Перепаять звук на материнской плате
Что делать, если нет звука на компьютере и никакие настройки Windows не помогают? Комплэйс выполняет аппаратный ремонт звука на компьютере. А именно, на материнской плате компьютера.
Пропал звук на компьютере
Программные причины, что в компьютере нет звука
Если пропал звук на компьютере из-за программных проблем, то его настройка описана много раз. Обычно проблема решается установкой драйвера на компьютер или включением громкости звука. Однако, ни в коем случае нельзя пользоваться программами по подбору и установке драйверов. Потому что получите порцию шпионов или вирусов. Иначе зачем эти программы создавали?
Аппаратные проблемы
Но про аппаратные проблемы звука в компьютере информации очень мало. Какие аппаратные причины того, что на компьютере или ноутбуке пропал звук? Во-первых, неисправен звуковой разъем. Во-вторых, сгорел звуковой чип или усилитель.
Часто выходной разъем можно переназначить программно. Поэтому не будем об этом зацикливаться.
Но звуковой чип и усилитель восстановить без ремонта нельзя. Как отремонтировать звук на материнской плате компьютера?
Почему нет звука на компьютере
Обычно это проблема со звуковым чипом или усилителем звука. Решается проблема заменой неисправной микросхемы, отвечающей за звук в компьютере.
Приведем пример с конкретным компьютером.
История. На материнской плате Asus H97M компьютера перестал работать звук на аппаратном уровне. За него на плате отвечают звуковой кодек и усилитель звука.
Начинаем с замены усилителя, потому что усилитель звука заменить проще.
Замена усилителя звука (микросхема 2 на фото внизу) результатов не дала. Поэтому, скорее всего, сгорела микросхема кодека. Возможно, конечно, что неисправен какой-то элемент в обвязке, но это маловероятно.
Ремонт звука на компьютере на плате
Принесли в ремонт компьютер с жалобой, что нет звука.
За синтез звука на плате Asus H97M отвечает микросхема звукового кодека Realtek ALC887. Решено было заменить эту микросхему. Чип выглядит следующим образом.
Микросхема HDA-кодека имеет 48 ножек. Расположена она в углу платы.
После замены микросхемы кодека звука звук появился.
Перепайка микросхемы кодека звука стоит 3000 рублей. Срок ремонта один день.
Потому что его кинули в сумку с включенными в разъем наушниками и сверху еще накидали вещей — в пути от нагрузки штекер наушников выгнулся и просто разломал пластиковое гнездо изнутри на мелкие кусочки.
Нужно разбирать и смотреть.
Я не нашел инструкции по разборке этой модели, но опыт в развинчивании ноутбуков у меня довольно большой.
Выключаем ноутбук полностью (завершение работы а не спящий режим).
Выкручиваем все видимые винты снизу.
Отвинчиваем крышечку, закрывающую жесткий диск и память:
Отвинчиваем четыре винта крепления жесткого диска и один винт крепления DVD дисковода:
Жесткий диск вытягиваем из разъема за специальный ярлычок по направлению зеленой стрелки.
Вынимаем DVD привод:
Вынимаем декоративную заглушечку разъема карты памяти, если она есть. ))
Переворачиваем и снимаем клавиатуру.
Клавиатура у ноутбуков крепится на защелках сверху, ее легко отщелкнуть:
Отстегиваем шлейф клавиатуры:
Отвинчиваем все винты и отстегиваем все шлейфы, ведущие к кнопке питания, тачпаду, лампочкам на панели и т.п.
По переметру аккуратно отщелкиваем верхнюю панель от нижней (я делал это медиатором):
Аккуратно поднимаем крышку!
Аккуратность очень пригодилась — от крышки внутри шел еще один шлейф — если бы снималась крышка не аккуратно и медленно, он мог бы быть оторван! Отсоединяем его:
Из материнской платы вынимаем оставшиеся шлейфы и вывинчиваем крепящие ее винты:
Обратная сборка труда не составит — нужные отверстия для винтов помечены белыми стрелками.
Рабочие на сборке не обладают высоким интеллектом, поэтому сборку таких вещей инженеры стараются сделать как можно более легкой. )
Наконец плата извлечена!
Гнездо полностью развалилось.
Вот что от него осталось:
Выпаять его было просто, так как корпус был разрушен и я мог выпаивать каждый контакт отдельно, понадобился лишь оловоотсос:
После выпаивания нужно оставить два контакта, которые размыкаются при включении штекера наушников и отключают внешние динамики (чтобы, когда вставлены наушники, не играли одновременно внешние динамики). Если их выпаять или разсоединить, то внешние динамики не будут работать и звука не будет вообще. )
К счастью, я догадался об этом сразу, и не пришлось два раза разбирать ноутбук. )
А дальше я собрал ноутбук и начал поиск разъема.
Я ничего не нашел ни на ebay, ни тем более у нас.
Тут хитрый разъем, не совсем обычный — у его гнезда не выступает часть с ободком, куда вставляется штекер:
Но я нашел его на Али Экспресс! ))
Правда одно но — минимальная партия для заказа: 5 штук )
Заказал, что делать! )
Это обошлось мне в $18 — у нас столько могли бы попросить за один разъем, и это считалось бы дешево.
Заказ шел менее двух недель! )
Все подошло отлично:
Так же подошел и лимит фотографий — пайка не влезла. (
Но в общем все работает отлично, припаять мне все удалось аккуратно благодаря случайно купленной за 890р паяльной станции. )
В этом деле главное не навредить — аккуратно разобрать и так же аккуратно собрать.
При пайке главное не перегреть.
Кстати, даже не знаю как бы выпаивал штекер, если бы он не развалился. Рекомендуют заклеить все вокруг выпаиваемой детали алюминиевым скотчем (чтобы не перегреть и случайно не отпаять соседние детали) и греть термопистолетом. Но это способ для микросхем — пластиковый корпус штекера бы расплавился наверное.
Разбирая свои первые компы, многие видели разные «мосты» — южный, северный, графические чипы, и часто думалось: а как же это паяют и, главное, чем? И те, кто рискнул сам паяльником это пробовать, потом несли свои материнки в сервис, где им паяли новый чип, если, конечно, они своей домашней пайкой не убивали всю материнскую плату. Итак, как же паяют чипы? Под катом рассказ, а также фото и видео об этом. В главной роли у нас будет выступать паяльная станция ERSA IR550a.
Сперва мы отпаиваем старый чип. Для этого он нагревается станцией до нужной температуры. Выбираем нужный профиль в управлении (их несколько для разных видов пайки).
У станции две «головы» – одна для того, чтобы что-то отпаять/припаять, вторая для охлаждения.
Устанавливаем над нужным чипом «голову» паяльной станции, чтобы не промахнуться – красным лазером указана точка «прицела» станции.
Станция начинает греть чип.
Когда температура дойдет до 200+ градусов, опускаем присоску, захватываем чип и снимаем его.
Виден дым от того, что чип отпаивается. (360 – это температура вспомогательного паяльника, который стоит рядом со станцией).
Переносим его на площадку.
После этого над тем местом, где был чип, ставим охлаждающую голову и автоматически включается вентилятор для охлаждения платы, так как понято, что чем меньше времени плата нагрета, тем лучше. В этой станции очень жесткий контроль за температурой во время всего процесса пайки.
Термодатчик для отслеживания температуры по всей поверхности материнской платы.
Теперь готовим плату для пайки. Снимаем компаунд. Видео процесса.
Затем нужно зачистить площадку под чип (площадка выше процессора).
Вот видео о подготовке площадки.
Также нужно сделать ребол чипа. Т.е. чтобы на месте контактов появились шарики, которые будут впаиваться в посадочное место на плате. Это отдельная операция, про это видос:
После того, как контактные шарики чипа готовы, выставляем его строго по маске. Даже микрон имеет значение – можно испортить чип, если не попасть в разъемы.
Затем начинаем паять. Как обычно – выбираем профиль пайки. Пододвигаем голову для пайки, направляем лучи строго на чип и включается пайка.
Сначала подогреется нижняя часть, причем она греет строго выделенное место под чипом, а не прогревает всю поверхность, иначе был бы риск выхода из строя всей платы. При использовании PL550A на экране можно наблюдать и вид пайки в реальном времени. Вот мы видим по графику нарастание температуры.
Красный – это график подогрева нижней панели.
Шкала высоты «головы» для пайки. Высота положения «головы» зависит от профиля платы.
В некоторых станциях более низкого класса нижняя платформа греет всю площадь платы, поэтому при пайке на таких станциях нужно снимать с платы все – вплоть до наклеек с партномерами. Как уже было сказано, наша станция греет строго выделенную область снизу. Когда платформа снизу нагреет участок платы под чипом до 60 градусов, включается верхняя «голова» и начинает припаивать сам чип.
Красный оттенок – это инфракрасные лучи, которые греют контакты чипа для припаивания. По идее чип должен сам сесть в гнезда контактов под своим весом, но чтобы не перегревать плату, инженер проверяет усадку чипа, когда контакты полностью разогрелись для впаивания, не ожидая граничной температуры чипа.
Когда мы проверили, что чип сел на место, убираем нагревающую «голову» и ставим охлаждающую.
Все – графический чип припаян.
Нужно сказать пару слов о хороших качествах нашей паяльной станции, не для рекламы, а для похвалы хорошему инструменту. Она, конечно, не дешевая, но своих денег стоит. Самое хорошее в этой станции то, что тут очень тяжело «запороть» плату или чип – нужно сильно постараться для этого. Тогда как в других станциях классом пониже ошибиться с риском испортить чип или всю плату гораздо легче.
Описание преимуществ этой станции.
Почему технология ERSA IR? Пять ключевых преимуществ:
• равномерность инфракрасного нагрева при локальной пайке как выигрышная альтернатива турбулентности воздушного потока в конвекционных системах. Наиболее критично для крупных BGA, и особенно при бессвинцовой пайке, которая выполняется на более высоких температурах;
• точная отработка термопрофиля благодаря обратной связи по температуре непосредственно с объекта пайки;
• возможность визуального мониторинга процесса пайки (что недостижимо для конвекционных систем, где микросхема во время пайки наглухо закрыта соплом);
• универсальность и достаточность (не требуется множества дорогостоящих сопел под сегодняшние и завтрашние размеры микросхем, как в конвекционных системах);
• возможность работы со сложнопрофильными компонентами (экранами, разъемами и т.п.), в том числе пластмассовыми.
Наличие встроенного микропроцессорного блока для контактной пайки с возможностью подключения пяти инструментов (паяльников разной мощности MicroTool/TechTool/PowerTool, термопинцета ChipTool или термоотсоса X-Tool) превращает инфракрасную станцию IR550Aplus в универсальный ремонтный центр.
Рядом с ней стоит станция ниже классом. На ней паяют то, где не нужна такая точность и филигранность, как например пайка клавиатуры (кстати, если вы хотите, чтобы мы сняли/написали о пайке клавиатуры, монитора или еще чего-нибудь, пишите – снимем).
Видеобозор всего процесса пайки видеочипа.
Также у нас есть канал на ютубе, куда мы грузим разные ролики о технических операциях. Подписывайтесь – будут новые видосы.
Помимо технических видео, мы записываем ремонты для клиентов, ведь часто у людей бывают сомнения: а не поназаменяли ли мне в моем любимом гаджете хорошие запчасти на «левые»? Чтобы таких вопросов не возникало, мы записываем на видео сам ремонт по желанию клиента.
Учебные курсы/тренинги/воркшопы по разным направлениям ИТ-инфраструктуры — Учебный центр МУК (Киев)
МУК-Сервис — все виды ИТ-ремонта: гарантийный, не гарантийный ремонт, продажа запасных частей, контрактное обслуживание
Новогодние праздники прошли на славу если бы ни одно но: из-за перепада напряжения накрылся комп у родственников. Перестал включаться. Хотя usb-устройства продолжали от него заряжаться, да и лампочка на сетевой карте продолжала мигать.
Первым делом подумал на блок питания (и оказался частично прав, но об этом позже). Разобрал комп, вытащил БП и вставил другой. Комп стал стартовать, но на этапе проверки POST моментально зависал. Отключение всей периферии и всего что можно было отключить - не помогло. Сброс BIOS, переставление джамперов на заниженную шину и прочие пляски тоже ни на что не повлияли. И тут я заметил, что электролитические конденсаторы находящиеся рядом с гнездом процессора были вздуты, а несколько из них потекли и были явно не в духе.
Итак, причина выявлена. Начинаем рассуждать: замена материнской платы на плату такого же класса выльется как минимум в 150-200 грн (Мамка на Socket A (S462) Фирмы Epox). Ремонт тоже обычно стоит не менее 80 грн. Да к тому же желание поковырять всё самому было достаточно сильным, что в купе с остальными факторами и повлияло на решение: БУДЕМ ПАЯТЬ!
Первым делом - гугл. Оказалось, что на этих материнках это достаточно частая проблема. В 2004-2005 годах ставили электролитические кондёры питания процессора марки GSC — и за эти годы эта самая GSC обросла недобрыми слухами. Спустя пару лет все конденсаторы этой марки текут и выходят из строя. Радует только то, что проблема решается заменой конденсаторов на другие. (В моём случае кондёры оказались марки TEAPO, а не GSC — видимо поэтому они продержались лет 5 без проблем.)
На современных материнских платах в цепи питания процессора используют твердотельные высококачественные японские конденсаторы. Что положительно влияет на надёжность, разгонные характеристики и даже на эстетическую составляющую :)
Вздувшиеся (пухлые, "беременные", "бочкообразные") конденсаторы - ставшее привычным явление, начиная с систем поколения Pentium II-III и позже. Причина их "появления" (в "историческом" смысле) - то, что системы стали потреблять всё больше, что приводило к большему нагреву внутри корпуса компьютера вследствие увеличения потребляемой мощности, в первую очередь - процессоров. Вдобавок, пыль внутри корпуса, затрудняющаа вентилляцию и охлаждение. В частности, именно поэтому, в большинстве случаев пухлые конденсаторы обнаруживаются вокруг разъема процессора.
Какие симптомы бывают при выходе из строя конденсаторов?
Компьютер может повисать без причины и в произвольный момент, иногда компьютер включается не сразу, а после нескольких нажатий на reset, или вообще не включается. Процессор не разгоняется до таких частот, которые он брал прежде, также возможны помехи на экране. Всё это или каждый фактор в отдельности может указывать на износ конденсаторов.
Из визуальных признаков:
- Выпуклое резиновое дно или верхний торец конденсатора.
- Разорванный верх конденсатора с заметным снаружи коричневым веществом.
- Одинаковые конденсаторы могут стать разной высоты. Это - как следствие вздутия.
На верхнем торце конденсаторов имеются углубления - несквозные прорези. В случае повышенного давления конденсатор безопасно разрывается именно по ним, без лишнего шума. На советских конденсаторах такого не было. И советские конденсаторы стреляли как петарды. Алюминиевый цилиндр, в сопровождении звука ничуть не тише петарды, может вылетать делая несколько рикошетов от потолка и стены, прежде чем успокоилтья навеки. На месте конденсатора остаются только ноги и ленты. Хорошо что на материнках не советские конденсаторы :)
Не всегда неисправный конденсатор можно определить по внешнему виду. Он может выглядеть вполне прилично, но потерять ёмкость. Определить это возможно только специальными приборами. Мультиметры, умеющие измерять ёмкость обыкновенно, ограничиваются пределом в 20мкф. Если есть сомнения в качестве конденсатора - лучше его поменять со всеми, не дожидаясь когда он лопнет.
Вообще менять желательно все конденсаторы которые попадутся вам под руку, но я ограничился этими шестью.
Вторым делом надо определить маркировку конденсаторов. На материнке стояло 6 штук с маркировкой TEAPO 6.3 V, 3300uF. На рынке они стоят по 3-4 грн за штуку. Теперь я понимаю, почему многие на форумах покупают сгоревшие материнки. Гораздо выгоднее покупать такие материнки и выпаивать с них всё что может потом пригодиться. Если кто-то будет продавать, обязательно куплю себе пару сгоревших материнок гривен по 15-20 ;)
Совет 1:
Важно соблюдать полярность конденсатора.
Не обязательно брать конденсатор один к одному, можно брать большей емкости и большего напряжения, главное требования к кондерам материнки они должны быть высокочастотными ( можна у продавцов спрашивать конденсаторы для материнок). Ни в коем случае не рекомендуется брать конденсаторы с рабочим напряжением ниже чем у тех которые стояли у вас! Т.е. если стоят на 6,3В, можно ставить на 10В, на 6,3, но ни в коем случае не на 4,3 вольта к примеру!
Конды лучше выбирать с низким ESR — 105 градусные( лучше корейские CapXon, есть комповая серия чёрно - золотые ультра низкий ESR 105 градусов) — я именно такие и взял. (Впрочем других на центральном рынке и не было :) )
Также нам понадобятся:
— паяльник (лучше точечный, в виде "пистолета", ватт эдак на 40, чтобы сильно не перегревать дорожки, но в тоже время иметь возможность достаточно быстро прогреть и выпаять ножки)
— припой олово канифоль
— спирт (для зачистки контактов от остатка флюса, а также для храбрости. Для второго случая понадобятся ещё огурцы солёные 1 шт и стопка, квашенная капуста или, на худой конец, кола.)
— кусачки или бокорезы жены (если не жалко) — чтобы откусить лишнее от кондеров, а также пинцет, чтобы вытягивать кондёры за ноги.
— бутылка Staropramen (а лучше две)
— сухарики Клинские, со вкусом копчёной колбаски. Можно ещё с сёмгой или шашлыком.
— иголка от шприца или деревянная зубочистка — для проделывания отверстий для ножек новых кондеров в материнке.
— хотябы пол-дня свободного времени.
Самое сложное — демонтаж старых испорченных кондёров.
Сначала я пытался прогревать ножки и тянуть кондёр. Но пока я нагревал одну ногу, вторая остывала, и он совсем не хотел выниматься. Убил я больше часа на это дело. (Именно для этого вам понадобится пиво и спирт!) Затем я придумал решение:
Проверните плоскогубцами испорченный конденсатор примерно на 90-180 градусов. Одна нога у него отломается. Затем держите кондёр плоскогубцами и прогревайте оставшуюся ногу паяльником с обратной стороны материнской платы. И одновременно прикладывайте небольшое усилие плоскогубцами, чтобы вытянуть кондёр. После того как вытянули, у вас останется ещё одна нога. Берём её пинцетом и тянем, прогревая с обратной стороны.
Так процесс пошел быстро и уже спустя 5 минут я извлёк 5 конденсаторов. Один оставил на всякий случай, чтобы по нему ориентироваться :)
Теперь берёмся за иголку или зубочистку. Приставляем её с той стороны где стояли кондёры в одно из отверстий. (Отверстие остаётся запаянным, а чтобы нам вставить новый кондёр, нам надо его прочистить). Греем паяльником это же отверстие с обратной стороны и прилагаем небольшое усилие чтобы игла (зубочистка) показалась со стороны паяльника.
Когда 2 отверстия готовы, можем вставлять новый кондёр. Рекомендую его ноги зачистить спиртом (если он у вас ещё остался) и пролудить. Продеваем ноги, лишнее откусываем, оставшееся - припаиваем.
И так с каждым кондёром. Не забываем про полярность. И стараемся припаивать кондёры на одинаковом уровне, одинаковой высоты — для эстетики.
На этом наш ремонт окончен. Осталось собрать всё и подключить. Проверяем — Работает. Прогонял игрушки, тесты - никаких проблем.
Правда я вспомнил, что заработало оно на другом блоке питания — на том, на котором изначально стартовало но висло на POST. Вставил родной блок питания - Codegen 300w - не включается. Значит из-за перепада напряжения родному блоку питания тоже досталось. Ну чтож, дешевый блок питания стоит гораздо дешевле материнки, а ковыряться в нём у меня уже не осталось ни сил ни опыта :) Куплю б/у блок питания гривень за 60.
C вами был Владимир Кондратюк.
Желаю удачных ремонтов, а лучше вообще чтобы у вас ничего не ломалось!
В зависимости от назначения и устройства микросхемы бывают разного размера, что в свою очередь влияет на диаметр и шаг шариков.
Например, мост от материнской платы компьютера и процессор от смартфона отличаются колоссально (еще меньше разве что шарики от процессора к подложке).
Так же BGA микросхемы часто покрывают компаундом в целях охлаждения, защиты от влаги и механического воздействия, однако при этом получается намного сложнее сделать замену такой микросхемы.
Что нужно для пайки BGA
Паяльная станция (фен и паяльник), припой (bga паста или шары), пинцет, изопропиловый спирт (или бензин калоша), оплетка для снятия припоя, термоскотч и трафареты. Еще понадобится нижний подогрев и инструменты для удаления компаунда с платы (химикаты, острые пинцеты и лезвия).
Какие бывают трафареты
Трафареты бывают очень разные.
Шаг между контактами, диаметры шариков и их уникальное расположение могут потребовать свой уникальный рисунок. Иногда они продаются как отдельно друг от друга, так и в сборке. Например, для iPhone разных моделей продаются прямоугольные трафареты сборники, где есть все необходимые рисунки.
Есть универсальные, у которых нет «рисунка» и ими можно накатывать разные микросхемы.
На фотографии сверху расположен трафарет для процессора iPhone. Он универсален, и отлично подойдет для MTK процессоров.
Универсальные трафареты подходят только в том случае, если шаг и диаметр шариков совпадает и нет хаотичного расположения. То есть, контакты должны быть прямолинейными, но если контакты находятся чуть-чуть не по прямой линии, то тут такие трафареты не особо помогут. Специализированные же имеют рисунок, и ими легче наносить шарики.
Однако не всегда в наличии есть нужный трафарет и его отдельно приходится заказывать. Так же есть и 3D трафареты, которые очень удобно крепятся. Есть как одиночные трафареты, так и на одном листе все сразу.
Еще к трафаретам предъявляются высокие требования качества. Они не должны быть гнутыми, мятыми, иметь большие царапины, резко гнуться от небольшого нагрева. Также имеет значение качество отверстий. Они должны быть строго по рисунку BGA, одинаковых размеров и без перекосов.
Припой
Есть два основных типа припоя для накатки шаров.
Паяльная паста
Паяльная паста — это тоже самое, что и обычный припой с флюсом. Только она имеет пастообразную форму.
В этой пасте содержится флюс и микроскопические шарики из припоя.
Преимущества пасты:
- Пасту удобно наносить на трафарет;
- Не требует много места для хранения;
- Можно использовать на любом трафарете;
- Позволяет восстанавливать оторванные контакты на микросхеме и плате
Недостатки пасты:
- Шары получаются не одинаковых размеров;
- Паста со временем высыхает (можно, конечно, разбавить с другим флюсом, но у нее уже не будет прежних свойств);
- Шары можно получить только с использованием трафаретов;
- Большой расход для крупно габаритных микросхем.
Из популярных — можно использовать пасту от производителя Mechanic. Самые ходовые и популярные — это XG30 и XG50. Продается в небольших баночках (есть разные размеры) и шприцах.
Температура плавления от 180 ℃. Хранится при температура от 0 ℃ до +10℃. Кстати, шарики в этой пасте начинаются с диаметром от 25 микрон (а в некоторых баночках и от 20). Такой диаметр шариков в домашних условиях трудно сделать, поэтому самодельные пасты уступают заводским.
Готовые шарики
Готовые шарики продаются разных диаметров. Бывают как 0,15 мм, так и 1 мм.
Преимущества готовых шаров:
- Их проще паять, чем паяльную пасту (именно паять, а не наносить);
- Возможность нанесение шаров без трафарета (каждый шарик отдельно припаивается на микросхему);
- Одинаковые размеры шаров, по сравнению с пастой;
- Лишние шарики после накатки можно использовать повторно/
Недостатки готовых шаров:
- Нужно покупать много шариков разных диаметров, поэтому итоговая стоимость будет выше, по сравнению с пастой;
- Неудобное нанесение шариков на трафарет, их нужно перебирать и отсеивать лишнее;
- Требуется дополнительный флюс.
Выбор зависит в целом от потребностей и навыков. Кому-то проще будет с пастой. А при ремонте ПК, пасты будет мало, поэтому шары будут экономичнее. Все зависит от ситуации.
Какой паяльный флюс выбрать для BGA
Лучше всего подойдет пастообразный или гелевый флюс. Не пытайтесь паять жидкой канифолью или жиром. Канифоль и жир слабо распределяют температуру по шарикам, и еще начинают кипеть при нагреве. А это большой риск, поскольку микросхема может подскочить из-за большого парообразования. И в таком случае шарики слипнуться.
К тому же, спирто-канифоль будет негативно влиять на контакты под микросхемой.
Из бюджетных вариантов подойдет RMA 223 или его высококачественные клоны. Не покупайте дешевые подделки, которые стоят меньше 4$. Они плохо смачивают припой.
Отечественный вариант флюса для BGA — Interflux (интерфлюкс) IF 8300.
Если позволяет бюджет, то можно попробовать Martin HT00.0017.
Накатка шаров
При накатке шаров необходимо использовать чистый и ровный трафарет (особенно при пайке пастой).
Пример гнутого и грязного трафарета. Он не подойдет для накатки.
Пайка небольшой BGA eMMC микросхемы
Чистим микросхему изопропанолом. Ее контакты должны быть ровными. Если есть припой — удалите паяльников. Микросхему и трафарет во время пайки надо класть только на салфетки или деревянные дощечки. Металлическая поверхность будет впитывать в себя тепло, а деревянная, бумажная или воздушная нет.
Чем крепить микросхему к трафарету
Есть несколько вариантов. Первый — это термоскотч. Он быстро крепится, не оставляет после себя много клея и не экранирует высокую температуру. Из недостатков — быстро отклеивается и не надежно крепится по сравнению с алюминиевым термоскотчем скотчем.
Алюминиевый скотч надежно крепится к плате, но оставляет после себя много клея и экранирует температуру.
С одной стороны, алюминиевый лучше крепится, с другой быстрее и практичнее использовать обычный термоскотч. Начните учится с алюминиевого, пробуйте разные варианты.
Нанесение пасты
Пасту наносим обычной зубочисткой или лопаткой. Можно использовать ватные палочки, но они впитывают в себя много пасты.
На поверхности трафарета не должны оставаться большие комки припоя, иначе они слипнуться и придется их отпаивать.
Придерживание трафарета
Если во время нагрева трафарет начинает гнуться, и не получается нанести шары, то его нужно придерживать пинцетом.
Давить нужно не сильно, небольшим давлением. Нагреваем трафарет сначала до 100 °C, затем увеличиваем до температуры плавления пасты. Обычно это от 200 до 260 °C. Шарики должны сформироваться постепенно. Если быстро повысите температуру — флюс в паяльной пасте начнет кипеть и припой выпрыгнет с трафарета. Придется начинать все заново
Стекло и тачскрин
Также можно использовать стекло или тачскрин, чтобы придерживать трафарет.
Если перепады температур и давление буду высокими, то стекло может треснуть и лопнуть. Будьте осторожней и внимательны, используйте защитные очки.
Как снять микросхему с трафарета
Нельзя резко снимать микросхему с трафарета, гнуть его или выковыривать. Можно погнуть трафарет или сорвать BGA контакты. Если не получается снять микросхему, посмотрите на сторону отверстий. Припой на лицевой стороне не должен слипнуться с трафаретом. Попробуйте почистить трафарет с микросхемой изопропанолом или бензином Калоша щеткой несколько раз.
Далее, нагрейте микросхему до 120 °C в течении 30 секунд. Микросхему можно снимать пинцетом и только слегка разогнув трафарет, без резких движений.
Видео с примером
На видео используется другая микросхема, и пайка без пинцета.
Перекатываем шары на южном мосте
На этой микросхеме сначала нужно восстановить контакты.
Восстановление контактов
Наносим паяльную пасту тонким слоем и начинаем греть феном с 100 °C, плавно повышая до 200 °C.
И паяльная паста начинает зауживать контакты микро шариками. Почему не паяльником и обычным припоем? Они хуже подойдут для такой работы. Фен равномерно нагревает контакты, и микро шарики не слипаются сразу в большой комок припоя. А остальной припой убираем паяльником.
Один из участков восстановлен.
Таким образом проходим по всем контактам. После восстановления и удаления лишнего припоя чистим контакты изопропанолом и ватой.
Еще один способ крепления
Микросхема большая, поэтому трафарет одиночный. Для одиночных трафаретов есть специальный крепеж. Это каретка с двумя фиксаторами и пружина. Крепится шестигранником.
Фиксируем микросхему в крепеже и ровняем ее согласно шагу трафарета.
Нанесение пасты и пайка
Нагреваем микросхему и шарики начинают равномерно распределяться на своих местах. После этого снова чистим микросхему от флюса.
Крепим трафарет к микросхеме и проверяем качество и наличие шариков.
Результат пайки.
Немного о нижнем подогреве
Далее, микросхема припаивается к плате. Такие массивные BGA детали трудно припаять к плате только с помощью фена. Мастера в сервисных центрах используют нижний подогрев. Он помогает разогреть плату. Обычно используются инфракрасные паяльные станции для пайки материнских плат.
Несмотря на то, что мобильные BGA микросхемы можно паять только феном, для уменьшения риска плохой пайки или отрыва контактов, мастера также используют нижний подогрев. Он меньше, чем для материнских плат, но не менее эффективен.
Готовые шары и способ нанесения
Отличается от пасты способом нанесения. Нанесите на микросхему флюс. Он нужен для того, чтобы склеить микросхему и трафарет на время пайки. И затем положите в контейнер трафарет с приклееной микросхемой и насыпьте шарики нужного диаметра. Зубочисткой распределите шарики и удалите лишние.
Пайка аналогична пасте.
Что такое компаунд и как его удалить с платы
Компаунд — это смола, которая позволяет увеличить прочность платы и уменьшить температуру работы микросхем. Также спасает плату при попадании влаги
Если нужно перепаять микросхему, компаунд придется удалить. Его наносят по разному. Производители могут нанести по краям контактов с SMD деталями. А могут и залить полностью.
Чем удалить смолу с платы
Можно удалить механически. Для этого нагреваем плату феном до 150 °C и зубочисткой или металлическим пинцетом снимаем кусочки компаунда с платы. Не всегда получается так сделать.
Еще можно попробовать химические растворители. Обычно продаются в магазине запчастей для мобильных телефонов.
А чтобы выпаять микросхему, у которой под контактами компаунд, нужен режущий пинцет. Процедура пайки аналогично обычной, но в этот раз нужно срезать компаунд.
BGA пайка процессора на примере планшета
Планшет загружался через раз. При давлении на процессор проходит экран загрузки, но процент зарядки 0%. Смена аккумулятора и попытки прошить аппарат ни к чему не привели. Так же режим инженера не доступен.
Возле процессора есть много рассыпухи, лучше закрыть ее плотным алюминиевым скотчем, чтобы случайно не сдуть.
Выпайка процессора
Убираем припой
Лучше не использовать оплетку, дабы избежать повреждения маски. При помощи паяльника и немного припоя на жале (для разбавки припоя с тем, что на плате) легкими и не резкими движениями проходим по площадкам. Естественно перед этим наносим флюс на плату. Та же процедура и с самим процессором. Важно не перегреть его и не сорвать пятак.
Кстати, после выпайки обнаружилось, что на нескольких контактах был отвал процессора от платы. Так как слой меди был на процессоре целый, то удалось заново залудить оторванные контакты с шарами.
Реболлинг процессора
Реболлинг — это перепайка микросхемы. Это не замена старой на новую, по сути обновляются шарики на микросхеме для лучшего контакта с платой.
Затем, перед установкой, на плату ровным слоем наносим флюс. При помощи лопаток или зубочисток распределяем его равномерно, чтобы все контакты хорошо пропаялись и процессор не поплыл.
Планшет начал включаться уже и без давления на процессор, однако после загрузки он выключался на 0%. Только теперь уже можно войти в режим инженера и попытаться сбросить планшет. После сброса аппарат включился нормально и показывает процесс зарядки, остаток и перестал отключаться.
Теперь нужно тщательно проверить все его функции. Камера, звук, микрофон, Wi-Fi, тачскрин.
Видео по теме
Альтернативная пайка BGA микросхем
Очень интересно видео. Способ накатки шаров паяльником без трафарета.
Пример пайки ноутбука от YouTube канала CORE
Читайте также: