Программа последовательность команд для процессора
Здравствуйте! В этой статье я расскажу какие шаги нужно пройти для создания простого процессора и окружения для него.
Для начала нужно определиться с тем, каким будет процессор. Важны такие параметры как:
- Размер машинного слова и регистров(разрядность/"битность" процессора)
- Машинные команды (инструкции) и их размер
Архитектуры процессоров можно разделить по размеру инструкций на 2 вида (на самом деле их больше, но другие варианты менее популярны):
Основное их отличие в том, что RISC процессоры имеют одинаковый размер инструкций. Их инструкции простые и выполняются сравнительно быстро, тогда как CISC процессоры могут иметь разный размер инструкций, некоторые из которых могут выполняться достаточно продолжительное время.
Я решил сделать RISC процессор во многом похожий на MIPS.
Я это сделал по целому ряду причин:
- Довольно просто создать прототип такого процессора.
- Вся сложность такого вида процессоров перекладывается на такие программы как ассемблер и/или компилятор.
Вот основные характеристики моего процессора:
- Машинное слово и размер регистров — 32 бита
- 64 регистра (включая счетчик команд)
- 2 типа инструкций
Register type(досл. Регистровый тип) выглядит вот так:
Особенность таких инструкций заключается в том, что они оперируют с тремя регистрами.
Immediate type(досл. Немедленный тип):
Инструкции этого типа оперируют с двумя регистрами и числом.
OP — это номер инструкции, которую нужно выполнить (или же для указания, что эта инструкция Register type).
R0, R1, R2 — это номера регистров, которые служат операндами для инструкции.
Func — это дополнительное поле, которое служит для указания вида Register type инструкций.
Imm — это поле куда записывается то значение, которое мы хотим явно предоставить инструкции в качестве операнда.
Полный список инструкций можно посмотреть в github репозитории.
Вот лишь пару из них:
NOR это Register type инструкция, которая делает логическое ИЛИ НЕ на регистрах r1 и r2, после записывает результат в регистр r0.
Для того, чтобы использовать эту инструкцию нужно изменить поле OP на 0000 и поле Func на 0000000111 в двоичной системе счисления.
LW это Immediate type инструкция, которая загружает значение памяти по адресу r1 + n в регистр r0.
Для того, чтобы использовать эту инструкцию в свою очередь нужно изменить поле OP на 0111, а в поле IMM записать число n.
После создания ISA можно приступить к написанию процессора.
Для этого нам нужно знание какого нибудь языка описания оборудования. Вот некоторые из них:
- Verilog
- VHDL (не путать с предыдущим!)
Я выбрал Verilog, т.к. программирование на нем было частью моего учебного курса в университете.
Для написания процессора нужно понимать логику его работы:
- Получение инструкции по адресу Счетчика команд (PC) инструкции
- Выполнение инструкции
- Прибавление к Cчетчику команды размера выполненной инструкции
И так до бесконечности.
Получается нужно создать несколько модулей:
Разберем по отдельности каждый модуль.
Регистровый файл
Регистровый файл предоставляет доступ к регистрам. С его помощью нужно получать значения каких то регистров, или изменять их.
В моем случае у меня 64 регистра. В один из регистров записывается результат операции над двумя другими, так что мне нужно предоставить возможность изменять только один, а получать значения из двух других.
Декодер
Декодер это тот блок, который отвечает за декодирование инструкций. Он указывает какие операции нужно выполнить АЛУ и другим блокам.
Например, инструкция addi должна сложить значение регистра $zero(Он всегда хранит 0) и 20 и положить результат в регистр $t0.
На этом этапе декодер определяет, что эта инструкция:
- Immediate type
- Должна записать результат в регистр
И передает эти сведения следующим блокам.
После управление переходит в АЛУ. В нем обычно выполняются все математические, логические операции, а также операции сравнения чисел.
То есть, если рассмотреть ту же инструкцию addi, то на этом этапе происходит сложение 0 и 20.
Другие
По мимо вышеперечисленных блоков, процессор должен уметь:
- Получать и изменять значения в памяти
- Выполнять условные переходы
Тут и там можно увидеть как это выглядит в коде.
После написания процессора нам нужна программа, которая бы преобразовывала текстовые команды в машинный код, чтобы не делать этого вручную. Поэтому нужно написать ассемблер.
Я решил реализовать его на языке программирования Си.
Так как мой процессор имеет RISC архитектуру, то для того, чтобы упростить себе жизнь, я решил спроектировать ассемблер так, чтобы в него можно было легко добавлять свои псевдоинструкции(комбинации из нескольких элементарных инструкций или из других псевдоинструкций).
Можно реализовать это с помощью структуры данных, хранящей в себе тип инструкции, ее формат, указатель на функцию, которая возвращает машинные коды инструкции, и ее название.
Обычная программа начинается с объявления сегмента.
Для нас достаточно двух сегментов .text — в котором будет храниться исходный код наших программ — и .data — в котором будет хранится наши данные и константы.
Инструкция может выглядеть вот так:
Сначала указывается название инструкции, потом операнды.
В .data же указываются объявления данных.
Объявление должно начинаться с точки и названия типа данных, после же идут константы или аргументы.
Удобно парсить (сканировать) ассемблер файл в таком виде:
- Сначала сканируем сегмент
- Если это .data сегмент, то мы парсим разные типы данных или .text сегмент
- Если это .text сегмент, то мы парсим команды или .data сегмент
Для работы ассемблеру нужно проходить исходный файл 2 раза. В первый раз он считает по каким смещениям находятся ссылки (они служат для), они обычно выглядят вот так:
А во второй проход можно уже и генерировать файл.
В дальнейшем, можно запускать выходной файл из ассемблера на нашем процессоре и оценивать результат.
Также готовый ассемблер можно использовать в Си компиляторе. Но это уже позже.
2.1. Процессор.
Самый основной элемент компьютера, это, конечно, процессор. Давайте подробней его рассмотрим. Упрощённая структура процессора (рис. 4):
Рис. 4. Упрощённая структура процессора
Основные элементы процессора:
· Регистры – это специальные ячейки памяти, физически расположенные внутри процессора. В отличие от ОЗУ, где для обращения к данным требуется использовать шину адреса, к регистрам процессор может обращаться напрямую. Это существенно ускорят работу с данными.
· Арифметико-логическое устройство выполняет арифметические операции, такие как сложение, вычитание, а также логические операции.
· Блок управления определяет последовательность микрокоманд, выполняемых при обработке машинных кодов (команд).
· Тактовый генератор , или генератор тактовых импульсов, задаёт рабочую частоту процессора.
2.2. Режимы работы процессора.
Процессор архитектуры x86 может работать в одном из пяти режимов и переключаться между ними очень быстро:
1. Реальный (незащищенный) режим (real address mode) — режим, в котором работал процессор 8086. В современных процессорах этот режим поддерживается в основном для совместимости с древним программным обеспечением (DOS-программами).
2. Защищенный режим (protected mode) — режим, который впервые был реализован в 80286 процессоре. Все современные операционные системы (Windows, Linux и пр.) работают в защищенном режиме. Программы реального режима не могут функционировать в защищенном режиме.
3. Режим виртуального процессора 8086 (virtual-8086 mode, V86) — в этот режим можно перейти только из защищенного режима. Служит для обеспечения функционирования программ реального режима, причем дает возможность одновременной работы нескольких таких программ, что в реальном режиме невозможно. Режим V86 предоставляет аппаратные средства для формирования виртуальной машины, эмулирующей процессор8086. Виртуальная машина формируется программными средствами операционной системы. В Windows такая виртуальная машина называется VDM (Virtual DOS Machine — виртуальная машина DOS). VDM перехватывает и обрабатывает системные вызовы от работающих DOS-приложений.
4. Нереальный режим (unreal mode, он же big real mode) — аналогичен реальному режиму, только позволяет получать доступ ко всей физической памяти, что невозможно в реальном режиме.
5. Режим системного управления System Management Mode (SMM) используется в служебных и отладочных целях.
При загрузке компьютера процессор всегда находится в реальном режиме, в этом режиме работали первые операционные системы, например MS-DOS, однако современные операционные системы, такие как Windows и Linux переводят процессор в защищенный режим. Вам, наверное, интересно, что защищает процессор в защищенном режиме? В защищенном режиме процессор защищает выполняемые программы в памяти от взаимного влияния (умышленно или по ошибке) друг на друга, что легко может произойти в реальном режиме. Поэтому защищенный режим и назвали защищенным.
2.3. Регистры процессора (программная модель процессора).
Для понимания работы команд ассемблера необходимо четко представлять, как выполняется адресация данных, какие регистры процессора и как могут использоваться при выполнении инструкций. Рассмотрим базовую программную модель процессоров Intel 80386, в которую входят:
· 8 регистров общего назначения, служащих для хранения данных и указателей;
· регистры сегментов — они хранят 6 селекторов сегментов;
· регистр управления и контроля EFLAGS, который позволяет управлять состоянием выполнения программы и состоянием (на уровне приложения) процессора;
· регистр-указатель EIP выполняемой следующей инструкции процессора;
· система команд (инструкций) процессора;
· режимы адресации данных в командах процессора.
Начнем с описания базовых регистров процессора Intel 80386.
Базовые регистры процессора Intel 80386 являются основой для разработки программ и позволяют решать основные задачи по обработке данных. Все они показаны на рис. 5.
Рис. 5. Базовые регистры процессора Intel 80386
Среди базового набора регистров выделим отдельные группы и рассмотрим их назначение.
2.4. Регистры общего назначения.
Остальные четыре регистра – ESI (индекс источника), EDI (индекс приемника), ЕВР (указатель базы), ESP (указатель стека) – имеют более конкретное назначение и применяются для хранения всевозможных временных переменных. Регистры ESI и EDI необходимы в строковых операциях, ЕВР и ESP – при работе со стеком. Так же как и в случае с регистрами ЕАХ - EDX, младшие половины этих четырех регистров называются SI, DI, BP и SP соответственно, и в процессорах до 80386 только они и присутствовали.
2.5. Сегментные регистры.
При использовании сегментированных моделей памяти для формирования любого адреса нужны два числа – адрес начала сегмента и смещение искомого байта относительно этого начала (в бессегментной модели памяти flat адреса начал всех сегментов равны). Операционные системы (кроме DOS) могут размещать сегменты, с которыми работает программа пользователя, в разных местах памяти и даже временно записывать их на диск, если памяти не хватает. Так как сегменты способны оказаться где угодно, программа обращается к ним, применяя вместо настоящего адреса начала сегмента 16-битное число, называемое селектором. В процессорах Intel предусмотрено шесть 16-битных регистров - CS, DS, ES, FS, GS, SS , где хранятся селекторы. (Регистры FS и GS отсутствовали в 8086, но появились уже в 80286.) Это означает, что в любой момент можно изменить параметры, записанные в этих регистрах.
В отличие от DS, ES, GS, FS, которые называются регистрами сегментов данных, CS и SS отвечают за сегменты двух особенных типов – сегмент кода и сегмент стека. Первый содержит программу, исполняющуюся в данный момент, следовательно, запись нового селектора в этот регистр приводит к тому, что далее будет исполнена не следующая по тексту программы команда, а команда из кода, находящегося в другом сегменте, с тем же смещением. Смещение очередной выполняемой команды всегда хранится в специальном регистре EIP (указатель инструкции, 16-битная форма IP), запись в который так же приведет к тому, что далее будет исполнена какая-нибудь другая команда. На самом деле все команды передачи управления – перехода, условного перехода, цикла, вызова подпрограммы и т.п. – и осуществляют эту самую запись в CS и EIP.
2.6. Регистр флагов.
Еще один важный регистр, использующийся при выполнении большинства команд, - регистр флагов. Как и раньше, его младшие 16 бит, представлявшие собой весь этот регистр до процессора 80386, называются FLAGS. В EFLAGS каждый бит является флагом, то есть устанавливается в 1 при определенных условиях или установка его в 1 изменяет поведение процессора. Все флаги, расположенные в старшем слове регистра, имеют отношение к управлению защищенным режимом, поэтому здесь рассмотрен только регистр FLAGS (см. рис. 6):
Рис. 6. Регистр флагов FLAGS.
CF – флаг переноса. Устанавливается в 1, если результат предыдущей операции не уместился в приемнике и произошел перенос из старшего бита или если требуется заем (при вычитании), в противном случае – в 0. Например, после сложения слова 0 FFFFh и 1, если регистр, в который надо поместить результат, – слово, в него будет записано 0000 h и флаг CF = 1.
PF – флаг четности. Устанавливается в 1, если младший байт результата предыдущей команды содержит четное число битов, равных 1, и в 0, если нечетное. Это не то же самое, что делимость на два. Число делится на два без остатка, если его самый младший бит равен нулю, и не делится, когда он равен 1.
AF – флаг полупереноса или вспомогательного переноса. Устанавливается в 1, если в результате предыдущей операции произошел перенос (или заем) из третьего бита в четвертый. Этот флаг используется автоматически командами двоично-десятичной коррекции.
ZF – флаг нуля. Устанавливается в 1, если результат предыдущей команды – ноль.
SF – флаг знака. Он всегда равен старшему биту результата.
TF – флаг ловушки. Он был предусмотрен для работы отладчиков, не использующих защищенный режим. Установка его в 1 приводит к тому, что после выполнения каждой программной команды управление временно передается отладчику.
IF – флаг прерываний. Сброс этого флага в 0 приводит к тому, что процессор перестает обрабатывать прерывания от внешних устройств. Обычно его сбрасывают на короткое время для выполнения критических участков кода.
DF – флаг направления. Он контролирует поведение команд обработки строк: когда он установлен в 1, строки обрабатываются в сторону уменьшения адресов, когда DF =0 – наоборот.
OF – флаг переполнения. Он устанавливается в 1, если результат предыдущей арифметической операции над числами со знаком выходит за допустимые для них пределы. Например, если при сложении двух положительных чисел получается число со старшим битом, равным единице, то есть отрицательное, и наоборот.
Флаги IOPL (уровень привилегий ввода-вывода) и NT (вложенная задача) применяются в защищенном режиме.
2.7. Цикл выполнения команды
Программа состоит из машинных команд. Программа загружается в оперативную память компьютера. Затем программа начинает выполняться, то есть процессор выполняет машинные команды в той последовательности, в какой они записаны в программе.
Для того чтобы процессор знал, какую команду нужно выполнять в определённый момент, существует счётчик команд – специальный регистр, в котором хранится адрес команды, которая должна быть выполнена после выполнения текущей команды. То есть при запуске программы в этом регистре хранится адрес первой команды. В процессорах Intel в качестве счётчика команд (его ещё называют указатель команды) используется регистр EIP (или IP в 16-разрядных программах).
Счётчик команд работает со сверхоперативной памятью, которая находится внутри процессора. Эта память носит название очередь команд, куда помещается одна или несколько команд непосредственно перед их выполнением. То есть в счётчике команд хранится адрес команды в очереди команд, а не адрес оперативной памяти.
Цикл выполнения команды – это последовательность действий, которая совершается процессором при выполнении одной машинной команды. При выполнении каждой машинной команды процессор должен выполнить как минимум три действия: выборку, декодирование и выполнение. Если в команде используется операнд, расположенный в оперативной памяти, то процессору придётся выполнить ещё две операции: выборку операнда из памяти и запись результата в память. Ниже описаны эти пять операций.
- Выборка команды . Блок управления извлекает команду из памяти (из очереди команд), копирует её во внутреннюю память процессора и увеличивает значение счётчика команд на длину этой команды (разные команды могут иметь разный размер).
- Декодирование команды . Блок управления определяет тип выполняемой команды, пересылает указанные в ней операнды в АЛУ и генерирует электрические сигналы управления АЛУ, которые соответствуют типу выполняемой операции.
- Выборка операндов . Если в команде используется операнд, расположенный в оперативной памяти, то блок управления начинает операцию по его выборке из памяти.
- Выполнение команды . АЛУ выполняет указанную в команде операцию, сохраняет полученный результат в заданном месте и обновляет состояние флагов, по значению которых программа может судить о результате выполнения команды.
- Запись результата в память . Если результат выполнения команды должен быть сохранён в памяти, блок управления начинает операцию сохранения данных в памяти.
Суммируем полученные знания и составим цикл выполнения команды:
- Выбрать из очереди команд команду, на которую указывает счётчик команд.
- Определить адрес следующей команды в очереди команд и записать адрес следующей команды в счётчик команд.
- Декодировать команду.
- Если в команде есть операнды, находящиеся в памяти, то выбрать операнды.
- Выполнить команду и установить флаги.
- Записать результат в память (по необходимости).
- Начать выполнение следующей команды с п.1.
Это упрощённый цикл выполнения команды. К тому же действия могут отличаться в зависимости от процессора. Однако это даёт общее представление о том, как процессор выполняет одну машинную команду, а значит и программу в целом.
В общем случае система команд процессора включает в себя следующие четыре основные группы команд:
- команды пересылки данных;
- арифметические команды ;
- логические команды ;
- команды переходов .
Команды пересылки данных не требуют выполнения никаких операций над операндами. Операнды просто пересылаются (точнее, копируются) из источника (Source) в приемник ( Destination ). Источником и приемником могут быть внутренние регистры процессора, ячейки памяти или устройства ввода/вывода. АЛУ в данном случае не используется.
Арифметические команды выполняют операции сложения, вычитания, умножения, деления, увеличения на единицу (инкрементирования), уменьшения на единицу (декрементирования) и т.д. Этим командам требуется один или два входных операнда. Формируют команды один выходной операнд .
Логические команды производят над операндами логические операции, например, логическое И, логическое ИЛИ , исключающее ИЛИ, очистку, инверсию, разнообразные сдвиги (вправо, влево, арифметический сдвиг, циклический сдвиг). Этим командам, как и арифметическим , требуется один или два входных операнда, и формируют они один выходной операнд .
Наконец, команды переходов предназначены для изменения обычного порядка последовательного выполнения команд. С их помощью организуются переходы на подпрограммы и возвраты из них, всевозможные циклы, ветвления программ, пропуски фрагментов программ и т.д. Команды переходов всегда меняют содержимое счетчика команд. Переходы могут быть условными и безусловными. Именно эти команды позволяют строить сложные алгоритмы обработки информации.
В соответствии с результатом каждой выполненной команды устанавливаются или очищаются биты регистра состояния процессора ( PSW ). Но надо помнить, что не все команды изменяют все имеющиеся в PSW флаги. Это определяется особенностями каждого конкретного процессора.
У разных процессоров системы команд существенно различаются, но в основе своей они очень похожи. Количество команд у процессоров также различно. Например, у упоминавшегося уже процессора МС68000 всего 61 команда , а у процессора 8086 — 133 команды. У современных мощных процессоров количество команд достигает нескольких сотен. В то же время существуют процессоры с сокращенным набором команд (так называемые RISC-процессоры), в которых за счет максимального сокращения количества команд достигается увеличение эффективности и скорости их выполнения.
Рассмотрим теперь особенности четырех выделенных групп команд процессора более подробно.
3.3.1. Команды пересылки данных
Команды пересылки данных занимают очень важное место в системе команд любого процессора. Они выполняют следующие важнейшие функции:
- загрузка (запись) содержимого во внутренние регистры процессора;
- сохранение в памяти содержимого внутренних регистров процессора;
- копирование содержимого из одной области памяти в другую;
- запись в устройства ввода/вывода и чтение из устройств ввода/вывода.
В некоторых процессорах (например, Т-11) все эти функции выполняются одной единственной командой MOV (для байтовых пересылок — MOVB ) но с различными методами адресации операндов.
В других процессорах помимо команды MOV имеется еще несколько команд для выполнения перечисленных функций. Например, для загрузки регистров могут использоваться команды загрузки, причем для разных регистров — разные команды (их обозначения обычно строятся с использованием слова LOAD — загрузка). Часто выделяются специальные команды для сохранения в стеке и для извлечения из стека ( PUSH — сохранить в стеке, POP — извлечь из стека). Эти команды выполняют пересылку с автоинкрементной и с автодекрементной адресацией (даже если эти режимы адресации не предусмотрены в процессоре в явном виде).
Иногда в систему команд вводится специальная команда MOVS для строчной (или цепочечной) пересылки данных (например, в процессоре 8086). Эта команда пересылает не одно слово или байт, а заданное количество слов или байтов ( MOVSB ), то есть инициирует не один цикл обмена по магистрали, а несколько. При этом адрес памяти, с которым происходит взаимодействие, увеличивается на 1 или на 2 после каждого обращения или же уменьшается на 1 или на 2 после каждого обращения. То есть в неявном виде применяется автоинкрементная или автодекрементная адресация.
В некоторых процессорах (например, в процессоре 8086) специально выделяются функции обмена с устройствами ввода/вывода. Команда IN используется для ввода (чтения) информации из устройства ввода/вывода, а команда OUT используется для вывода (записи) в устройство ввода/вывода. Обмен информацией в этом случае производится между регистром-аккумулятором и устройством ввода/вывода. В более продвинутых процессорах этого же семейства (начиная с процессора 80286) добавлены команды строчного (цепочечного) ввода (команда INS ) и строчного вывода (команда OUTS ). Эти команды позволяют пересылать целый массив (строку) данных из памяти в устройство ввода/вывода ( OUTS ) или из устройства ввода/вывода в память ( INS ). Адрес памяти после каждого обращения увеличивается или уменьшается (как и в случае с командой MOVS ).
Также к командам пересылки данных относятся команды обмена информацией (их обозначение строится на основе слова Exchange ). Может быть предусмотрен обмен информацией между внутренними регистрами, между двумя половинами одного регистра ( SWAP ) или между регистром и ячейкой памяти.
3.3.2. Арифметические команды
Арифметические команды рассматривают коды операндов как числовые двоичные или двоично-десятичные коды. Эти команды могут быть разделены на пять основных групп:
- команды операций с фиксированной запятой (сложение, вычитание, умножение, деление);
- команды операций с плавающей запятой (сложение, вычитание, умножение, деление);
- команды очистки;
- команды инкремента и декремента;
- команда сравнения.
Команды операций с фиксированной запятой работают с кодами в регистрах процессора или в памяти как с обычными двоичными кодами. Команда сложения ( ADD ) вычисляет сумму двух кодов. Команда вычитания ( SUB ) вычисляет разность двух кодов. Команда умножения ( MUL ) вычисляет произведение двух кодов (разрядность результата вдвое больше разрядности сомножителей). Команда деления ( DIV ) вычисляет частное от деления одного кода на другой. Причем все эти команды могут работать как с числами со знаком, так и с числами без знака.
Команды операций с плавающей запятой (точкой) используют формат представления чисел с порядком и мантиссой (обычно эти числа занимают две последовательные ячейки памяти). В современных мощных процессорах набор команд с плавающей запятой не ограничивается только четырьмя арифметическими действиями, а содержит и множество других более сложных команд, например, вычисление тригонометрических функций, логарифмических функций, а также сложных функций, необходимых при обработке звука и изображения.
Команды очистки ( CLR ) предназначены для записи нулевого кода в регистр или ячейку памяти. Эти команды могут быть заменены командами пересылки нулевого кода, но специальные команды очистки обычно выполняются быстрее, чем команды пересылки . Команды очистки иногда относят к группе логических команд , но суть их от этого не меняется.
Команды инкремента (увеличения на единицу, INC ) и декремента (уменьшения на единицу, DEC ) также бывают очень удобны. Их можно в принципе заменить командами суммирования с единицей или вычитания единицы, но инкремент и декремент выполняются быстрее, чем суммирование и вычитание. Эти команды требуют одного входного операнда, который одновременно является и выходным операндом.
Наконец, команда сравнения (обозначается CMP ) предназначена для сравнения двух входных операндов. По сути, она вычисляет разность этих двух операндов, но выходного операнда не формирует, а всего лишь изменяет биты в регистре состояния процессора ( PSW ) по результату этого вычитания. Следующая за командой сравнения команда (обычно это команда перехода ) будет анализировать биты в регистре состояния процессора и выполнять действия в зависимости от их значений (о командах перехода речь идет в разделе 3.3.4). В некоторых процессорах предусмотрены команды цепочечного сравнения двух последовательностей операндов, находящихся в памяти (например, в процессоре 8086 и совместимых с ним).
- образовательные: познакомить с исполнителями алгоритма, с программным принципом работы компьютера.
- развивающая: развивать информационные знания учащихся
- воспитательная: развитие познавательного интереса, логического мышления
Теоретические сведения к практической работе
Алгоритм – последовательность действий, описывающая процесс преобразования объекта из начального состояния в конечное, записанная с помощью понятных исполнителю команд.
Исполнителем алгоритма может быть человек или автоматическое устройство – компьютеры, роботы, станки, спутники, сложная бытовая техника и даже детские игрушки. Каждый алгоритм создается в расчете на вполне конкретного исполнителя.
Компьютер, как исполнитель, любую работу выполняет по программе. Программы пишут люди, а компьютер формально их выполняет.
Разработчики систем искусственного интеллекта пытаются научить машину, подобно человеку, самостоятельно строить программу своих действий, исходя из условия задачи.
Ставится цель превращения компьютера из формального исполнителя в интеллектуального исполнителя.
Работа обоих исполнителей состоит из четырёх блоков, но формальный исполнитель работает по уже готовой программе, а интеллектуальный – сам составляет программу и получает результат.
Информация для компьютера - данные , представленные в форме, приемлемой для её передачи и обработки на компьютере.
Для работы с данными компьютеру необходимы инструкции ( команды , правила действия). Команды формируются в перечень команд.
Первый компьютер, в котором были полностью реализованы эти принципы, был построен в 1949 г. английским исследователем Морисом Уилксом. Изменяется элементная база, компьютеры становятся все более и более мощными, но до сих пор большинство из них соответствуют тем принципам, которые изложил в своем докладе в 1945 г. Джон фон Нейман.
Согласно фон Нейману, ЭВМ состоит из следующих основных блоков:
- арифметико-логическое устройство, выполняющее арифметические и логические операции;
- устройство управления, которое организует процесс выполнения программ;
- запоминающее устройство, или память, для хранения программ и данных;
- внешние устройства для ввода-вывода информации.
В современных компьютерах это:
- память (запоминающее устройство — ЗУ), состоящая из перенумерованных ячеек;
- процессор, включающий в себя устройство управления (УУ) и арифметико-логическое устройство (АЛУ);
Эти устройства соединены между собой каналами связи, по которым передается информация.
Функции памяти: - прием информации из других устройств; - запоминание информации; - выдача информации по запросу в другие устройства машины.
Функции процессора: - обработка данных по заданной программе путем выполнения арифметических и логических операций; - программное управление работой устройств компьютера.
Компьютер является универсальным исполнителем по обработке информации. Значит, для него, как для любого исполнителя, существует определённая система команд (СКИ). Такая система команд для компьютера называется языком машинных команд (ЯМК)
Программа для компьютера – это алгоритм, разработанный на ЯМК. Или, Программа управления компьютером – это последовательность команд ЯМК, где каждая команда – директива для процессора на выполнение определённого действия.
Рассмотрим этапы выполнения программы.
Согласно принципам Джона фон Неймана, программа во время её исполнения и данные, которые она обрабатывает, находятся в оперативной памяти (принцип хранимой в памяти программы). Процессор исполняет программу начиная с первой команды и заканчивая последней.
- Какое основное свойство оперативной памяти? ( энергозависимость, работает с данными, активными в текущий момент времени)
Какие есть особенности в восприятии информации человеком и компьютером? ( человек воспринимает информацию с помощью органов чувств, в виде знаков и сигналов, а компьютер воспринимает информацию в виде цифр (0 и 1).)
- Как сделать так, чтобы программа, написанная человеком, была понятна компьютеру? (нужен способ перевода)
Для компьютера вся информация должна быть представлена в двоичных кодах, т.е. необходим способ перевода. Такой способ перевода называется трансляцией , а выполняет это транслятор.
Вывод: Устройством, которое обрабатывает информацию в компьютере, является процессор, следовательно, алгоритм должен использовать систему команд процессора, или другими словами записан на машинном языке, представляющем собой последовательности нулей и единиц
Сначала программисты, работавшие на компьютерах первого поколения (50-е – 60-е г.), составляли программы на ЯМК (в двоичных кодах), но это довольно сложная работа, поэтому для облегчения программирования были созданы языки программирования высокого уровня (ЯПВУ) - это искусственно созданные языки с несколькими десятками слов (операторов) и строгими правилами синтаксиса. Составление программ на ЯПВУ намного проще. Примеры ЯПВУ: Фортран, Паскаль, Бейсик, Си и др.
Для того чтобы процессор мог выполнить программу, написанную на языке программирования, она и данные с которыми она работает должны быть загружены в оперативную память. Программа написана и загружена в оперативную память и для того чтобы процессор ее выполнил в оперативной памяти, должна быть еще и программа переводчик (транслятор), который переводит программу с языка высокого уровня на язык машинных команд
Таким образом, цепочка событий от составления программы на ЯПВУ до получения результатов решения задачи выглядит так
Человек всегда должен понимать ограниченность возможность компьютера как исполнителя, необходимость предусмотреть все тонкости команд, поручаемых компьютеру. Человек разрабатывает алгоритм, записывает его на ЯПВУ и анализирует результаты выполнения программы.
Компьютер является формальным исполнителем программ.
Итак, компьютер не может обойтись без программы и исходных данных, подготовить их может только человек.
Поэтому можно говорить, что решение задач компьютером - это формальное исполнение алгоритма (программы), а компьютер является формальным исполнителем.
Компьютер может быть использован для решения самых разнообразных задач, поэтому, исходя из условия задачи, человек решает, каким программным средством пользоваться. Если в состав ПО входят программы, подходящие для решения задач человека, то удобнее ими воспользоваться (текстовый редактор, электронные таблицы, базы данных, презентации).
В случае, если нельзя воспользоваться готовым программным обеспечением, приходится прибегать к программированию (операционные системы, доработка ОС, трансляторы, драйверы, архиваторы, антивирусы).
Принцип программы, хранимой в памяти компьютера, считается важнейшей идеей современной компьютерной архитектуры. Суть идеи заключается в том, что
1) программа вычислений вводится в память ЭВМ и хранится в ней наравне с исходными числами;
2) команды, составляющие программу, представлены в числовом коде по форме ничем не отличающемся от чисел.
В основу работы компьютеров положен программный принцип управления, состоящий в том, что компьютер выполняет действия по заранее заданной программе.
Программное и аппаратное обеспечение в компьютере работают в неразрывной связи и взаимодействии. Состав программного обеспечения вычислительной системы называется программной конфигурацией.
Читайте также: