Катапультное кресло су 25

Обновлено: 24.01.2025

Катапультное кресло истребителя Су-57 сможет спасать летчика в том числе при перевернутом полете и в других сложных ситуациях.

О катапультном кресле Су-57, новом топливозаправщике Ил-78МД-90А, модернизированном скафандре «Сокол-М» и других разработках ОАО «НПП Звезда» - в интервью с генеральным директором, главным конструктором предприятия Сергеем Поздняковым.

В чем главная особенность катапультной системы для спортивных самолетов, которую вы представили на МАКС-2019, и для чего она нужна, учитывая, что скорость полета этих машин не превышает сверхзвуковую?

Зачастую, летчик спортивного самолета бывает вынужден покидать его в сложных условиях, например, при штопоре. В таких условиях ему нужно открыть фонарь, отстегнуть себя от привязной системы, перевалиться за борт, удачно оттолкнуться от самолета, чтобы не стукнуться о его хвостовое оперение, и потом еще и раскрыть парашют. Это десятки секунд. Наша система безусловно обеспечивает безопасное спасение в таких ситуациях, она компактная, легкая, вписывается в кабину спортивного самолета, поэтому, я считаю, это будущее.

Основным ее отличием является то, что в отличие от истребителей, летчика с помощью специальной телескопической штанги «выкидывает» из кабины, а кресло остается на месте. Кроме того, эта система работает от сжатого воздуха, а не от пороха, что, соответственно, облегчает использование: нет никаких проблем в том, чтобы проверить давление. На салоне представлен новый самолет «Ларос-31». Это как бы «внук» Су-31. Такая система будет поставлена в этот самолет. Также мы работаем с австрийской компанией Diamond Aircraft.

Каковы преимущества модернизированного скафандра «Сокол-М» и почему назрела необходимость его разработки?

Сегодня перед нами стоит задача многоразового использования и большей универсальности наших разработок, и мы создали именно многоразовый скафандр. Он сделан по схеме «пошел с вешалки снял, под себя подогнал и полетел». То есть скафандр будет универсальный, и его можно будет подгонять под разные размеры, а не шить индивидуально под каждого космонавта. Изменились также и материалы, из которых изготавливаются данные изделия. Сейчас оболочка делается из резины, а она имеет срок службы порядка 5 лет. Мы перешли на полиуретановые пленки. Они гораздо надежнее в плане истирания, работы на изгиб.

Какие разработки созданы вашим предприятием для самолета на солнечных предприятиях, на котором предполагается совершить полет на рекордную высоту?

Для этого самолета мы создали специальный скафандр, который позволит пилоту находиться на высоте порядка 25 тысяч метров продолжительное время, порядка 7-8 часов. Связано это с тем, что самолет должен быть предельно легким, а потому кабина не герметична. Если же говорить о компенсирующих костюмах, которые используют военные летчики, то они позволяют им выжить при разгерметизации на такой высоте порядка 10-15 минут, не более того. Наше изделие создано на базе скафандра «Сокол-М», а его система жизнеобеспечения напоминает ту, что необходима для выхода в открытый космос.

В чем главные особенности катапультного кресла для Су-57?

Мы идем по пути модернизации, поэтому революции там нет, но, во-первых, расширяется антропометрический ряд, уменьшена масса изделия, диапазон регулировок, пороха, которые используются в катапультной системе, имеют широкий диапазон температурного применения. Ведь мы понимаем, что у самолета есть экспортный потенциал, и давно работаем над этой темой.

Автоматика, которая используется на кресле Су-57, значительно «умнее», чем на системах, которые использовались раньше. Это означает, что спасение пилота гарантировано в значительно большем числе ситуаций, чем ранее. Перевернутый полет, штопор, на земле и так далее. Кстати, кресло установлено и на самолетах Су-35, которые поставляются в войска.

Наш подвесной универсальный агрегат эффективней предыдущих разработок процентов на 15. На существующих системах дозаправки темп перекачки примерно 2200-2300 литров, а на новой системе испытания показали, что она способна перекачивать порядка 2600-2700. Это важно, потому что наша главная задача - сделать так, чтобы самолеты при дозаправке как можно меньше «висели» в связке с танкером. Особенно это касается стратегических бомбардировщиков. Работа еще не завершена, идут испытания. Как это обычно бывает, на испытаниях появляются отказы, но мы дорабатываем изделие. Я думаю, что основные испытания в этом году будут закончены и дальше начнутся испытания самолетов.

Какие у предприятия планы на будущее, в том числе относительно диверсификации производства?

На МАКС мы представили перспективные противоперегрузочные костюмы, перспективный шлем с кислородной маской. По гражданской тематике мы открыли новое направление, которое касается облегченных баллонов для альпинистов.

К-36ДМ


К-36ДМ — катапультное кресло серии 2 из семейства авиационных кресел К-36. Служит рабочим местом члена экипажа и средством аварийного покидания самолета. Разработано НПП «Звезда». Считается одним из лучших и самых надёжных катапультных кресел в мире. [1]

Содержание

Назначение

Катапультное кресло К-36ДМ предназначено для установки на самолёты современной авиации России (МиГ-29, Су-24, семейство Су-27, Су-34, Ту-160 и т. д.). Кресло универсальное, возможно применение с моделями любых производителей.

Технические характеристики



Катапультное кресло обеспечивает спасения члена экипажа в широком диапазоне скоростей и высот полёта самолёта, включая взлет, послепосадочный пробег, режим нулевой высоты и скорости, и применяется в сочетании с защитным оборудованием.

В полёте член экипажа удерживается в кресле индивидуальной подвесной системой и может фиксироваться с помощью механизмов системы фиксации, а бесступенчатое регулирование сиденья по росту обеспечивает члену экипажа удобное для работы и обзора размещение в кабине самолета.



Катапультное кресло состоит из сиденья с установленной на нем профилированной крышкой с блоком жизнеобеспечения, комбинированного стреляющего механизма, коробки механизма, заголовника, спасательной системы с куполом, уложенным в заголовник, эксплуатационных систем, обеспечивающих безопасное катапультирование.

Принудительная фиксация при катапультировании обсепечивается системой фиксации, состоящей из механизма притягивания плеч, размещенного в коробке механизмов, механизма притяга пояса, двух ограничителей разброса рук с лопастями, двух механизмов подъёма ног, двух притягов ног с ложементами голеней и пиромеханизма с электромеханическим затвором, срабатывающим по команде системы управления катапультированием. Пиромеханизм системы фиксации заряжается пиропатроном, а затвор пиромеханизма — электропиропатроном.

Механизм ввода парашюта обеспечивает отстрел заголовника для ввода спасательного парашюта и состоит из правого и левого патронников с механическими затворами и корпуса с хвостовиком. Патронники механизма ввода парашюта заряжаются пиропатронами, дублирующими друг друга.

Катапультирование начинается при вытягивании поручней катапультирования и обеспечивается работой системы управления катапультированием и механизмов блокировки.

Кислородное обеспечение члена экипажа от бортового кислородного оборудования в полете до аварийного запаса при катапультировании производится кислородной системой кресла, состоящей из объединённого разъема коммуникаций, блока кислородного оборудования с аварийным запасом кислорода.

Хронология катапультирования

0 секунд. Лётчик дёргает поручни. Подается команда на сброс фонаря, начинается работа автоматики. Происходит инициация системы фиксации: начинается притягивание ремней, фиксация и подъём ног, опускаются и сводятся боковые ограничители рук.

0,2 секунды. Фиксация заканчивается. Если сброшен фонарь — подается команда на катапультирование. На высоких скоростях вводится защитный дефлектор.

0,35-0,4 секунды. Стреляющий механизм двигает кресло по направляющим. Начинается ввод стабилизирующих штанг.

0,45 секунды. Кресло выходит из кабины. Включаются реактивные двигатели. При необходимости (крен самолёта или разведение летчиков при двойном катапультировании) включаются двигатели коррекции по крену.

0,8 секунды. На малых скоростях происходит отстрел заголовника, разделение с креслом и ввод парашюта. На больших скоростях это происходит после торможения до приемлемой скорости. Лётчик спускается на специальном сидении, под которым расположена кислородная система и ящик с носимым аварийным запасом (НАЗ) (около 10 кг). Через 4 секунды после разделения с креслом НАЗ отделяется и повисает снизу на тросе.

Катапультируемое кресло



Катапульти́руемое кре́сло — устройство, предназначенное для спасения лётчика или других членов экипажа из летательного аппарата в аварийных ситуациях. Как правило, катапультируемое кресло вместе с пилотом выстреливается из аварийного летательного аппарата при помощи реактивного двигателя (как, например, К-36ДМ), порохового заряда (как КМ-1М) или сжатого воздуха (как катапультируемое кресло спортивного самолёта Су-26), после чего кресло автоматически отбрасывается, а пилот опускается на парашюте. Иногда применяются катапультируемые аварийно-спасательные капсулы (В-58) и кабины (F-111 и B-1), опускающиеся на парашютах вместе с находящимися внутри членами экипажа.

Содержание

Предпосылки к созданию катапультируемого кресла

До середины Второй мировой войны для покидания повреждённого самолёта пилот вставал с сиденья, переступал через борт кабины, вставал на крыло и спрыгивал в промежуток между ним и хвостовым оперением. Этот способ обеспечивал надёжное спасение на скоростях до 400-500 км/ч. Однако к концу войны скорости самолётов значительно выросли, и у многих лётчиков уже не хватало сил противостоять набегающему воздушному потоку. По данным немецкой статистики, в конце 1930-х — начале 1940-х годов 40% покиданий самолетов через борт закончились катастрофами. Исследования, проведённые ВВС США в 1943 году, показали, что 12,5% покиданий самолётов, совершённых в 1942 году, закончились гибелью летчиков, а 45,5% - их травмами; значительная часть смертельных исходов была вызвана столкновениями с хвостовым оперением и другими частями самолёта; в повторных исследования 1944 года эти значения выросли до 15% и 47% соответственно. Назрела очевидная необходимость в новом способе покидания самолёта, в частности — принудительном выбросе кресла с лётчиком из кабины. [1]

История

Экспериментальные работы по принудительному выбросу лётчика из самолёта проводились ещё в конце 1920-х — начале 1930-х годов, которые, однако, были призваны решить чисто психологическую проблему страха пилотов перед «прыжком в пустоту». В 1928 году на выставке в в Кёльне была представлена система, осуществляющая выбрасывание пилота в кресле с прикреплённой к нему парашютной системой при помощи сжатого воздуха на высоту 6-9 метров. [2]

Первые катапульты появились в 1939 году в Германии. Экспериментальный летательный аппарат Heinkel He-176 с ракетным двигателем был оснащен сбрасываемой носовой частью. Вскоре катапульты стали серийными: их устанавливали на турбореактивный Heinkel He 280 (англ.) русск. и поршневой Heinkel He-219. 13 января 1942 года лётчик-испытатель Гельмут Шенк на He-280 совершил первое в истории успешное катапультирование. [3] Катапультные кресла устанавливались также на некоторых других немецких самолётах; всего за период Второй мировой войны немецкие лётчики совершили около 60 катапультирований [4] .

Первое в истории катапультирование на сверхзвуковой скорости совершил американский лётчик-испытатель Джордж Смит в 1955 году.

Катапультные кресла первого поколения выполняли единственную задачу — выбросить человека из кабины. Отдалившись от самолёта, пилот должен был самостоятельно отстегнуть ремни, оттолкнуть кресло и раскрыть парашют.

Второе поколение катапультных кресел появилось в 1950-х годах. Процесс покидания был частично автоматизирован: достаточно было дернуть рычаг, и пиротехнический стреляющий механизм выбрасывал кресло из самолета; вводился парашютный каскад (стабилизирующий, затем тормозной и основной парашюты). Простейшая автоматика обеспечивала только задержку по времени и блокировку по высоте — на большой высоте парашют открывался не сразу.

Кресла третьего поколения появились в 1960-х, их начали оснащать твердотопливным ракетным двигателем, работающим после выхода кресла из кабины. Они были снабжены более совершенной автоматикой. На первых креслах этого поколения, разработанных НПП «Звезда», парашютный автомат КПА соединялся с самолетом двумя пневмотрубками и таким образом настраивался на скорость и высоту.

Cовременные серийные катапультные кресла, такие как британское Martin Baker Mk 14, американские McDonnell Douglas ACES II и Stencil S4S, а также знаменитое российское К-36ДМ, по-прежнему относятся к третьему поколению.

Катапультируемые кресла используются в основном на военных и спортивных самолётах (например, Су-26); катапультное кресло было также впервые в мире установлено на вертолёте Ка-50. Наиболее совершенные модели катапультируемых кресел обеспечивают спасение пилота во всём диапазоне высот и скоростей данного летательного аппарата, обеспечивая даже катапультирование с земли.

Катапультные кресла также устанавливались на первых космических кораблях серии «Восток»; их применение предусматривалось как в случае аварии, так и для приземления в нормальных условиях после завершения полета. [5]

В практике отечественного [неопределённость] авиастроения катапультные кресла долгое время разрабатывались под конкретный тип летательного аппарата, что отражалось в их названииях: так, кресла «КМ» устанавливались на самолёты «МиГ», кресла «КТ» — на самолёты «Ту» и т. д.

Производители

На рынке сегодня остались британская компания Martin Baker и американские McDonnell Douglas и Stencil.

В СССР и России катапультные кресла, как и другое полетное снаряжение, с 1960-х годов делает только НПП «Звезда» в посёлке Томилино, разработкой катапультных кресел занимаются конструкторские бюро в городе Киров (Авитек).

Почему катапультируемые кресла не устанавливаются на коммерческих авиалиниях

Добавьте ссылки на источники, в противном случае он может быть удалён.
Дополнительные сведения могут быть на странице обсуждения.

Данный вопрос достаточно регулярно возникает как в устном обсуждении, так и в интернет-сообществе. Катапультируемые кресла не устанавливают в пассажирских самолётах по причине бессмысленности [источник не указан 494 дня] такой установки. Это обусловлено целым рядом причин.

ликбез от дилетанта estimata

Новичку об основах в области ОБЖ (БЖД), экстремальных и чрезвычайных ситуаций, выживания, туризма. Также будет полезно рыбакам, охотникам и другим любителям природы и активного отдыха.

пятница, 13 ноября 2020 г.

Катапультное кресло К-36ДМ

К-36ДМ серии 2

Катапультное кресло К-36ДМ (катапульта - 36 серии с дефлектором, модифицированная) является модификацией кресла К-36 для высокоскоростных самолетов. Служит рабочим местом члена экипажа и средством аварийного покидания самолёта МиГ-29, Су-24, Су-27, Су-30, Су-33, Су-34, Су-35, Ту-160.

Катапультное кресло К-36ДМ обеспечивает спасение члена экипажа в широком диапазоне скоростей и высот полёта самолёта, включая взлёт, послепосадочный пробег, режим нулевой высоты и скорости, и применяется в сочетании с защитным оборудованием.

Оно является креслом четвертого поколения. Разработано в п. Томилино Московской области на НПП "Звезда".

Основы устройства катапультного кресла К-36ДМ

Катапультное кресло К-36ДМ
Катапультное кресло состоит из сиденья с установленной на нём профилированной крышкой с блоком жизнеобеспечения, комбинированного стреляющего механизма, коробки механизма, заголовника, спасательной системы с куполом, уложенным в заголовник, эксплуатационных систем, обеспечивающих удобство размещения и работы члена экипажа в кресле, аварийных систем, обеспечивающих безопасное катапультирование.

В полёте член экипажа удерживается в кресле индивидуальной подвесной системой и может фиксироваться с помощью механизмов системы фиксации, а бесступенчатое регулирование сиденья по росту обеспечивает члену экипажа удобное для работы и обзора размещение в кабине самолёта.

Принудительная фиксация при катапультировании обеспечивается системой фиксации, состоящей из механизма притягивания плеч, размещённого в коробке механизмов, механизма притяга пояса, двух ограничителей разброса рук с лопастями, двух механизмов подъёма ног, двух притягов ног с ложементами голеней и пиромеханизма с электромеханическим затвором, срабатывающим по команде системы управления катапультированием. Пиромеханизм системы фиксации заряжается пиропатроном, а затвор пиромеханизма — электропиропатроном.

Механизм ввода парашюта обеспечивает отстрел заголовника для ввода спасательного парашюта и состоит из правого и левого патронников с механическими затворами и корпуса с хвостовиком. Патронники механизма ввода парашюта заряжаются пиропатронами, дублирующими друг друга.

Катапультирование начинается при вытягивании поручней (держек) катапультирования и обеспечивается работой системы управления катапультированием и механизмов блокировки.

Кислородное обеспечение члена экипажа от бортового кислородного оборудования в полёте до аварийного запаса при катапультировании производится кислородной системой кресла, состоящей из объединённого разъема коммуникаций, блока кислородного оборудования с аварийным запасом кислорода.

ОСНОВНОЕ внешнее отличие К-36ДМ I серии от II серии - размер и форма заголовника

Последний шанс для пилота: зачем Пентагону понадобились российские катапультные кресла

Катапультное кресло современного самолета - сложнейшая система, которая должна уметь спасать пилота на любой высоте и скорости. О том, как именно это происходит и почему американские военные в 1990-е годы любой ценой хотели получить информацию о российских разработках в этой сфере, рассказывает военный летчик Дмитрий Дрозденко.

8 июня 1989 года, аэродром в местечке Ле Бурже, всего 12 километров от Парижа. Советский летчик-испытатель Анатолий Квочур поднял в воздух МиГ-29 для выполнения демонстрационной программы. Сразу после отрыва от полосы самолет закрутил «мертвую петлю», затем «колокол» с разворотом, двойную горизонтальную бочку, «квадратную петлю», вираж и начал пролет на минимально допустимой скорости. Этот режим, когда мощная реактивная машина буквально «ползет» по воздуху на запредельных углах атаки, очень эффектен, но одновременно и опасен.

И вот, в тот момент, когда многотонной машине важен каждый килограмм тяги, происходит хлопок с видимым выбросом пламени из двигателя. Самолет на мгновение замирает в воздухе и начинает валиться вправо-вниз. Из-за попадания птицы в воздухозаборник произошел помпаж правого двигателя. Отказ движка случился на критически малой скорости и высоте. До земли 92 метра, машина неуправляемо падает. В этот момент летчик-испытатель катапультируется, причем нос самолета практически «смотрит» на землю, а крен достиг 90 градусов.

Обыкновенное чудо

Судя по видеозаписи и расчетам специалистов, на высоте 16–17 м летчик был еще в кресле и падал со скоростью 25–30 м/с. Купол парашюта наполнился перед самой землей и успел снизить скорость падения до 11 м/с. Помогла взрывная волна от упавшего самолета: она отбросила летчика по касательной и «поддернула» купол парашюта. Скорость снижения все равно была в два раза больше положенной, но это дало возможность сохранить жизнь пилоту.

Конечно, Анатолий Квочур получил травмы, но, как сказали в репортаже с авиасалона: «Советский летчик отделался синяками и легким ушибом спины». Более того, на следующий день наш летчик-испытатель снова поднялся в небо, но уже на другом МиГ-29. Что это было — чудо?

Это было не чудо, а советское катапультируемое кресло К-36, которое спасло летчика в безнадежной для зарубежных машин ситуации. Тогда для них высота покидания 90 метров при практически нулевой скорости была смертельна. Даже если «убрать» показатели крена и тангажа, в которых в момент катапультирования находился самолет, зарубежные системы спасения не сохранили бы жизнь своему пилоту.

Неудивительно, что после этого публичного инцидента к нашим системам катапультирования был проявлен очень пристальный интерес. Развал СССР и последовавшие за этим «лихие» девяностые позволили американцам практически за бесценок получить наши уникальные технологии спасения, но об этом чуть позже.

Везунчик Смит

Разгонитесь на машине до 100 км/ч и высуньте руку в окно. Чувствуете? А теперь представьте не руку, а всего себя и на скорости 1300 км/ч. В 1955 году себя и свое везение испытал американский летчик-испытатель Джон Смит, он первым в мире катапультировался на сверхзвуке. При испытаниях истребителя F-100A на высоте 11 300 метров неожиданно заклинило управление. Самолет пошел в крутое пике, скорость постоянно возрастала, достигнув 1300 км/час. Когда высота снизилась до критической, Смит решил катапультироваться. Он знал, что два случая покидания самолета на сверхзвуковой скорости закончились очень плачевно, но выбора не было.

Страшный динамический удар превратил его лицо в кровавое месиво, кресло, не имевшее стабилизации, бешено кувыркалось в воздухе. Когда парашют раскрылся, кресло отцепилось, и Смит упал в воду, состояние его было ужасно. У него был отрезан кончик носа.

Отсутствовали ботинки и носки. Вся одежда была изодрана в клочья.

Картинка

Желудок настолько надулся воздухом, что находящийся без сознания пилот покачивался в воде, как поплавок. Его тут же подобрали и направили в госпиталь, где он пришел в себя лишь через 5 дней. Смиту очень повезло.

Этот случай наглядно показал, что США испытывают большие проблемы с системами спасения пилотов, и хотя со временем они значительно продвинулись в этой сфере, многие из них по-прежнему остались.

Летающее кресло

Главная задача катапультируемого кресла — отвести пилота на безопасное расстояние от терпящей бедствие машины, обеспечить достаточную высоту для открытия парашюта и гашения вертикальной скорости. При этом хрупкое человеческое тело должно быть защищено от встречного воздушного потока — вспоминаем «руку в окне» и опыт Джона Смита. Для этого специальная система за доли секунды «собирает в кучу» тело пилота. Подтягиваются ремни, ноги «подбиваются» вверх, ограничители прижимают руки к телу. Тело фиксируется в оптимальном, сгруппированном положении.

Мощный воздушный удар снимается специальным дефлектором. Перегрузка — а кресло должно за доли секунды успеть «перекинуть» пилота через киль самолета — должна нарастать равномерно, так, чтобы не травмировать человека. Этим занимается специальные реактивные двигатели.

Картинка

Кресло не должно «крутиться» в воздушном потоке. Здесь важную роль играет система аэродинамической стабилизации. Она включает в себя два стабилизирующих парашюта на раздвигающихся телескопических штангах. Система обеспечивает такое положение кресла, чтобы перегрузки, которым подвергается пилот, шли по линии «спина-грудь», они переносятся легче, а не «голова-таз», что чревато потерей сознания. Лишь после этого самого ответственного этапа катапультирования происходит ввод в поток спасательного парашюта, расфиксация летчика и отделение его от каркаса кресла.

Картинка

Все это происходит за одну секунду. Вместе с пилотом на парашюте к земле отправится только крышка сиденья, под которым расположен носимый аварийный запас (НАЗ) и аварийный запас кислорода. Сложнейшая техническая задача, ведь после катапультирования летчик должен вернуться в строй. Это важно не только с человеческой точки зрения, но и с экономической. Подготовка обычного пилота стоит до трети стоимости истребителя, а «стоимость» аса ее превышает. Как вы понимаете, создать подобную систему — сложнейшая задача.

История обмана

Картинка

Тогда же осуществлялась межправительственная программа оценки зарубежных сравнительных технологий Foreign Comparative Testing (FCT) «Россия — США», что-то вроде одностороннего «обмена опытом». Программа существует и сейчас. Ее цель – проверка высоких военных технологий союзников США для их последующего применения Пентагоном. Главные задачи: «…снижение собственных затрат на разработку, производство и эксплуатацию военной техники. Совершенствование военно-промышленной базы США…» Обратите внимание: написано именно США, не общей, союзнической армии и промышленности, а только американской.

Гешефт на двадцать миллионов

В рамках этой программы штатовские специалисты привезли в Россию самую совершенную контрольно-записывающую аппаратуру с использованием портативной компьютерной техники и по полной программе испытали наше катапультируемое кресло К-36Д с записью всех параметров. Все заявленные характеристики были подтверждены, после чего наша оборонка вместе с американскими инженерами модернизировала свое детище до уровня К-36Д-3,5А. Бюджет совместных работ составил всего 21 миллион долларов.

Вы только подумайте – двадцать один миллион. Да, мы получили деньги на модернизацию своего изделия, а американцы получили то, что реально стоит в десятки раз дороже. Одновременно с работами в рамках программы FCT фирма «McDonnell Douglas» вела масштабные и дорогие НиОКР по созданию новых ракетных двигателей для катапульт, систем их управления и пространственного ориентирования. Интересно, но эти очень затратные и многомиллионные работы завершились в 1995 году, именно тогда и закончилась программа FCT.

Картинка

В 1997 году в США провели испытания модифицированного кресла ACES-2, оборудованного инерционными стабилизаторами. Но тогда американцам так и не удалось полностью решить проблему ограничения разброса рук и ног летчика. Испытания этих катапульт на самолете F-15 выявили большой риск телесных повреждений, и стали основанием для более жестких требований к массе и росту летчика.

Фиксаторы рук и ног для американцев в итоге сделали японцы. Был определен предел относительно безопасного катапультирования — 1100 км/ч. Кстати, российское кресло К-36Д-3,5А обеспечивает спасение на скорости до 1390 км/ч. Пентагон признал уникальность разработок НПП «Звезда», а с другой — американцы назвали программу FCT очень полезной для них.

Продолжение истории

Затем был инцидент 12 июня 1999 года на Международном авиасалоне в Ле Бурже, когда во время тренировочного полета истребитель Су-30МКИ на выходе из петли задел хвостовой частью землю и загорелся. Тогда командир экипажа Вячеслав Аверьянов и штурман Владимир Шендрик, отведя самолет от зрителей, успешно катапультировались на высоте 50 метров.

Картинка

Гай Ильич Северин, комментируя это происшествие, заявил, что с помощью катапультных кресел производства «Звезды» было спасено более пятисот летчиков, среди которых только 3% не смогли вернуться в строй. «Это является наивысшим показателем в мире, поскольку кресла западных разработок обеспечивают возврат в строй около 55 60% катапультировавшихся пилотов», — подчеркнул он.

При создании катапульт между русскими и американцами имеется принципиальная разница в подходе. Наши более глубоко прорабатывают вопросы спасения, поскольку советская, а теперь и российская военная доктрина ориентирована на максимальную безопасность летчика, с тем, чтобы он мог на следующий день вступить в бой. А для американских разработчиков важен только факт безопасного покидания самолета, а всё остальное не является зоной их ответственности. Иными словами, это ровно тот случай, когда запросы бизнеса вступают в противоречие с военными интересами.

Картинка

Сейчас американцы имеют уже небольшие, но все-таки проблемы с системами жизнеобеспечения на F-22 Raptor — не работала кислорододобывающая установка. Есть проблемы с катапультным креслом на жутко дорогом F-35 Lighing II. Не знаю как, но катапульта, установленная на этом «произведении искусства» производства «Lokhid Martin», работает не очень хорошо, ведь неспроста на вес летчика снова наложены ограничения. Заложены ограничения и по высоте полета.

Надежность и доверие

Согласитесь, надежность и доверие к разработчику — наверное, самые важные качества продукции, предназначенной для спасения летчика. Если честно, то на моей памяти это единственный случай, когда сын жизнью отвечал за изделия отца. Герой России, инженер и космонавт-испытатель Владимир Гайевич Северин «летал» на отцовских катапультах, испытывал скафандры, рискуя при этом своей жизнью. Это как отец должен был верить в свои изделия, а сын доверять отцу и своим коллегам!

Картинка

Может поэтому упрямая статистика говорит, что у нас после катапультирования возвращается в строй 97% летчиков, а в ВВС США этот показатель составляет только 50%? Может поэтому они очень старались получить наши технологии спасения, но получив их, все же не смогли существенно продвинуться дальше? Может поэтому на их системы жизнеобеспечения и спасения постоянно накладываются технические ограничения, из-за чего супердорогие самолеты-невидимки не могут полноценно летать?

У нас катапульты стоят не только на боевых самолетах, но и на спортивных машинах и даже на вертолетах. По системам спасения мы лучшие в мире. Но это не повод расслабляться и кричать об этом не весь мир на весь мир. Надо спокойно и уверенно продолжать делать свое дело.

Фото: Дмитрий Дрозденко / Wings of Russia Studio / youtube / wikipedia / минобороны России / U.S. Air Force/ Staff Sgt. Bennie J. Davis III

Читайте также: