Методы определения физических свойств металлов
Цель работы: изучить физические свойства металлов, методы их определения.
Ход работы:
1.Ознакомьтесь с теоретическими положениями.
2.Выполните задание преподавателя.
3.Составьте отчет в соответствии с заданием.
Теоретическая часть.
К физическим свойствам относятся: плотность, плавление (температура плавления), теплопроводность, тепловое расширение.
Плотность — количество вещества, содержащееся в единице объема. Это одна из важнейших характеристик металлов и сплавов. По плотности металлы делятся на следующие группы: легкие (плотность не более 5 г/см 3 ) – магний, алюминий, титан и др; тяжелые – (плотность от 5 до 10 г/см 3 ) – железо, никель, медь, цинк, олово и др. (это наиболее обширная группа); очень тяжелые (плотность более 10 г/см 3) – молибден, вольфрам, золото, свинец и др. В таблице 1 приведены значения плотности металлов.
Таблица 1. Плотность металла
Металл | Плотность г/см 3 | Металл | Плотность г/см 3 |
Магний | 1,74 | Железо | 7,87 |
Алюминий | 2,70 | Медь | 8,94 |
Титан | 4,50 | Серебро | 10,50 |
Цинк | 7,14 | Свинец | 11,34 |
Олово | 7,29 | Золото | 19,32 |
Температура плавления — это температура, при которой металл переходит из кристаллического (твердого) состояния в жидкое с поглощением теплоты.
Температура плавления металлов лежат в диапазоне от − 39°C (ртуть) до 3410°C (вольфрам). Температура плавления большинства металлов (за исключением щелочных) высока, однако некоторые «нормальные» металлы, например олово и свинец, можно расплавить на обычной электрической или газовой плите.
В зависимости от температуры плавления металл подразделяют на следующие группы:
легкоплавкие (температура плавления не превышает 600°С) – цинк, олово, свинец, висмут и др.;
среднеплавкие (от 600°С до 1600°С) – к ним относятся почти половина металлов, в том числе магний, алюминий, железо, никель, медь, золото;
тугоплавкие (более 1600°С) – вольфрам, молибден, титан, хром и др.
При введении в металл добавок температура плавления, как правило, понижается.
Таблица 2. Температура плавления и кипения металлов
Металл
Температура, °С
Теплопроводность – способность металла с той или иной скоростью проводить теплоту при нагревании.
Таблица 3. Коэффициент теплопроводности металлов при 20°С
Металл | Коэффициент теплопроводности, кВт/м ∙ °С | Металл | Коэффициент теплопроводности, кВт/м ∙ °С |
Серебро | 0,410 | Цинк | 0,110 |
Медь | 0,386 | Олово | 0,065 |
Золото | 0,294 | Железо | 0,067 |
Алюминий | 0,210 | Свинец | 0,035 |
Магний | 0,144 | Титан | 0,016 |
Электропроводность — способность металла проводить электрический ток.
Тепловое расширение — способность металла увеличивать свой объем при нагревании.
Гладкая поверхность металлов отражает большой процент света – это явление называется металлическим блеском. Однако в порошкообразном состоянии большинство металлов теряют свой блеск; алюминий и магний, тем не менее, сохраняют свой блеск и в порошке. Наиболее хорошо отражают свет алюминий, серебро и палладий – из этих металлов изготовляют зеркала. Для изготовления зеркал иногда применяется и родий, несмотря на его исключительно высокую цену: благодаря значительно большей, чем у серебра или даже палладия, твёрдости и химической стойкости, родиевый слой может быть значительно тоньше, чем серебряный.
Отражательная способность – это способность металла отражать световые волны определенной длины, которая воспринимает человеческим глазом как цвет (таблица 4). Цвета металла указаны в таблице 5.
Таблица 4. Соответствие между цветом и длиной волны
Цвет | Длина волны, нм | Цвет | Длина волны, нм |
Фиолетовый | 460 | Желтый | 580 |
Синий | 470 | Оранжевый | 600 |
Голубой | 480 | Красный | 640 |
Зеленый | 520 | Пурпурный | 700 |
Таблица 5. Цвета металлов
Металл | Цвет | Металл | Цвет |
Магний | Бело-серый | Цинк | Голубовато-белый |
Алюминий | Серовато-белый | Серебро | Белый |
Титан | Серовато-белый | Олово | Серовато-белый |
Железо | Голубовато-белый | Золото | Желтый |
Медь | Красновато-розоватый | Свинец | Серовато-белый |
Методы исследований в металловедении и материаловедении.
Основными методами исследования в металловедении и материаловедении являются: излом, макроструктура, микроструктура, электронная микроскопия, рентгеновские методы исследования.
Рассмотрим их особенности более подробно.
1. Излом - самый простой и доступный способ оценки внутреннего строения металлов. Метод оценки изломов, несмотря на свою кажущуюся грубость оценки качества материала, применяется довольно широко в различных отраслях производства и научных исследований. Оценка излома во многих случаях может характеризовать качество материала.
Излом может быть кристаллическим или аморфным. Аморфный излом характерен для материалов, не имеющего кристаллического строения, таких как стекло, канифоль, стекловидные шлаки.
Металлические сплавы, в том числе сталь, чугун, алюминиевые, магниевые сплавы, цинк и его сплавы дают зернистый, кристаллический излом.
Каждая грань кристаллического излома является плоскостью скалывания отдельного зерна. Поэтому излом показывает нам размеры зерна металла. Изучая излом стали, можно видеть, что размер зерна может колебаться в очень широких пределах: от нескольких сантиметров в литой, медленно остывшей, стали до тысячных долей миллиметра в правильно откованной и закаленной стали. В зависимости от размера зерна, излом может быть крупнокристаллический и мелкокристаллический. Обычно мелкокристаллический излом соответствует более высокому качеству металлического сплава.
В случае если разрушение исследуемого образца проходит с предшествующей пластической деформацией, зерна в плоскости излома деформируются, и излом уже не отражает внутреннего кристаллического строения металла; в этом случае излом называется волокнистым. Часто в одном образце в зависимости от уровня его пластичности, в изломе могут быть волокнистые и кристаллические участки. Часто по соотношению площади излома, занятого и кристаллическими участками при данных условиях испытания оценивают качество металла.
Хрупкий кристаллический излом может получаться при разрушении по границам зерен или по плоскостям скольжения, пересекающим зерна. В первом случае излом называется межкристаллитным, во втором транскристаллитным. Иногда, особенно при очень мелком зерне, трудно определить природу излома. В этом случае излом изучают с помощью лупы или бинокулярного микроскопа.
В последнее время развивается отрасль металловедения по фрактографическому изучению изломов на металлографических и электронных микроскопах. При этом находят новые достоинства старого метода исследований в металловедении – исследований излома, применяя к таким исследованиям понятия фрактальных размерностей.
2. Макроструктура – является следующим методом исследования металлов. Макроструктурное исследование заключается в изучении плоскости сечения изделия или образца в продольном, поперечном или любых иных направлениях после травления, без применения увеличительных приборов или при помощи лупы. Достоинством макроструктурного исследования является то обстоятельство, что с помощью этого метода можно изучить структуру непосредственно целой отливки или слитка, поковки, штамповки и т.д. С помощью этого метода исследования можно обнаружить внутренние пороки металла: пузыри, пустоты, трещины, шлаковые включения, исследовать кристаллическое строение отливки, изучать неоднородность кристаллизации слитка и его химическую неоднородность (ликвацию).
С помощью серных отпечатков макрошлифов на фотобумаге по Бауману определяется неравномерность распределения серы по сечению слитков. Большое значение этот метод исследования имеет при исследовании кованых или штампованных заготовок для определения правильности направления волокон в металле.
3. Микроструктура – один из основных методов в металловедении - это исследование микроструктуры металла на металлографических и электронных микроскопах.
Этот метод позволяет изучать микроструктуру металлических объектов с большими увеличениями: от 50 до 2000 раз на оптическом металлографическом микроскопе и от 2 до 200 тыс. раз на электронном микроскопе. Исследование микроструктуры производится на полированных шлифах. На нетравленых шлифах изучается наличие неметаллических включений, таких как оксиды, сульфиды, мелкие шлаковые включения и другие включения, резко отличающиеся от природы основного металла.
Микроструктура металлов и сплавов изучается на травленых шлифах. Травление обычно производится слабыми кислотами, щелочами или другими растворами, в зависимости от природы металла шлифа. Действие травления заключается в том, что он по-разному растворяет различные структурные составляющие, окрашивая их в разные тона или цвета. Границы зерен, отличающиеся от основного раствора имеют травимость обычно отличающуюся от основы и выделяется на шлифе в виде темных или светлых линий.
Видимые под микроскопом полиэдры зерен представляют собой сечения зерен поверхностью шлифа. Так как это сечение является случайным и может проходить на разных расстояниях от центра каждого отдельного зерна, то различие в размерах полиэдров не соответствует действительным различиям в размерах зерен. Наиболее близкой величиной к действительному размеру зерна являются наиболее крупные зерна.
При травлении образца, состоящего из однородных кристаллических зерен, например чистого металла, однородного твердого раствора и др. наблюдается часто различно протравленные поверхности разных зерен.
Это явление объясняется тем, что на поверхности шлифа выходят зерна, имеющие различные кристаллографическую ориентировку, вследствие чего степень воздействия кислоты на эти зерна оказываются разной. Одни зерна выглядят блестящими, другие сильно протравливаются, темнеют. Это потемнение связано с образованием различных фигур травления, по-разному отражающих световые лучи. В случае сплавов, отдельные структурные составляющие образуют микрорельеф на поверхности шлифа, имеющий участки с различным наклоном отдельных поверхностей.
Нормально расположенные участки отражают наибольшее количество света и оказываются наиболее светлыми. Другие участки – более темные. Часто контраст в изображении зернистой структуры связан не со структурой поверхности зерен, а с рельефом у границ зерен. Кроме того, различные оттенки структурных составляющих могут являться результатом образования пленок, образованных при взаимодействии травителя со структурными составляющими.
С помощью металлографического исследования можно осуществлять качественное выявление структурных составляющих сплавов и количественное изучение микроструктур металлов и сплавов, во-первых, путем сравнения с известными изученными микросоставляющими структур и, во-вторых, специальными методами количественной металлографии.
Величина зерна определяется:
Методом визуальной оценки, состоящей в том, что рассматриваемая микроструктура, приближенно оценивается баллами стандартных шкал по ГОСТ 5639-68, ГОСТ 5640-68. По соответствующим таблицам, для каждого балла определяется площадь одного зерна и количество зерен на 1 мм 2 и в 1 мм 3 .
Методом подсчета количества зерен на единице поверхности шлифа по соответствующим формулам. Если – площадь, на которой подсчитывается количество зерен n, а М – увеличение микроскопа, то средняя величина зерна в сечении поверхности шлифа
Определение фазового состава.
Фазовый состав сплава чаще оценивают на глаз или путем сравнения структуры со стандартными шкалами.
Приближенный метод количественного определения фазового состава может быть проведен методом секущей с подсчетом протяженности отрезков, занятых разными структурными составляющими. Соотношение этих отрезков соответствует объемному содержанию отдельных составляющих.
Точечный метод А.А. Глаголева. Этот метод осуществляется путем оценки количества точек (точек пересечения окулярной сетки микроскопа), попадающих на поверхности каждой структурной составляющей. Кроме того, методом количественной металлографии производят: определение величины поверхности раздела фаз и зерен; определение числа частиц в объеме; определение ориентации зерен в поликристаллических образцах.
На основании изучения изменения микроструктуры сплавов под действием различных технологических параметров обработки исследуется механизм протекающих превращений в структуре сплавов.
4. Электронная микроскопия. Большое значение в металлографических исследованиях находит в последнее время электронный микроскоп. Несомненно, ему принадлежит большое будущее. Если разрешающая способность оптического микроскопа достигает значений 0,00015 мм = 1500 А, то разрешающая способность электронных микроскопов достигает 5-10 А, т.е. в несколько сот раз больше, чем у оптического.
На электронном микроскопе осуществляют исследование тонких пленок (реплик), снятых с поверхности шлифа или непосредственное изучение тонких металлических пленок, полученных утонением массивного образца.
В наибольшей степени нуждаются в применении электронной микроскопии исследования процессов, связанные с выделением избыточных фаз, например, распад пересыщенных твердых растворов при термическом или деформационном старении.
5. Рентгеновские методы исследования. Одним из наиболее важных методов в установлении кристаллографического строения различных металлов и сплавов является рентгеноструктурный анализ. Этот метод исследования дает возможность определения характера взаимного расположения атомов в кристаллических телах, т.е. решить задачу, не доступную ни обычному, ни электронному микроскопу.
В основе рентгеноструктурного анализа лежит взаимодействие между рентгеновскими лучами и лежащими на их пути атомами исследуемого тела, благодаря которому последние становятся как бы новыми источниками рентгеновских лучей, являясь центрами их рассеяния.
Рассеяние лучей атомами можно уподобить отражению этих лучей от атомных плоскостей кристалла по законам геометрической оптики. Рентгеновские лучи отражаются не только от плоскостей, лежащих на поверхности, но и от глубинных. Отражаясь от нескольких одинаково ориентированных плоскостей, отраженный луч усиливается. Каждая плоскость кристаллической решетки дает свой пучок отраженных волн. Получив определенное чередование отраженных пучков рентгеновских лучей под определенными углами, рассчитывают межплоскостное расстояние, кристаллографические индексы отражающих плоскостей, в конечном счете, форму и размеры кристаллической решетки.
Практическая часть.
Содержание отчета.
1. В отчете необходимо указать название, цель работы.
2. Перечислите основные физические свойства металлов (с определениями).
3. Зафиксируйте в тетради таблицы 1-5. Сделайте выводы по таблицам.
4. Заполните таблицу: «Основные методы исследования в материаловедении»
Название метода | Что изучается | Суть метода | Приборы, необходимые для исследования |
1.Излом | |||
2.Макроструктура | |||
3.Микроструктура | |||
4.Электронная микроскопия | |||
5.Ренгеновские методы исследования |
Методы исследований в материаловедении
Теоретическая часть
Плотность - количество вещества, содержащееся в единице объема. Это одна из важнейших характеристик металлов и сплавов. По плотности металлы делятся на следующие группы: легкие (плотность не более 5 г/см 3 ) - магний, алюминий, титан и др; тяжелые - (плотность от 5 до 10 г/см 3 ) - железо, никель, медь, цинк, олово и др. (это наиболее обширная группа); очень тяжелые (плотность более 10 г/см 3 ) - молибден, вольфрам, золото, свинец и др. В таблице 1 приведены значения плотности металлов.
Температура плавления - это температура, при которой металл переходит из кристаллического (твердого) состояния в жидкое с поглощением теплоты.
Температура плавления металлов лежат в диапазоне от −39 °C (ртуть) до 3410 °C (вольфрам). Температура плавления большинства металлов (за исключением щелочных) высока, однако некоторые «нормальные» металлы, например олово и свинец, можно расплавить на обычной электрической или газовой плите.
В зависимости от температуры плавления металл подразделяют на следующие группы: легкоплавкие (температура плавления не превышает 600 o С) - цинк, олово, свинец, висмут и др.; среднеплавкие (от 600 o С до 1600 o С) - к ним относятся почти половина металлов, в том числе магний, алюминий, железо, никель, медь, золото; тугоплавкие (более 1600 o С) - вольфрам, молибден, титан, хром и др. При введении в металл добавок температура плавления, как правило, понижается.
Температура плавления и кипения металлов
Температура o С
Теплопроводность - способность металла с той или иной скоростью проводить теплоту при нагревании.
Электропроводность - способность металла проводить электрический ток.
Тепловое расширение - способность металла увеличивать свой объем при нагревании.
Гладкая поверхность металлов отражает большой процент света - это явление называется металлическим блеском. Однако в порошкообразном состоянии большинство металлов теряют свой блеск; алюминий и магний, тем не менее, сохраняют свой блеск и в порошке. Наиболее хорошо отражают свет алюминий, серебро и палладий - из этих металлов изготовляют зеркала. Для изготовления зеркал иногда применяется и родий, несмотря на его исключительно высокую цену: благодаря значительно большей, чем у серебра или даже палладия, твёрдости и химической стойкости, родиевый слой может быть значительно тоньше, чем серебряный.
Методы исследований в материаловедении
Основными методами исследования в металловедении и материаловедении являются: излом, макроструктура, микроструктура, электронная микроскопия, рентгеновские методы исследования. Рассмотри их особенности более подробно.
1. Излом - самый простой и доступный способ оценки внутреннего строения металлов. Метод оценки изломов, несмотря на свою кажущуюся грубость оценки качества материала, применяется довольно широко в различных отраслях производства и научных исследований. Оценка излома во многих случаях может характеризовать качество материала.
Хрупкий кристаллический излом может получаться при разрушении по границам зерен или по плоскостям скольжения, пересекающим зерна. В первом случае излом называется межкристаллитным, во втором транскристаллитным. Иногда, особенно при очень мелком зерне, трудно определить природу излома. В этом случае излом изучают с помощью лупы или бинокулярного микроскопа.
В последнее время развивается отрасль металловедения по фрактографическому изучению изломов на металлографических и электронных микроскопах. При этом находят новые достоинства старого метода исследований в металловедении - исследований излома, применяя к таким исследованиям понятия фрактальных размерностей.
2. Макроструктура - является следующим методом исследования металлов. Макроструктурное исследование заключается в изучении плоскости сечения изделия или образца в продольном, поперечном или любых иных направлениях после травления, без применения увеличительных приборов или при помощи лупы. Достоинством макроструктурного исследования является то обстоятельство, что с помощью этого метода можно изучить структуру непосредственно целой отливки или слитка, поковки, штамповки и т.д. С помощью этого метода исследования можно обнаружить внутренние пороки металла: пузыри, пустоты, трещины, шлаковые включения, исследовать кристаллическое строение отливки, изучать неоднородность кристаллизации слитка и его химическую неоднородность (ликвацию).
3. Микроструктура - один из основных методов в металловедении - это исследование микроструктуры металла на металлографических и электронных микроскопах.
Это явление объясняется тем, что на поверхности шлифа выходят зерна, имеющие различные кристаллографическую ориентировку, вследствие чего степень воздействия кислоты на эти зерна оказываются разной. Одни зерна выглядят блестящими, другие сильно протравливаются, темнеют. Это потемнение связано с образованием различных фигур травления, по-разному отражающих световые лучи. В случае сплавов, отдельные структурные составляющие образуют микрорельеф на поверхности шлифа, имеющий участки с различным наклоном отдельных поверхностей .
Нормально расположенные участки отражают наибольшее количество света и оказываются наиболее светлыми. Другие участки - более темные. Часто контраст в изображении зернистой структуры связан не со структурой поверхности зерен, а с рельефом у границ зерен. Кроме того, различные оттенки структурных составляющих могут являться результатом образования пленок, образованных при взаимодействии травителя со структурными составляющими.
Величина зерна определяется. Методом визуальной оценки, состоящей в том, что рассматриваемая микроструктура, приближенно оценивается баллами стандартных шкал по ГОСТ 5639-68, ГОСТ 5640-68. По соответствующим таблицам, для каждого балла определяется площадь одного зерна и количество зерен на 1 мм 2 и в 1 мм 3 .
Методом подсчета количества зерен на единице поверхности шлифа по соответствующим формулам. Если S - площадь, на которой подсчитывается количество зерен n, а М - увеличение микроскопа, то средняя величина зерна в сечении поверхности шлифа
Определение фазового состава. Фазовый состав сплава чаще оценивают на глаз или путем сравнения структуры со стандартными шкалами.
Точечный метод А.А. Глаголева. Этот метод осуществляется путем оценки количества точек (точек пересечения окулярной сетки микроскопа), попадающих на поверхности каждой структурной составляющей. Кроме того, методом количественной металлографии производят: определение величины поверхности раздела фаз и зерен; определение числа частиц в объеме; определение ориентации зерен в поликристаллических образцах.
4. Электронная микроскопия. Большое значение в металлографических исследованиях находит в последнее время электронный микроскоп. Несомненно, ему принадлежит большое будущее. Если разрешающая способность оптического микроскопа достигает значений 0,00015 мм = 1500 А, то разрешающая способность электронных микроскопов достигает 5-10 А, т.е. в несколько сот раз больше, чем у оптического.
5. Рентгеновские методы исследования. Одним из наиболее важных методов в установлении кристаллографического строения различных металлов и сплавов является рентгеноструктурный анализ. Этот метод исследования дает возможность определения характера взаимного расположения атомов в кристаллических телах, т.е. решить задачу, не доступную ни обычному, ни электронному микроскопу.
Рассеяние лучей атомами можно уподобить отражению этих лучей от атомных плоскостей кристалла по законам геометрической оптики.
Рентгеновские лучи отражаются не только от плоскостей, лежащих на поверхности, но и от глубинных. Отражаясь от нескольких одинаково ориентированных плоскостей, отраженный луч усиливается. Каждая плоскость кристаллической решетки дает свой пучок отраженных волн. Получив определенное чередование отраженных пучков рентгеновских лучей под определенными углами, рассчитывают межплоскостное расстояние, кристаллографические индексы отражающих плоскостей, в конечном счете, форму и размеры кристаллической решетки.
Методы исследования металлов и сплавов
Металлы и сплавы обладают разнообразными свойствами. Используя один метод исследования металлов, невозможно получить информацию обо всех свойствах. Используют несколько методов анализа [3, 6, 8].
Для определения химического состава используются методы количественного анализа:
1. Если не требуется большой точности, то используют спектральный анализ.
Спектральный анализ основан на разложении и исследовании спектра электрической дуги или искры, искусственно возбуждаемой между медным электродом и исследуемым металлом.
Зажигается дуга, луч света через призмы попадает в окуляр для анализа спектра. Цвет и концентрация линий спектра позволяют определить содержание химических элементов в металле.
Используются стационарные и переносные стилоскопы.
2. Рентгеноспектральный анализпозволяет получать более точные сведения о химическом составе. Проводится на микроанализаторах. Позволяет определить состав фаз сплава, а также характеристики диффузионной подвижности атомов.
Различают макроструктуру, микроструктуру и тонкую структуру.
Дляизучения структурыметалла используют:
1. Макроструктурный анализ (макроанализ)– изучение строения металлов и сплавов невооруженным глазом или при небольшом увеличении (до 30 раз) с помощью лупы на специальных макрошлифах (темплетах). Осуществляется после предварительной подготовки исследуемой поверхности (шлифование и травление специальными реактивами). Позволяет выявить и определить дефекты, возникшие на различных этапах производства литых, кованых, штампованных и катаных заготовок, а также причины разрушения деталей.
При этом устанавливают: вид излома (вязкий, хрупкий и другие виды излома); размер, форму и расположение зерен и дендритов литого металла; дефекты, нарушающие сплошность металла (усадочную пористость, газовые пузыри, раковины, трещины, дефекты сварки); химическую неоднородность металла, вызванную процессами кристаллизации или созданную термической и химико-термической обработкой; волокна в деформированном металле. Волокнистая структура металла позволяет судить о технологии изготовления детали (сварная, штампованная, полученная обработкой резанием).
2. Микроструктурный анализ (микроанализ) – изучение поверхности с помощью световых микроскопов (оптических). Увеличение 50 – 2000 раз. Позволяет обнаружить элементы структуры размером до 0,2 мкм.
Для этого используют образцы – микрошлифы с блестящей полированной поверхностью, так как структура рассматривается в отраженном свете. При этом можно наблюдать микротрещины и неметаллические включения.
Для выявления микроструктуры поверхность травят реактивами, зависящими от состава сплава. Различные фазы протравливаются неодинаково и окрашиваются по-разному, что позволяет выявить форму, размеры и ориентацию зерен, отдельные фазы и структурные составляющие.
Кроме световых микроскопов используют электронные микроскопы (просвечивающие, растровые) с большой разрешающей способностью. Изображение формируется с помощью потока быстро летящих электронов. Электронные лучи с длиной волны (0,04 – 0,12) 10 −8 см дают возможность различать детали объекта по их размерам, соответствующим межатомным расстояниям. При использовании просвечивающих микроскопов поток электронов проходит через изучаемый объект. Изображение является результатом неодинакового рассеяния электронов на объекте.
Различают косвенные и прямыеметоды исследования.
При косвенном методе изучают не сам объект, а его отпечаток – кварцевый или угольный слепок (реплику), отображающий рельеф микрошлифа для предупреждения вторичного излучения, искажающего картину.
При прямом методе изучают тонкие металлические фольги, толщиной до 300 нм на просвет. Фольги получают непосредственно из изучаемого металла.
В растровых микроскопах изображение создается за счет вторичной эмиссии электронов, излучаемых поверхностью, на которую падает непрерывно перемещающийся по этой поверхности поток первичных электронов. Изучается непосредственно поверхность металла. Разрешающая способность несколько ниже (25 – 30 нм), чем у просвечивающих микроскопов.
3. Для изучения атомно-кристаллического строения твердых тел (тонкое строение) используются рентгенографические методы, позволяющие устанавливать связь между химическим составом, структурой и свойствами тела, тип твердых растворов, микронапряжения, концентрацию дефектов, плотность дислокаций.
К физическим методам исследования можно отнести:
1. Термический анализ, основанный на явлении теплового эффекта. Фазовые превращения в сплавах сопровождаются тепловым эффектом, в результате на кривых охлаждения сплавов при температурах фазовых превращений наблюдаются точки перегиба или температурные остановки. Метод позволяет определить критические точки.
2. Дилатометрический метод.При нагреве металлов и сплавов происходит изменение объема и линейных размеров – тепловое расширение. Если изменения обусловлены только увеличением энергии колебаний атомов, то при охлаждении размеры восстанавливаются. При фазовых превращениях изменения размеров необратимы. Метод позволяет определить критические точки сплавов, температурные интервалы существования фаз, а также изучать процессы распада твердых растворов.
3. Магнитный анализ.Используется для исследования процессов, связанных с переходом из парамагнитного состояния в ферромагнитное (или наоборот), и при этом возможна количественная оценка этих процессов.
Способы определения свойств металлов
В заводских условиях наиболее распространенными являются следующие способы определения свойств металлов: проверка химического состава, металлографические исследования, определение механических свойств, технологические пробы.
Из перечисленных способов определения свойств металлов только испытания на твердость и технологические пробы производятся непосредственно в цехах. Остальные виды механических испытаний, а также определение химического состава и металлографическое исследование внутреннего строения (структуры) металла производятся в заводских лабораториях. Для этого в цехах в соответствии с действующими инструкциями отбирают образцы и направляют их в соответствующие лаборатории.
Результаты испытания или анализа лаборатория передает в виде специального протокола.
Химический состав металлов, кроме методов лабораторного анализа, исследуется также с помощью спектрального анализа, основанного на том, что металлы, раскаленные до состояния газа или пара, дают характерную по цвету линию спектра для каждого содержащегося в них элемента.
В технике широко применяются различные методы неразрушающего контроля, такие как магнитный, ультразвуковой, радиационный, электрический и ряд других, позволяющих выявлять трещины и внутренние дефекты металлов без нарушения целостности деталей (о них более подробно будет рассказано в разделе3.6.
Определение механических свойств
Механическими свойствами называется совокупность свойств, определяющих сопротивление металлов воздействию механических усилий, которые могут прилагаться к изделию различными способами. Знание механических свойств позволяет оценивать поведение металла под воздействием внешних нагрузок при работе конструкций и деталей машин в эксплуатации и при обработке деталей давлением или резанием.
В зависимости от способа приложения нагрузки, механические испытания делятся на три следующих вида:
1. Статические испытания - нагрузка на образец остается постоянной в течение длительного промежутка времени или постепенно увеличивается в процессе испытания. Наиболее распространенным из таких методов является испытание на растяжение. Применяются также испытания на изгиб, сжатие, кручение и срез.
Динамические испытания - нагрузка на образец возрастает мгновенно и действует в течение незначительного промежутка времени, т. е. носит характер удара. Наиболее распространенным является испытание на ударную вязкость.
3. Испытания при повторно-знакопеременных нагрузках на выносливость, позволяющие оценить способность металла выдерживать много раз повторяющиеся и меняющиеся по направлению нагрузки без возникновения трещин усталости.
Испытание на растяжение
При испытании на растяжение из проверяемого материала получают образцы определенной формы и размеров (рис.3.16, а). Затем образец закрепляют в зажимах специальной разрывной машины и подвергают растяжению при плавно возрастающей нагрузке до момента разрыва образца (рис. 3.16,б).
Рис.3.16. Круглый образец для испытания на растяжение:
а – до испытания; б – после испытания
Действие сил, приложенных к образцу во время растяжения, оценивается напряжениями, т. е. силами в килограммах, приходящимися на единицу площади поперечного сечения образца в квадратных миллиметрах. Напряжения обозначаются греческой буквой s.
В процессе растяжения образца определяются следующие характеристики прочности:
1. Предел пропорциональности sпц, т. е наибольшее напряжение, до которого сохраняется линейная зависимость между удлинением и растягивающим напряжением.
2. Предел текучести (физический) sТ, представляющий собой наименьшее напряжение, при котором образец продолжает удлиняться без заметного увеличения нагрузки, а, следовательно, и напряжения.
3. Условный предел текучести s0,2, т. е. напряжение, при котором образец получает остаточное удлинение, равное 0,2% первоначальной расчетной длины.
4. Временное сопротивление (или предел прочности при
растяжении) sвр, т. е. напряжение, отвечающее наибольшей нагрузке, предшествующей разрушению образца.
Характеристиками пластичности при растяжении являются:
1. Относительное удлинение d, определяемое в процентах;
2. Относительное сужение y площади поперечного сечения, определяемое в процентах.
Читайте также: