуре диска;
г) каталогу;
д) организации файловой структуры.
17.Информацию, заложенную в каталогах, можно отнести к .
а) семантическим;
б) документальным;
в) системным;
г) априорным;
д) техническим.
18.Системная информация отличается от структурной .
а) наличием связей между элементами;
б) ничем;
в) разным количеством связей;
г) носителем;
д) отсутствием приемника информации.
нет чтоб помоч сразу гнать начали. (эт я первым говорю)
8а 9в 10г 11г 12д 13г 14г 15нез 16б 17б 18в
1 файлом
9 а наверно
10
11 г
12
13 г
14 в
15 б
16 б
17б
ты извини конечно но лучше мне не верь ))))))
в тему компов скинь там точно помогут
Процессор берёт команды программ и данные для обработки из памяти. Память является электронным устройством и состоит из микросхем, которые, в свою очередь, состоят из тысяч более мелких электронных компонентов. Подобные электронные компоненты могут находиться только в двух состояниях — «включено» или «выключено», что соответствует двум цифрам двоичной системы счисления 1 или 0 или одному биту.
Таким образом, любая информация в памяти компьютера представляется в виде последовательности битов, каждый из которых находится в одном из допустимых состояний.
При использовании одного бита можно представить в памяти компьютера только два различных символа. Одному из них будет сопоставлен двоичный код — ноль, а второму — единица.
Если мы увеличим длину кодовой комбинации символа до двух цифр, то получим следующие коды: 00, 01, 10, 11. Таким образом, в памяти компьютера можно будет представить четыре различных символа. При последовательном наращивании длины двоичной кодовой комбинации увеличивается количество символов, которые могут быть закодированы. Кодом длиной в три символа представляются 8 различных символов (000, 001, 010, 011, 100, 101, 110, 111) и т. д.
При длине кодовой комбинации L количество кодовых комбинаций K определяется по формуле:
K = 2 L ,
Текстовая информация состоит из букв, цифр, знаков препинания, специальных символов, таких, как пробел, символ перевода строки и др. Для кодирования текстовой информации в компьютере используются равномерные коды. В случае, когда код каждого символа занимает в памяти компьютера 1 байт, или 8 бит, общее количество символов, которые можно закодировать, равно 2 8 = 256. Если кодовое слово состоит из двух байтов, можно закодировать 2 16 = 65 536 символов.
Существуют стандартные таблицы кодов. Они могут использовать один или два байта для кодирования одного символа.
Широко используется таблица кодов, известная как стандарт ASCII (American Standart Code for Information Interchange — Американский стандартный код для обмена информацией), использующая один байт для кодирования одного символа. ASCII представляет собой кодировку для представления десятичных цифр, символов латинского и национального алфавитов, знаков препинания, символов арифметических операций и управляющих символов. Управляющие символы называют непечатаемыми символами, к ним относятся такие, как «перевод строки» (код символа 10), «возврат каретки» (код 13) и др.
Первая половина кодовой таблицы содержит стандартные символы ASCII (символы с кодами 0 — 127), они одинаковые во всех странах.
Коды в таблице записаны в шестнадцатеричной системе счисления, как принято в информатике. Код символа А, например, 4116 = 6510. Таблицу кодов не надо запоминать, но следует помнить последовательность символов:
- знаки препинания и арифметических операций;
- цифры от 0 до 9;
- прописные символы латинского алфавита;
- строчные символы латинского алфавита.
Вторая часть кодовой таблицы (символы с кодами 128 — 255) называют расширенными кодами ASCII. В расширенные коды ASCII включают символы национальных алфавитов, например символы кириллицы. Но даже с учётом этих дополнительных знаков алфавиты многих языков не удаётся охватить при помощи 256 знаков. По этой причине существуют различные варианты кодировки ASCII, включающие символы разных языков.
Отсутствие согласованных стандартов привело к появлению различных кодовых таблиц (вернее, различных вторых частей кодовых таблиц) для кодирования символов кириллицы, среди которых
- международный стандарт ISO 8859;
- кодовая таблица фирмы Microsoft CP-1251 (кодировка Windows);
- кодовая таблица, применяемая в ОС Unix KOI8R и др.
По этой причине тексты на русском языке, набранные с использованием одной кодовой таблицы, невозможно прочитать при использовании другой кодовой таблицы.
В настоящее время в компьютерах широко применяется стандарт кодирования Unicode (Юникод), в котором для кодирования одного символа отводятся один байт, два байта или четыре байта. Первые 128 символов Юникода совпадают с символами ASCII. Остальная часть кодовой таблицы включает символы, используемые в основных языках мира.
Изображение на экране монитора формируется набором экранных точек —пикселей. Каждая экранная точка имеет свой цвет. Картинка на экране — это отображение информации из памяти компьютера.
Первые мониторы были монохромными. Точка на экране монохромного монитора может быть только светлой (белой) или тёмной (чёрной). Для кодирования цвета пикселя используется один бит памяти, значение 1 соответствует белому цвету, 0 — чёрному. Подобные экраны используются в недорогих сотовых телефонах, системах видеонаблюдения и других устройствах.
Каждый пиксель современного дисплея определяется компонентами трёх основных цветов: красного (Red, R), зелёного (Green, G) и синего (Blue, B). В памяти необходимо сохранять информацию о состоянии каждой точки изображения, т. е. о состоянии каждой из её трёх составляющих. Управление яркостью каждой составляющей позволяет влиять на цвет экранной точки.
Цветовой моделью называется правило представления цвета в виде наборов чисел (обычно трёх-четырёх). В компьютерной графике используется несколько видов цветовых моделей.
Рассмотрим цветовую модель, связанную с представлением пикселя составляющими красного, зелёного и синего цветов. Она называется RGB(Red-Green-Blue)-моделью.
В RGB-модели происходит сложение цветов и добавление их к чёрному цвету экрана, поэтому она называется аддитивной (additive). Разные цвета образуются смешиванием трёх основных цветов в разных пропорциях, т. е. с разными яркостями.
Глубина цвета (color depth) — это число бит, используемых для представления каждого пикселя изображения.
В модели RGB каждый цвет может кодироваться тремя байтами (режимTrueColor). Каждый байт отвечает за яркость красной, зеленой и синей составляющей пикселя соответственно. Таким образом, глубина цвета в режиме TrueColor составляет 24 бита. Изображения, пиксели которых закодированы таким способом, называются 24-битными изображениями.
Чтобы указать цвет пикселя в модели RGB, достаточно перечислить разделённые точками яркости каждой составляющей, например: 255.255.0 — код жёлтой точки, записанный при помощи десятичных кодов яркостей. Значения яркости варьируются от 0 («выключено») до 255 («включено на максимум»). Если значения яркостей всех трёх составляющих равны, получим оттенки серого цвета.
Если изменять интенсивность каждого цвета для смешанных цветов, например задать цвет 127.127.0, то мы получим на экране болотный цвет, а не более тёмный оттенок жёлтого цвета, как можно было ожидать. Это связано с тем, что человеческий глаз более чувствителен к зелёному цвету. Чем ниже интенсивности составляющих, тем темнее цвет на экране. И наоборот — чем выше интенсивности цветов, тем светлее оттенки.
Модель CMY использует также три основных цвета: голубой (Cyan), фуксин (Magenta, иногда его называют «пурпурный» или «малиновый») и жёлтый (Yellow). Эти цвета описывают отражённый от белой бумаги свет трёх основных цветов RGB-модели.
Модель CMY является субтрактивной (основанной на вычитании) цветовой моделью. Краситель, нанесённый на белую бумагу, вычитает часть спектра из падающего белого света. Например, на поверхность бумаги нанесли жёлтый (Yellow) краситель. Теперь синий свет, падающий на бумагу, полностью поглощается. Таким образом, жёлтый носитель вычитает синий свет из падающего белого.
При смешении двух субтрактивных составляющих результирующий цвет затемняется, а при смешении всех трёх должен получиться чёрный цвет. Но при использовании реальных полиграфических красок получается не чёрный, а неопределённый тёмный цвет. Поэтому к трём основным цветам CMY-модели добавляют чёрный (Black) и получают новую цветовую модель CMYK.
Цветовая модель CMYK используется в основном в полиграфии при выводе изображения на печать.
Количество различных цветов K и количество битов для их кодирования (глубина цвета) L связаны формулой K = 2 L . При L = 24 бита можно закодировать 2 24 = 16 777 216 различных цветов.
Если известно разрешение экрана (количество точек по горизонтали и вертикали) и глубина цвета, можно определить объём видеопамяти для хранения одного кадра (одной страницы) изображения. Например, при разрешении экрана 640 × 480 и использовании 24 бит на точку объём видеопамяти равен 640 ∙ 480 ∙ 24 = 7 372 800 бит = 900 Кбайт.
Все компьютерные изображения делятся на два больших класса — растровые и векторные. Различие между ними определяет способ хранения изображений в памяти компьютера.
Звук представляет собой звуковую волну с непрерывно меняющейся амплитудой и частотой. Чем больше амплитуда сигнала, тем громче звук; чем больше частота сигнала (число колебаний в секунду), тем выше тон.
В настоящее время существует два основных способа записи звука —аналоговый (непрерывный) и цифровой (дискретный). Виниловая пластинка является примером аналогового хранения звуковой информации, так как звуковая дорожка изменяет свою форму непрерывно. Компакт-диски являются примером цифрового хранения звуковой информации, так как звуковая дорожка компакт-диска содержит участки с различной отражающей способностью.
Для того чтобы записать звук на какой-нибудь носитель, его нужно преобразовать в электрический сигнал. Это делается с помощью микрофона. Микрофоны имеют мембрану, которая колеблется под воздействием звуковых волн. К мембране присоединена катушка, перемещающаяся синхронно с мембраной в магнитном поле. В катушке возникает переменный электрический ток. Так звуковые волны преобразуются микрофоном в электрический ток переменного напряжения, который представляет собой аналоговый сигнал. Применительно к электрическому сигналу термин «аналоговый» обозначает, что этот сигнал непрерывен по времени и амплитуде (см. рис. 11а).
Для того чтобы компьютер мог обрабатывать звук, непрерывный сигнал должен быть превращён в последовательность электрических импульсов (двоичных нулей и единиц). В процессе кодирования непрерывного звукового сигнала производится его дискретизация по времени. Дискретизация — это преобразование непрерывных сигналов в набор дискретных значений, каждому из которых присваивается число — кодовое слово.
Для дискретизации надо несколько раз в секунду измерять величину аналогового сигнала и кодировать её, например, с помощью 256 значений.
Фактически плоскость, на которой изображён непрерывный сигнал, разбивается вертикальными и горизонтальными линиями (см. рис. 11б), и считается, что график проходит строго через узлы полученной сетки, непрерывная плавная линия заменяется ломаной.
Дискретизация по времени соответствует разбиению вертикальными линиями. Она характеризуется частотой дискретизации. Частота дискретизации звукового компакт-диска 44,1 кГц, DVD — примерно 96 кГц. Это значит, что величина аналогового сигнала измеряется 44 100 и 96 000 раз в секунду соответственно. Если кодируется стереозвук, отдельно кодируются два канала.
Горизонтальное разбиение также важно: чем меньше расстояние между горизонтальными линиями сетки, тем качественнее будет цифровой звук. Количество линий сетки определяет количество уровней звука, поэтому горизонтальное разбиение называется квантованием по уровню. Для кодирования полученных значений уровней используют двоичные числа. Количество используемых для кодирования бит называется глубиной звука. Если глубина звука 8 бит или 16 бит, можно закодировать соответственно 2 8 = 256 уровней или 2 16 = 65 536 уровней сигналов. Это значит, что интервал от нулевого до максимального напряжения аналогового сигнала разбивается на 256 или 65 536 уровней, что соответствует количеству высот звука (тонов).
Преобразование непрерывной звуковой волны в последовательность звуковых импульсов различной амплитуды производится с помощью аналого-цифрового преобразователя (АЦП), размещённого на звуковой плате.
С помощью специальных программных средств (редакторов звукозаписей) открываются широкие возможности по созданию, редактированию и прослушиванию звуковых файлов. Но, как видно из примера, звуковые файлы занимают очень много места в памяти. Поэтому используются методы сжатия звуковых файлов. Качество музыки после сжатия несколько ухудшается, но это практически незаметно, так как при разработке алгоритмов сжатия учитываются законы восприятия музыки человеком.
Тестовые работы обеспечивают глубокую проверку индивидуальных достижений студентов в области информатики и информационных технологий на разных уровнях: репродуктивном, конструктивном и творческом.
Тестовые работы соответствуют следующим содержательным линиям курса информатики:
▪ информация и информационные процессы;
▪ компьютер как средство автоматизации информационных процессов;
▪ информационные модели и информационные системы;
▪ компьютерные технологии представления информации;
▪ средства и технологии создания и преобразования информационных объектов;
▪ средства и технологии обмена информацией с помощью компьютерных сетей (сетевые технологии);
▪ основы социальной информатики.
Положительная оценка выставляется в том случае, если студент усвоил материал и может применить усвоенные знания, умения и навыки при выполнении заданий теста.
При выставлении оценки за тестовую работу используются следующие показатели:
МОДУЛЬ № 1. «ИНФОРМАЦИЯ И ИНФОРМАЦИОННЫЕ ПРОЦЕССЫ»
1. Основное назначение научной дисциплины – информатика - …
а) изучение автоматизированных систем;
б) изучение закономерностей протекания информационных процессов в системах различной природы;
в) изучение систем программирования;
г) изучение алгоритмических конструкций;
д) изучение технологий создания программно-прикладных средств.
2. Информацию как средство общения рассматривает …
а) информационный подход;
б) атрибутивный подход;
в) системный подход;
г) коммуникативный подход;
д) функциональный подход.
3. Информацию как атрибут материи рассматривает …
а) информационный подход;
б) атрибутивный подход;
в) системный подход;
г) коммуникативный подход;
д) функциональный подход.
4. Информацию как результат отражения информационного взаимодействия самоорганизующихся систем рассматривает …
а) информационный подход;
б) атрибутивный подход;
в) системный подход;
г) коммуникативный подход;
д) функциональный подход.
5. Использование различных подходов для описания понятия «информация» объясняется …
а) сложностью рассматриваемого явления;
б) несогласованностью различных научных течений;
в) отсутствием единых подходов к определению;
г) необходимостью многозначного определения;
д) использованием различных способов описания.
6. Свойство системы, отражающее внутреннее единство системы - …
8. Объект, использующийся для хранения и передачи информации, называют …
г) носителем информации;
9. Совокупность символов, соглашений и правил, используемых для общения, отражения, обмена, отображения и передачи информации, называют …
г) носителем информации;
10. Необходимым средством существования человечества является …
11. Процесс коммуникации предполагает наличие …
а) двух и более людей;
б) средств хранения информации;
в) источника, приемника информации и канала связи между ними;
г) достоверной информации;
е) двусторонней связи.
12. Перевод текста с одного языка на другой является процессом …
а) хранения информации;
б) передачи информации;
в) поиска информации;
г) обработки информации;
д) обмена информацией.
13. Самым предпочтительным носителем информации на современном этапе является …
б) средства видеозаписи;
в) лазерный компакт-диск;
г) дискета, жесткий диск;
д) магнитная лента.
14. Первым средством дальней связи, где носителем информации выступает не бумага, принято считать …
д) компьютерные сети.
15. О семантической информации уместно говорить при наличии …
а) источника информации;
б) приемника информации;
в) носителя информации;
д) информационной системы: источника информации и человека как приемника информации.
б) нулевая информация;
в) ненулевая информация;
17. В электронных устройствах информация неразрывно связана …
а) с источником информации;
б) с носителем информации;
в) с приемником информации;
г) с каналом связи;
д) с потребителем информации.
18. Компьютер, является универсальным автоматическим устройством для работы …
б) со сведениями;
г) с информацией;
19. Компьютер дублирует основные информационные функции …
а) социальных систем;
г) технических систем;
д) любых биологических систем.
20. Информация отличается для человека и компьютера …
а) способом интерпретации;
б) типом носителя;
в) способом получения;
г) способом хранения;
д) способом обработки.
21. Информацию, обрабатываемую программным путем, называют …
22. Для представления информации в памяти компьютера используется …
б) русский алфавит;
в) кодировка натуральных чисел;
г) двоичная кодировка;
д) десятичная кодировка.
23. Для хранения одного байта информации необходимо использовать …
а) 2 байта памяти;
б) 1 байт памяти;
г) 2 бита памяти;
д) 1 машинное слово.
24. Данные, хранящиеся на внешнем носителе компьютера под одним именем, называются …
25. Данные, хранящиеся в памяти компьютера, становятся активными (могут быть подвергнуты обработке) лишь в случае …
а) интерпретации ее человеком;
б) загрузки информации из внешней памяти в оперативную;
в) приведения компьютера в рабочее состояние;
г) наличия управляющих сигналов;
д) возможности программного управления.
26. Преобразователем данных в компьютере в соответствующие сигналы является …
27. Носителем информации в компьютере является …
28. Данные, которые передаются по магистрали, сопровождаются …
а) своим адресом;
б) интерпретацией сигнала;
г) физическими параметрами сигнала;
д) способом обработки.
29. Одним из видов системной информации являются …
30. Процесс коммуникации между пользователем и компьютером называют …
а) активизацией программ;
б) активацией программ;
в) пользовательским интерфейсом;
г) интерактивным режимом;
д) режимом внутренней активации.
31. Неразрывность информации с сигналом предполагает …
а) одинаковое смысловое содержание информации и сигнала;
б) однозначность интерпретации сигнала разными приемниками информации;
в) использование обоих понятий в качестве синонимов;
г) отсутствие информации в сигнале;
д) неумение выделять смысл сигнала приемником информации.
32. Тип информации, хранящейся в файле, можно определить …
а) по имени файла;
б) по расширению файла;
в) по файловой структуре диска;
д) по организации файловой структуры.
33. Информацию, заложенную в каталогах, можно отнести …
а) к семантической;
б) к документальной;
д) к технической.
34. Системная информация отличается от структурной …
а) наличием связей между элементами и целевым функционированием;
в) разным количеством связей;
д) отсутствием приемника информации.
35. Носителем графической информации является …
36. Информацию, представленную в виде, пригодном для обработки компьютером, называют …
37. Условное изображение информационного объекта или операции называют …
38. Из перечисленных объектов не может быть носителем информации …
Читайте также: