Растения и тяжелые металлы
В работе описаны загрязнение окружающей среды тяжелыми металлами, распространение и аккумуляция металлов в природной среде и их негативные воздействия на растения.
The pollution plumbum producing plant is influence on heavy metals accumulation processing of plants. Theheavymetalswillbechangedofplantsgename.
Основными источниками антропогенного поступления тяжелых металлов в окружающую среду являются металлургические предприятия, тепловые электростанции, карьеры и шахты по добыче полиметаллических руд, транспорт, химические средства защиты сельскохозяйственных культур от болезней и вредителей, сжигание нефти и различных отходов и пр. Наиболее мощные ореолы тяжелых металлов возникают вокруг предприятий черной и особенно цветной металлургии в результате атмосферных выбросов. Действие загрязняющих веществ распространяется на десятки километров от источника поступления элементов в атмосферу. По приведенным ниже данным можно судить о размерах антропогенной деятельности человека: вклад техногенного свинца составляет 94–97 %(остальное природные источники)., кадмия-84–89 %процентов, меди-56–87 %, никеля-66–75 %, ртути -58 % [1,2].
Заметное загрязнение атмосферного воздуха и почвы происходит за счет транспорта, в том числе авиационного. Большинство тяжелых металлов, содержащихся в пылегазовых выбросах промышленных предприятий, как правило, более растворимы, чем природные соединения [3].
Тяжелые металлы - это группа химических элементов с относительной атомной массой более 40. Появление в литературе термина «Тяжелые металлы» было связано с проявлением токсичности некоторых металлов и опасности их для живых организмов. Однако в эту группу вошли и некоторые микроэлементы, жизненная необходимость и широкий спектр биологического действия которых неопровержимо доказаны. Влияние микроэлементов на жизнедеятельность животных и человека активно изучается и в медицинских целях. В настоящее время выявлено, что многие заболевания, синдромы и патологические состояние вызваны дефицитом, избытком и дисбалансом микроэлементов в живом организме и имеют общее название «микроэлементы».
Фитотоксичное действие тяжелых металлов проявляется, как правило, при высоком уровне техногенного загрязнения ими почв и во многом зависит от свойсв и особенностей поведения конкретного металла. Однако в природе ионы металлов редко встречаются изолированно друг от друга. Поэтому разнообразные комбинативные сочетания и концентрации разных металлов в среде приводят к изменениям свойств отдельных элементов в результате их антогонического воздействия на живые организмы [4].
Растительная пища является основным источником поступления ТМ организм человека и животных. По данным с ней поступают 40–80 % тяжелых металлов, и только 20–40 %. — с воздухом и водой. Поэтому от уровня накопления тяжелых металлов в растениях, используемых в пищу, в значительной степени зависит здоровье населения. Химический состав растений, как известно, отражает элементный состав почв. Поэтому избыточное накопление тяжелых металлов растениями обусловлено, прежде всего, их высокими концентрациями в почвах.
Несмотря на существенную изменчивость различных растений к накоплению тяжелых металлов, биоаккумуляция элементов имеет определенную тенденцию, позволяющую упорядочить их в несколько групп: 1) Cd,Cs, Rb — элементы интенсивного поглощения; 2) Zn, Mo, Cu, Pb, Co, As –средней степени поглощения; 3) Mn, Ni, Cr –слабого поглощения; 4) Se, Fe, Ba, Te — элементы труднодоступные растениям.
Другой путь поступления тяжелых металлов в растения — некорневое поглощение из воздушных потоков. Поступление элементов в растения через листья (или фолиярное поглощение) происходит, главным образом, путем неметаболического проникновения через кутикулу. Тяжелые металлы, поглощенные листьями могут переносится в другие органы и ткани и включаться в обмен веществ.
Свинец и кадмий относятся высокотоксичным металлам. В придорожных растениях количество свинца резко повышено, оно в 10–100 раз выше по сравнению с растениями, растущими вдали от дорог. Между содержанием свинца в растениях и расстоянием дерева от дороги существует доказуемая обратная зависимость. Свинец в достаточно высокой концентрации тормозит прорастание семян растений, замедляет рост корней в длину, а также образование корневых волосков. Листья отравленных свинцом растений становятся хлоротичными в межжилковых зонах. Особенно сильно поражаются молодые листья. Высокое содержание свинца в растениях негативно влияет на рост и развитие:
- снижается активность фотосистемы І и ІІ, причем фотосистема-ІІ более чувствительная к действию этого фитотоксиканта.
- оказывает ингибирующее влияние на реакцию Хилла, т. е. на способность изолированных хлоропластов на свету выделять кислород.
- в хлорпластах растений наблюдается подавление образования АТФ;
- вызывает потерю тургора клетками растений;
- прекращается деление клеток корня;
- подавляется образования корнеплодов, урожайность культурных растений;
- снижается количество каротина и аскорбиновой кислоты;
Некоторые травянистые растения, чувствительны по отношению к свинцу: ячмень, овес, пшеница, картофель. Среди дикорастущих следует отметить смолевку, которая от высокого содержания свинца приобретает карликовую форму, листья и стебли становятся темно-красными, а цветки мелкими и невзрачными [5].
Главным загрязнителем окружающей среды кадмием является цветная металлургия и обработка цветных металлов. Кроме того кадмий поступает в атмосферу при сгорании мусора и отходов. Большое количество кадмия обнаруживается в растения, произрастающих поблизости от автодорог. Так, например в хвое ели обыкновенной, растущей поблизости автодорог количество кадмия возрастает в 11–17 раз. Симптомы избыточного поступления в растения кадмия проявляются в постепенном изменении окраски кончиков листьев и черешков до красновато-бурой и пурпурной. При этом листья скручиваются и опадают. Кадмий замедляет темпы роста растений. При внесении его в количестве 20 мг на 1 кг почвы урожай растения снижался на 50 %. По силе своего действия кадмий превосходит многие другие тяжелые металлы. Гибель растений отмечается при концентрации кадмия в почве в количестве 30 мг/кг и выше. Большое количество кадмия поступает в почву при разработке и добыче цинковых руд. На таких почвах нельзя выращивать растения, ибо этот токсикант аккумулируется в тканях растений и может затем поступать в организм человека. Накопления кадмия происходит главным организм человека. Одна из причин торможения роста растений, произрастающих в присутствии кадмия — резкое ослабление интенсивности фотосинтеза. Присутствие в 1 кг листьев 96 мг этого элемента снижает интенсивность фотосинтеза на 50 % [6].
Поступление тяжелых металлов в растения может происходить непосредственно из воздуха с оседающей на листья и хвою пылью и транслокации из почвы: доля тяжелых металлов в составе пыли на поверхности листьев вблизи источника составляет в среднем 30 проц. от общего содержания в них тяжелых металлов. В понижениях и с наветренной стороны это доля может доходить до 60 %. По мере удаления от источника роль атмосферного загрязнения заметно уменьшается.
Главным загрязнителем атмосферы кадмием является цветная металлургия и обработка цветных металлов. Кроме того, кадмий поступает в окружающую среду при сгорании некоторых видов топлива и особенно при сжигании мусора и отходов. Из атмосферы кадмий поступает в почву. Загрязнение ее этим элементом носит устойчивый характер, поскольку из почвы он вымывается медленно. Большое количество кадмия обнаруживается в растения, произрастающих поблизости от автомобильных дорог. Так, например в хвое ели обыкновенной, растущей поблизости от автострад, количество кадмия возрастает в 11–17 раз. Симптомы избыточного поступления в растения кадмия проявляются в постепенном изменении окраски кончиков листьев и черешков до красновато-бурой и пурпурной. При этом листья скручиваются и становятся хлоратичными и опадают. По силе своего действия на растения кадмий превосходит многие другие тяжелые металлы. Гибель растений отмечается при концентрации этого элемента в почве в количестве 30 мг/кг. Вблизи предприятий, выбрасывающих в атмосферу кадмий наблюдается резкое снижение урожайности и даже гибель культурных растений. Накопление кадмия происходит главным образом в корнях растений (риса, пшеницы), однако часть его достигает органов. Одна из причин торможения роста растений, произрастающих в присутствии кадмия, резкое ослабление интенсивности фотосинтеза. Присутствие в 1 кг листьев 96 мг этого элемента снижает интенсивность фотосинтеза на 50 %. Существует прямая зависимость между содержанием кадмия в почве и поступлением его в растения.
Токсическое влияние оказывают на растения и другие металлы, загрязняющие природную среду, например бериллий, марганец, медь, хром, ванадий, цинк и др.
1. Кузнецов А. В. Контроль техногенного загрязнения почв и растений // Агрохимический вестник. –1997г. -№ 5, -С. 7–9
2. Минеев В. Г. Проблема тяжелых металлов в современном земледелии // Тяжелые металлы и радионуклиды. –М., 1994г. –С. 42–48
3. Бутовский Р. О. Тяжелые металлы как техногенные химические загрязнители и их токсичность для почвенных беспозвоночных животных //Агрохимия.-2005 г. -№ 4, -С 73–91.
4. Алексеев Ю. В. Тяжелые металлы в почвах и растениях. –Ленинград, 1987 г. –С. 141–144.
5. Зырин Н. Г. Тяжелые металлы в почвах и растениях в районе медеплавильного завода. –м., 1986г. –С. 81
6. Артомонов В. И. Растения и чистота природной среды. –М., 1986 г. –С. 27–31.
Основные термины (генерируются автоматически): металл, растение, кадмий, окружающая среда, почва, лист, организм человека, цветная металлургия, элемент, главный образ.
Накопление тяжелых металлов в растениях в зависимости от уровня загрязнения почв
В статье рассматриваются проблемы загрязнения окружающей среды от деятельности металлургической промышленности. Приведены основные загрязняющие вещества металлургического производства. Даны содержания тяжелых металлов в почве и растениях.
In the article it is considered a problem of environmental pollutioncaused by mining industry. The main polluters of thi mining and metallurgical complex are given by stages of regeneration cycle. Recommendations on refining the ecologicalcondition
Одним из основных принципов концепции устойчивого развития является: право на развитие должно быть реализовано таким образом, чтобы удовлетворять потребности в развитии сохранении окружающей среды нынешнего и будущих поколений. Так как особенность многих видов природных ресурсов проявляется в том, что их использование ограничено во времени. Уровень их потребления сегодня должен жестко предопределять возможность удовлетворения потребности в них в будущем. Именно с этой проблемой природопользования связан вопрос рационального использования природных ресурсов, так как предприятия перерабатывающей промышленности в основной своей части являются эколого-опасными. Поэтому решение данных проблем предопределяет необходимость поиска оптимального, рационального обеспечения текущих и будущих потребностей и выработки обоснованной политики недропользования и охраны окружающей среды [1]. В настоящее время воздействие человека на окружающую среду по своим масштабам превосходит способности природы к самовосстанавлению. Опасны мигрирующие отходы не полностью протекающих технологических процессов: газовые выбросы, сточные воды промышленных предприятий, содержащие токсичные соединения и попадающие в почву и водоемы [2].
Наиболее крупные загрязнители окружающей среды в Южно-Казахстанской области сосредоточены в городе Шымкент. Среди них АО ПК «Южполиметалл» расположен в территории города и оказывает существенное влияние на загрязнение окружающей среды, а неблагоприятная экологическая обстановка в районе свинцового производства складывалась годами. АО ПК “Южполиметалл” оказывает существенное влияние на накопление тяжелых металлов в почве и растениях.
Мы изучили закономерности распространения и аккумуляции тяжелых металлов растениями в зависимости от содержания их в почве и определили содержание тяжелых металлов в почве и растениях распространенных участках территории города
Для исследования использованы были следующие методы: атомно-адсорбционным метод определения содержания тяжелых металлов в почве и растениях (свинец, кадмйя, цинк и медь).
Для оценки пространственного распределения тяжелых металлов в г.Шымкент были выбраны 4 пункта исследования.
Пункт № 1 расположен в 200 м от АО ПК “Южполиметалл”. Пункт № 2 расположен на расстоянии 3 км от свинцового производства, в центре города. Пункт № 3 расположен на расстоянии 5 км в северо-восточном направлении города. Пункт № 4 — контрольный пункт, расположенный в 80 км от города. Из выше перечисленных пунктов отбирались пробы почвы и растения, как подорожник ланцетолистный (Plantago lanceolata), мятлик луговой (Paa protensis) и ячмень заячий (Hordeum leporinum), клен ясенелистный (acer negundo), тополь черный (Populus nigra), карагач (Ulmus pumila), ива Вавилонская (Salix babilonica), акация белая (Robinia pseudoacacia)
Данные о содержании тяжелых металлов в почве представлен в рисунке 1.
Как видно из таблицы, содержание свинца в почве показало, что максимальная концентрация данного элемента характерна для района металлургического производства. Содержание свинца в пункте № 1 составило 946,11 ± 5,04 мг/кг, что превышает ПДК в 27 раз, а контрольный показатель в 45 раз. Это объясняется тем, что 30–35 % промышленных выбросов оседают на территории производства. Высокотоксичный свинец является основным выбросом свинцового производства, так как происходит накопление его в почве. В других пунктах исследования по мере удаления от свинцового производства наблюдается снижение содержания свинца в почве.
Содержание цинка в почве составляет в пункте № 1 171,30±4,64 мг/кг, то-есть по сравнению с контрольным пунктом в 14 раз превышает контрольный показатель, а ПДК в 2 раза. Высокое содержание цинка так-же отмечаны в пункте № 2, оно составляет 20,65±2,14 мг/кг, что превышает контрольный показатель в 10 раз, но не превышает ПДК. В других пунктах содержание цинка не превышает показатель контрольного пункта. Наиболее высокие содержания меди и кадмия так-же были установлены в производственном пункте. Во всех других пунктах содержание меди не превышает ПДК, но по сравнению с контрольным пунктом превышает контрольный показатель. Содержание кадмия во всех пунктах превышает ПДК.
Высокие содержания выше указанных тяжелых металлов установлены в районе АО ПК “Южполиметалл” (пункт № 1). В других пунктах по мере удаления от производства содержание тяжелых металлов в почве снижается.
Рис. 1. Содержание тяжелых металлов в почве (мг/кг)
Почва является важнейшим объектом окружающей среды. В отличие от других объектов окружающей среды (воздух, вода), где протекают процессы самоочищения, почва обладает этим свойствам в незначительной мере. Более того для некоторых веществ, в частности для тяжелых металлов почва является едким акцептором.
Тяжелые металлы прочно сорбируются и взаимодейтвуют с почвенным гумусом, образуя труднорастворимые соединения. Таким образом идет их накопление в почве. Наряду с этим в почве под воздействием различных факторов происходит постоянная миграция поподающих в нее веществ и перенос их на большие расстояния [3].Тяжелые металлы попадающие в почву с выбросами предприятий, прочно связываются уже в верхнем слое. Максимальное содержание металлов в почвах наблюдается на расстояниях 1–3 км от источников загрязнения [4].
Данные о содержании тяжелых металлов в растениях представлены на рисунке 2,3.
Как видно из рисунка, акация белая, тополь черный и мятлик луговой аккумулирует свинец в высокой степени. Его содержание в пункте № 1 составило в акаций белой 292,9 мг/кг, что превышает ПДК 58 раз, а контрольный показатель в 15 раз. Содерание свинца в тополе 91,42 мг/кг (18 ПДК), контрольный показатель превышает в 5 раз, в мятлике луговой — 67,14 мг/кг, что превышает контрольный показатель в 27 раза, а ПДК — в 13 раз. Содержание свинца в ячмене тоже высокое, оно составило 42,14±2,32 мг/кг, что превышает контрольный показатель в 21 раз, а ПДК — в 8 раз. У подорожника ланцетолистного содержание свинца составляет 31,07±2,65 мг/кг, что превышает контрольный показатель в 15 раз, а ПДК — в 6 раз. Анализ результатов определения содержания цинка в изучаемых видов растениий также показал различную аккумулятивную способность.
Рис. 2. Содержание тяжелых металлов в растениях (Пункт № 1- район ЗАО «Южполиметалл»), (мг/кг)
Рис. 3 Содержание тяжелых металлов (Пункт № 4 — контрольный пункт), (мг/кг) ПДК: Свинец–5мг/кг; цинк–30мг/кг; кадмий–0,3мг/кг.
Максимальное содержание цинка в растениях так-же было отмечано в пункте № 1, у мятлика лугового оно составляет 48,57±3,46 мг/кг, что превышает ПДК 1,6 раза, а контрольный показатель в 12 раз. У подорожника ланцетолистного и ячменя заячего содержание цинка не превышает ПДК, но намного выше по сравнению с контрольным пунктом. Содержание кадмия во всех растениях значительно выше ПДК.
Результаты проведенных исследований показали, что с увеличением поступления в почву тяжелых металлов, соответственно повышается уровень поглощения тяжелых металлов растениями.Таким образом, результаты исследований свидетельствуют о загрязнении почв и растений тяжелыми металлами металлургического производства.
1. Окружающая среда и устойчивое развитие в Казахстане. Обзор ПРООН. Алматы, 2004г. 210 с.
2. Гринь А. В., Ли С. К. Поступление тяжелых металлов в растения в зависимости от их содержания по миграции // Тезисы докладов II — Всемирного совещания по миграции загрязненных веществ в почвах и определенных сферах. Ленинград, 1980г. — С. 46–48.
3. Микшевич Н. В., Ковальчук Л. А. Тяжелые металлы в системе “почва — растения — животные” в зоне действия медеплавильного предприятия // Материалы 2 — Всесоюзной Международной Конференции по ТМ в окружающей среде и охраны природы. 1988г. — С. 127–129.
4. Садовников Л. К. Влияние промышленных предприятий на окружающую среду// Тезисы доклодов. Мониторинг содержания ТМ в почвах естественных и техногенных ландшафтов. г. Пущино, 1984г. –С.163
Основные термины (генерируются автоматически): контрольный показатель, окружающая среда, почва, контрольный пункт, металл, пункт, раз, свинцовое производство, содержание свинца, содержание цинка.
Содержание тяжелых металлов в лекарственных растениях
Введение
В современной медицине широко используются синтетические лекарственные средства. Их выпуск год от года возрастает. Но на протяжении всей истории человечества лекарственные растения применяются для лечения различных заболеваний. Используются они и в наши дни. [1, 2]. Опыт практической медицины показал, что можно разумно сочетать современные синтетические препараты и давно известные народные средства на основе лекарственных растений [3]. Во флоре Челябинской области насчитывается около 150 видов лекарственных растений [4].
Бурное развитие промышленности и широкое использование автотранспорта привело к значительному возрастанию уровня тяжелых металлов в окружающей среде. Тяжелые металлы обладают способностью к миграции и накоплению в пищевых цепях. В данном контексте необходимо учитывать содержание тяжелых металлов в лекарственных растениях.
Цель настоящей работы — собрать информацию о лекарственных растениях и определить содержание тяжелых металлов в выбранных растениях.
В рамках поставленной цели были решены следующие задачи: (1) определить значение лекарственных растений в жизни человека; (2) проанализировать многообразие лекарственных растений Челябинской области; (3) осуществить сбор лекарственных растений, подготовить пробы, провести химический анализ на тяжелые металлы.
Объект исследования — лекарственные растения Челябинской области.
Предмет исследования — видовой состав и содержание тяжелых металлов в лекарственных растениях. В работе были использованы такие методы как анализ литературы, полевые исследования, рентгенофлуоресцентный анализ. Гипотеза состояла в следующем: в лекарственных растениях, произрастающих у автомобильных дорог, содержатся больше тяжелых металлов, чем в растущих на экологически чистых территориях.
Экспериментальная часть
Сбор материала проводился на территории Центрального района города Челябинска на газонах вдоль автодорог и в глубине соснового леса (условно-чистая территория). Растения высушивались до воздушно-сухого состояния. Затем сухие образцы измельчали в ступке, а затем прессовали в форме таблетки диаметром ~4 см (Рис. 1). Образцы были проанализированы в лаборатории Центра нанотехнологий Южно-Уральского государственного университета с использованием рентгенофлуориметра Rigaku SuperMini200. При использовании метода РФА с образцом не происходит никаких химических изменений. Использовался полуколичественный метод анализа, содержание металлов представлено в виде массовых процентов оксидов элементов.
Результаты и их обсуждение
Был проведен элементный состав нескольких лекарственных растений — подорожника, клевера и тысячелистника, собранных в черте города Челябинске и в глубине соснового леса (Табл. 1).
Исследования показали, что растения, собранные в городе, содержат большее количество тяжелых металлов (марганца, железа, цинка, меди и хрома). Гипотеза подтвердилась — в лекарственных растениях, произрастающих у автомобильных дорог, содержатся загрязняющие потенциально токсичные металлы. Поэтому в таких местах нельзя заготавливать лекарственные растения.
Рис. 1. Таблетирование образцов
Результаты рентгенофлуоресцентного анализа, % масс.
Влияние тяжелых металлов на урожайность сельскохозяйственных культур
07.06.2019
Всякий яд – лекарство, всякое лекарство – яд; всё зависит от дозы.
(Парацельс).
Хозяйственная деятельность человека зачастую способствует загрязнению окружающей среды. Особую опасность представляет загрязнение ее тяжелыми металлами, многие из которых являются чрезвычайно токсичными даже в минимальных количествах. Тяжелые металлы принципиально отличаются от органических веществ тем, что не подвергаются процессам разложения, а способны лишь перераспределяться между природными средами. Они способны концентрироваться в живых организмах, вызывая при этом различные патологии.
К тяжелым металлам относятся более 40 металлов с атомной массой свыше 50 атомных единиц. В соответствии с классификацией Н. Реймерса, тяжелыми металлами следует называть металлы с плотность более 8 г/см3: Cu, Zn, Ni, Pb, Cd, Co, Sb, Sn, Bi, Hg [Голубев И.Р., Новиков Ю.В. Окружающая среда и ее охрана/М.: «Просвещение». – 1985. – 192 с.]. Некоторые из них относятся к микроэлементам, т.е. химическим элементам, которые крайне важны для роста и развития растений и животных (Cu, Zn, Co). В растениях микроэлементы либо входят в состав ферментов, либо активируют их работу и необходимы в ничтожно малых количествах.
Увеличение или уменьшение концентрации микроэлементов в растворе сверх оптимальной приводит к угнетению или даже гибели организма. Отрицательное действие неоптимальных доз микроэлементов связано с нарушением деятельности ферментативного аппарата клеток, и, следовательно, обмена веществ в растениях.
Концентрация всех необходимых для жизни элементов в живом организме находится под строгим контролем комплекса физиологических процессов, называемого гомеостазом. Процесс поступления и выведения токсичных элементов контролируется организмом, при этом буферная емкость защитных систем организма ограничена.
Некоторые тяжелые металлы (As, Cd, Hg, Pb) не оказывают существенного влияния на рост растений, поскольку им не присуща какая-либо известная физиологическая функция в жизненном цикле растений, но такие металлы, как Cu, Fe, Mn, Mo, Ni, Zn являются жизненно важными элементами для растений. Избыток этих элементов может привести к существенному отравлению растения. Так, например, 1,5-2,5 кратное повышение подвижных форм тяжелых металлов (Cu, Zn, Pb, Cd) в почве вызывает снижение количества и качества продукции сельскохозяйственных культур [Потапов М.А. Влияние тяжелых металлов на урожайность и качество сельскохозяйственной продукции в условиях лесных почв Чувашской Республики: дисс. На соискание научной степени канд. сельскохозяйственных наук: спец. 06.01.04 «Агрохимия»/Чебоксары. – 2005. – 155 с.]. Поглощение тяжелых металлов растениями и последующее накопление вдоль пищевой цепи представляет собой потенциальную угрозу для здоровья человека и животных.
Одним из основных путей поступления тяжелых металлов в растение является поглощение корнями растений различных химических соединений этих металлов (солей, гидроксидов, комплексов и т. п.) из почвы [Gaur N., Flora G., Yadav M., Tiwari A. A review with recent advancement on bioremediationbased abolition of heavy metals. Environ. Sci. Process. Impacts. 2014; 16:180-193/doi:10/109/C3EM00491K].
В 2006 году выборочно были исследованы на содержание промышленных токсикантов грунты 18 городов Украины. Высокие среднегодовые концентрации тяжелых металлов (свинца, кадмия, меди, цинка) в пределах 1,1-11,2 ПДК зафиксированы в грунтах городов Днепропетровск, Ялта, Константиновка и Мариуполь Донецкой области, Вишневое и Фастов Киевской области [Національна доповідь про стан техногенної та природної безпеки в Україні у 2006 році. – К.: ДП Агентство «Чорнобильінтерінформ». – 2007. – 236 с.].
Специфической особенностью загрязнения почвы тяжелыми металлами является очень низкая скорость самоочищения грунта. Что касается свинца, то его избыточное содержание в почве приводит к уменьшению количества и разнообразия почвенных микробиоценозов. В связи с этим возникает серьезная угроза массовой деградации украинских черноземов, сосредоточенных в областях с развитой промышленностью.
В Украине кроме черноземов имеются почвы других типов (серые лесные, дерново-подзолистые, песчаные и т. д.), в которых очищение от загрязнения тяжелыми металлами происходит еще медленнее, а кумуляция их, в связи с этим – быстрее. Поэтому даже небольшие количества тяжелых металлов в почвах могут привести к опасному загрязнению сельскохозяйственной продукции.
При попадании из почвы в растения через корневую систему тяжелые металлы могут перемещаться активно (метаболическим путем) или пассивно. В первом случае поглощение и перемещение ионов металлов осуществляется по системе, состоящей из протопластов клеток, связанных плазмодесмами. При пассивном транспорте ионы, достигнув поверхности корня, попадают в свободное пространство корня и далее с транспирационным током передвигаются по растению. С активным транспортом по растению передвигается часть металлов, которые выполняют некоторые биологические функции (медь, цинк, кобальт и др.), а также металлы, химически подобные необходимым элементам (кадмий является химическим аналогом цинка). Однако большая часть металлов, особенно те, которые не являются необходимыми для растений (свинец), перемещаются посредством диффузии. Вступая в контакт с клеточными стенками и рядом минеральных и органических соединений, содержащихся в клетках, металлы осаждаются и теряют биологическую активность. В то же время при загрязнении почвы большим количеством металлов некоторая их часть способна миновать защитные системы растения и оказать на него токсическое воздействие.
Результатом этого возможно проявление некоторых визуальных признаков токсичности. Основные признаки угнетения растений под влиянием токсикантов неспецифичны и проявляются в основном в снижении всхожести семян, замедленном росте, ненормальном развитии корневых систем, хлорозе, увядании, гибели растений. Однако в сельскохозяйственном производстве следует учитывать, что визуальные признаки токсичности начинают проявляться, когда концентрации токсичных элементов значительно превышают санитарно-гигиенические нормативы, установленные для продукции растениеводства. При этом содержание элементов в почве, при котором появляются признаки фитотоксичности, также значительно превышают ПДК.
Так, признаки ртутного отравления проявляются при концентрации элемента в почве 25-50 мг/кг (ПДК 2,1 мг/кг), кадмиевого - при 25-100 мг/кг (ОДК 0,5-2,0), свинцового - 250-2000 мг/кг (ОДК 32-130 мг/кг), мышьякового - при 25-50 мг/кг (ОДК 2-10 мг/кг). Поэтому визуальная диагностика загрязненности почвы и растений металлами не имеет смысла.
Все растительные (и животные) организмы нуждаются в постоянном пополнении микроэлементами. Однако последние должны вводится в живой организм в биологически активной форме, способной легко транспортироваться и усваиваться. В природе растения получают эти элементы в виде растворимых солей, присутствующих в почве. Однако это малоэффективно и значительно лучший результат можно достичь при использовании биологически активных комплексонов. Примером таких комплексонов может быть ЭДТА (этилендиаминтетрауксусная кислота) [Жаворонков Н.М. Комплексоны в решении Продовольственной программы СССР//ЖВХО имени Д.И. Менделеева – 1984. – Т.29. – Вып.3. – С.261-265.]. Однако, применение ЭДТА сопряжено с определенными рисками. Этот комплексон может сохраняться в почве без изменения в течение многих лет, продолжая поставлять в растения из почвы различные металлы (в том числе и тяжелые) образуя с ними хорошо растворимые комплексы. Тяжелые металлы, находящиеся в грунте в виде солей, обычно слабо усваиваются растениями. Образование же комплексов ЭДТА с тяжелыми металлами приводит к более интенсивному поглощению их растениями, что бывает крайне нежелательно.
Таким образом, применение ЭДТА (и подобных ему комплексонов) требует большой осторожности. Более эффективными могли бы быть комплексоны, которые подвергаются в почве биодеструкции и не накапливаются со временем. Это позволило бы исключить бесконтрольное извлечение из почвы тяжелых металлов растениями.
Читайте также:
- Краска для лазерной гравировки по металлу
- Металлические материалы способные сопротивляться разрушению в агрессивных средах называются
- Металлический скрежет при отжиме стиральной машины
- Соединения щелочноземельных металлов 9 класс презентация
- При взаимодействии каких металлов с соляной кислотой водород не образуется