Запущенные приложения данные вычислений какая память
Для реализации функции хранения информации в компьютере используются следующие основные типы памяти: кэш память, ПЗУ, оперативная память (ОЗУ), долговременная (внешняя) память. Первые три типа памяти образуют внутреннюю (системную) память компьютера. Основными характеристиками любого типа памяти являются объем, время доступа и плотность записи информации.
Внутренняя память
Кэш-память является элементом микропроцессора. Физически кэш-память основана на микросхемах статической памяти SRAM (Static Random Access Memory). Для создания ячейки статической памяти используется от 4 до 8 транзисторов, которые в совокупности образуют триггер.
Постоянное запоминающее устройство (ПЗУ) — энергонезависимая память, используемая только для чтения. Данный вид памяти используется для хранения только такой информации, которая обычно не меняется в ходе эксплуатации компьютера. Типичным примером использования ПЗУ является хранение в нем базового программного обеспечения, используемого при загрузке компьютера (BIOS). Микросхемы ПЗУ располагаются на материнской плате.
Оперативное запоминающее устройство (ОЗУ) — энергозависимая память, применяемая для временного хранения команд и данных, необходимых процессору для выполнения текущих операций.
Наименьшей частицей памяти является бит, в котором хранится либо 0, либо 1. Отдельные биты объединяются в ячейки, каждая из которых имеет свой адрес, поэтому процессор при необходимости может обратиться к любой ячейке за одну операцию. Минимальной адресуемой ячейкой оперативной памяти является байт. Для выбора нужной ячейки используется ее адрес, передаваемый по адресной шине. Адресация байтов начинается с нуля.
Несмотря на то, что минимальной адресуемой ячейкой оперативной памяти является байт, физически по шине передаются не отдельные байты, а машинные слова. Размер машинного слова зависит от разрядности процессора. То есть размер машинного слова определяется количеством битов, к которым процессор имеет одновременный доступ. Например, для 16-разрядного процессора размер машинного слова будет равен 2 байтам. Адрес машинного слова равен адресу младшего байта, входящего в состав это слова.
Физически ОЗУ строится на микросхемах динамической памяти DRAM (Dynamic Random Access Memory). В динамической памяти ячейки построены на основе областей с накоплением зарядов (конденсаторов), занимающих гораздо меньшую площадь, чем триггеры, и практически не потребляющих энергии при хранении. При записи бита в такую ячейку в ней формируется электрический заряд, сохраняющийся в течение 2-4 миллисекунд. Но для сохранения заряда ячейки необходимо постоянно регенерировать (перезаписывать) ее содержимое. В связи с этим скорость доступа к ячейкам ОЗУ ниже, чем к статической памяти. Для создания ячейки динамической памяти достаточно всего одного транзистора и одного конденсатора, поэтому она дешевле статической памяти и имеет большую плотность упаковки.
Оперативная память изготавливается в виде небольших печатных плат с рядами контактов, на которых размещаются интегральные схемы памяти (модули памяти, рисунок 1).
Рисунок 1 - Схема состава микропроцессора
Модули памяти различаются по размеру и количеству контактов (в зависимости от типа используемой памяти), а также по быстродействию и объему. Объемы оперативной памяти современных компьютеров могут измеряться несколькими гигабайтами (в среднем от 1 до 4 Гбайт).
Именно наша память делает из нас тех, кем мы являемся: мы помним наше прошлое, обучаемся, закрепляем навыки и ставим цели на будущее. В компьютерах память играет ту же самую роль. Неважно какую задачу он выполняет: проигрывание фильма, чтение документа, сложные математические вычисления - все это хранится в памяти в бинарном виде.
Бинарные данные, или по другому биты, представляют собой ячейки памяти, в которых информация может храниться только в двух состояниях: 0 и 1. Файлы и программы, содержащие в себе миллионы бит информации, обрабатываются в центральном процессоре, или ЦПУ, который выполняет роль мозга у компьютера. И поскольку количество знаков для обработки растет в геометрической прогрессии, компьютерные разработчики находятся в постоянной борьбе между размером, ценой и скоростью.
Краткосрочная память
У компьютеров, как и у нас, есть краткосрочная память, предназначенная для выполнения текущих задач, и долгосрочная - для длительного хранения информации. При запуске программы операционная система резервирует место в краткосрочной памяти для выполнения этих задач. Например, при нажатии клавиши в текстовом редакторе мы мгновенно увидим на экране соответствующий символ. Время, которое уходит на выполнение этой процедуры, называется временем отклика памяти. Главная задача кратковременной памяти - быстрая и непрерывная обработка команд, поэтому все свободное место доступно в любом порядке. Отсюда название - память с произвольным доступом, или оперативное запоминающее устройство (ОЗУ).
Наиболее распространенный тип ОЗУ - это ОЗУ динамического типа . Каждая ячейка такого устройства включает в себя маленький транзистор и конденсатор, которые хранят последнее состояние электрического заряда: 1 - заряд есть, 0 - заряд отсутствует. Данный вид памяти называется динамическим потому, что он не долгое время может сохранять заряд и его нужно время от времени заряжать, чтобы обезопаситься себя от потери данных.
Кэш хранилища
Время отклика со скоростью 100 наносекунды для современных компьютеров считается очень длительным. Для сверхбыстрых операций используется скоростное внутреннее кэш-хранилище, производимое из ОЗУ статического типа. Оно обычно состоит из 6 соединенных транзисторов, которым не нужна подзарядка. Статическая память является самой быстрой и, соответственно, самой дорогой. По своим размерам она также уступает динамической: занимает почти в 3 раза больше места. ОЗУ и кэш могут хранить данные, только пока они подключены к источнику питания. Для того, чтобы пользоваться данными после выключения устройства, их нужно перенести в долгосрочную память.
Долгосрочная память
Существует 3 вида долгосрочной памяти.
Магнитный носитель - самый дешевый вид - данные записываются на магнитную пленку вращающегося диска. Есть нюанс: так как диск должен вращаться, то нужно потратить намного больше времени, чтобы извлечь нужные данные. Время отклика таких устройств в 100.000 раз больше, чем у динамической ОЗУ.
Оптические носители , представленные DVD или Blu-ray, также используют вращающиеся диски, но уже с отражающим покрытием. Информация кодируется с помощью специальных светлых и темных красителей, пятна которых позже считываются с помощью лазера. Оптические носители довольно дешевые и их можно извлекать из компьютера. Однако их время отклика еще более длительное, а емкость меньше, чем у магнитных ОЗУ.
Самыми новыми, надежными, быстрыми носителями являются твердотельные накопители , представленные флешками. В их устройстве отсутствуют движущиеся части. Вместо этого они используют транзисторы с динамическим затвором, который сохраняет биты данных в результате захвата или удаления электрических зарядов.
Надежна ли компьютерная память?
Многие из нас считают, что компьютерная память очень надежна. Однако это не так. Она в действительности очень быстро портится. Жесткие диски со временем размагничиваются из-за выделяемой компьютером теплоты, качество красителей в оптических носителях ухудшается, а в твердотельных накопителях происходит утечка электронов. Дополнительная причина - это перезапись данных, которая также уменьшает срок жизни носителей.
В среднем современные носители могут работать около 10 лет. Ученые пытаются найти идеальные материалы, физические свойства которых позволили бы сделать накопители быстрее, меньше и долговечнее. К сожалению, компьютеры, как и люди, пока что не могут жить вечно.
При использовании приложений под Android иногда появляются вопросы: «А где приложение хранит созданные файлы?», «Можно ли до них достучаться?» и «Удалятся ли файлы при удалении приложения?» Давайте попробуем посмотреть, где же приложение может хранить свои данные и какие последствия это имеет для пользователя.
Внутреннее хранилище данных
Смысл следует непосредственно из названия. Внутреннее хранилище (internal storage) располагается всегда в памяти смартфона вне зависимости от того, есть ли возможность установки карты памяти (и тем более того, вставлена ли она). Эта область памяти является защищенной. Находится в системном разделе /data. По умолчанию все файлы, которые там располагаются, доступны только тому приложению, которое их создало. Разумеется, можно сделать файлы доступными для других приложений, но это надо делать специально. Если приложение не открывает файлы для доступа извне, достучаться к ним можно будет только получив root.
Назначение хранилища понятно: внутренние защищенные данные, к которым не должно быть нерегламентированного доступа. Проблемы (с точки зрения пользователя) могут быть в следующих случаях:
- Неоправданно большой объем данных. Хочется вынести данные на карту памяти, чтобы сэкономить внутреннее пространство для других нужд, а приложение не дает.
- По мнению пользователя, регламент доступа к данным должен быть другим, не таким, как предлагает приложение.
Пример: приложение «Лекции по истории России». В приложении хороший контент (и по содержанию, и по качеству звука). Но сохраняется он во внутреннюю память. На бюджетных устройствах, где этой памяти мало, становится затруднительным закачать заранее много лекций, а потом, отключившись от интернета, слушать их. Второй проблемой становится собственно регламент доступа к данным. Даже если ограничиться тематикой истории, у меня есть аудиофайлы, полученные из трех источников: данное приложение, подкасты и аудиоверсии роликов с youtube. Хочется взять и объединить навек в их земной юдоли под владычеством всесильным Властелина Мордора их все в единый плейлист, и слушать его одним аудиоплеером. Но на смартфоне без root это сделать невозможно.
Внешнее хранилище «личных» данных
С точки зрения разработчика, кроме внутреннего хранилища данных, для персональных целей приложения есть еще внешнее хранилище. Оно необязательно размещается на карте памяти. Это может быть и внутренняя память смартфона, но весь раздел с такими данными размещается в общем доступе. В корне раздела есть папка Android/data, а в ней — подпапки с именами пакетов приложений.
Плюсы такого подхода очевидны: данные доступны извне для целей пользователя. А если это карта памяти, то и емкость может быть ограничена только вашими финансами (в продаже уже можно найти карты памяти на 400 гигабайт). Минусы тоже понятны: в любой момент любое приложение (конечно, имеющее разрешение на доступ к «внешним» данным) может взять и стереть чужие файлы. Также файлы будут удалены системой при удалении приложения (или при очистке его данных).
Пример приложения: подкаст-менеджер BeyondPod (более-менее свежей версии, раньше файлы хранились по-другому). Пользователь имеет доступ к скачанным подкастам и может легко удалять их (например, в целях экономии места) или слушать их во внешнем плеере.
Общее внешнее хранилище
Располагается в корне «внешнего» раздела на одном уровне с папкой «Android». Предназначается для хранения данных, разделяемых между разными приложениями. Обычно в документации Google в качестве примера приводят картинки (фото с камеры — папка DCIM). Основная проблема данных файлов: они никогда не удаляются автоматически. Даже если приложение вы удалили.
Пример: мессенджер Telegram. После того, как вы удалили приложение, загруженные файлы никуда не исчезают. Они продолжают спокойно лежать на накопителе данных, занимая драгоценное место.
Как можно удалить файлы, не удаляя приложения
Здесь важно ввести еще одну классификацию файлов приложений. Она справедлива для внутреннего хранилища и для внешнего хранилища личных данных. Все данные делятся на два типа: собственно данные и кэш.
Данные (папка data) — некие файлы, которые, по логике Google, нужны для постоянной работы с ними. Если полностью их удалить, то приложение поведет себя точно так же, как если бы его переустановили (удалили и заново установили). Частичное удаление файлов может не привести ни к каким неприятным последствиям. Но важно понимать, какие конкретно данные вы удаляете (например, очевидно, что скачанные файлы подкастов можно удалять совершенно свободно — это не повлияет на работоспособность подкаст-менеджера).
Кэш — временные данные, которые сформированы в ходе работы приложения и нужны для ускорения этой работы. Например, данные, которые часто нужны в интернете, загружаются и в дальнейшем вместо загрузки открываются локально (разумеется, кэш может обновляться, чтобы не показывать устаревшие данные). Удалять кэш любого приложения можно совершенно спокойно, это штатная операция.
Очистка памяти и кэша вызывается из настроек приложения. Кнопка «Очистить кэш» очищает только кэш, а кнопка «Очистить данные» — и кэш, и данные приложения.
Удаление файлов приложения из общего внешнего хранилища выполняется только вручную. Более того, даже оценка того, от какого приложения эти файлы остались, тоже выполняется вручную.
Внешняя память - это память, предназначенная для длительного хранения программ и данных. Целостность содержимого ВЗУ не зависит от того, включен или выключен компьютер.
Внутренняя память -
Оперативная память (ОП) предназначена для временного хранения выполняемых программ и данных, обрабатываемых этими программами. Это энергозависимая память. Физически реализуется в модулях ОЗУ (оперативных запоминающих устройствах) различного типа. При выключении электропитания вся информация в оперативной памяти исчезает.
Объём хранящейся информации в ОЗУ составляет от 32 до 512 Мбайт и более. Занесение информации в память и её извлечение, производится по адресам. Каждый байт ОП имеет свой индивидуальный адрес (порядковый номер) . Адрес – число, которое идентифицирует ячейки памяти (регистры) . ОП состоит из большого количества ячеек, в каждой из которых хранится определенный объем информации. ОП непосредственно связана с процессором. Возможности ПК во многом зависят от объёма ОП.
Кеш память - очень быстрая память малого объема служит для увеличения производительности компьютера, согласования работы устройств различной скорости.
Специальная - постоянная, Fiash, видеопамять и тд.
Постоянное запоминающее устройство (ПЗУ) – энергонезависимая память для хранения программ управления работой и тестирования устройств ПК. Важнейшая микросхема ПЗУ – модуль BIOS (Basic Input/Output System – базовая система ввода/вывода) , в котором хранятся программы автоматического тестирования устройств после включения компьютера и загрузки ОС в оперативную память. Это Неразрушимая память, которая не изменяется при выключении питания
Перепрограммируемая постоянная память (Flash Memory) – энергонезависимая память, допускающая многократную перезапись своего содержимого
CMOS RAM (Complementary Metal-Oxide Semiconductor) - память с невысоким быстродействием и минимальным энергопотреблением от батарейки. Используется для хранения информации о конфигурации и составе оборудования компьютера, о режимах его работы. Содержимое изменяется программой, находящейся в BIOS (Basic Input Output System).
Видеопамять – запоминающее устройство, расположенное на плате управления дисплеем и предназначенное для хранения текстовой и графической информации, отображаемой на экране. Содержимое этой памяти сразу доступно двум устройствам – процессору и дисплею, что позволяет изменять изображение на экране одновременно с обновлением видеоданных в памяти.
Так что данные хранятся во внешней памяти.
Сегодня мы поговорим о том месте, которое занимает в вашем цифровом устройстве каждый вид памяти. Та память, которую мы сегодня рассмотрим, именуется компьютерной, хотя и применяется не только в ПК, но и в других цифровых устройствах. Речь идет в том числе и о мобильных девайсах: смартфонах и планшетах, которые являются компьютерами по сути. Память служит для хранения данных и бывает нескольких типов. Некоторые типы памяти взаимозаменяемы. Другие же служат для выполнения совершенно различных задач. Проиллюстрируем написанное простым примером. И оперативная память и кеш процессора и флеш-карта вашего смартфона являются компьютерной памятью, хотя на первый взгляд между ними не так уж много общего. О системе памяти новой игровой консоли Xbox One мы недавно рассказывали довольно подробно. И хотя перед нами игровая консоль, ее память в полной мере компьютерная.
Какой бывает компьютерная память и в каких устройствах она используется?
Все виды компьютерной памяти можно разделить на две большие категории. Энергозависимая и энергонезависимая память. Энергозависимая память теряет все данные при отключении системы. Это происходит потому, что такая память требует постоянной энергетической подпитки и, как только подача электричества прекращается, она перестает функционировать. Энергонезависимая память сохраняет данные вне зависимости от того, включен ваш компьютер или нет. К примеру, большинство типов оперативной памяти относятся к энергозависимой категории.
Наиболее известные представители энергонезависимой категории это ПЗУ (постоянная память) и флеш-память, получившая в последнее время немалое распространение. В частности, карты памяти CompactFlash и SmartMedia.
Прежде всего просто перечислим основные виды компьютерной памяти и только потом начнем их рассматривать:
- Оперативная память. Оперативное запоминающее устройство. ОЗУ, RAM
- Постоянная память. Постоянное запоминающее устройство. ПЗУ, ROM
- Кеш-память, Cache
- Динамическая оперативная память. Dynamic RAM, DRAM
- Статическая оперативная память. Static RAM, SRAM
- Флеш-память, Flash memory
- Память типа Memory Sticks в виде карт памяти для цифровых фотоаппаратов
- Виртуальная память, Virtual memory
- Видеопамять, Video memory
- Базовая система ввода-вывода, БСВВ, BIOS
Как мы уже писали, память применяется не только в компьютерах, но и в иных цифровых устройствах. Тех «компьютероподобных» устройствах, которые для удобства изложения материала мы будем считать компьютерами, не отвлекаясь на постоянные обсуждения различий между ними. В частности, планшеты многие аналитики относят к компьютерам. Речь идет в том числе и о:
- Сотовых телефонах
- Смартфонах
- Планшетах
- Игровых консолях
- Автомобильных радиоприемниках
- Цифровых медиаплеерах
- Телевизорах
Прежде, чем разбираться в том, как функционирует каждый вид памяти, поинтересуемся тем, как она вообще работает.
Иерархическая пирамида компьютерной памяти
С технической точки зрения, компьютерной памятью считается любой электронный накопитель. Быстрые накопители данных используются для временного хранения информации, которой следует быть «под рукой» у процессора. Если бы процессор вашего компьютера за любой нужной ему информацией обращался бы к жесткому диску, компьютер работал бы крайне медленно. Поэтому часть информации временно хранится в памяти, к которой процессор может получить доступ с более высокой скоростью.
Существует определенная иерархия компьютерной памяти. Место определенного вида памяти в ней означает ее «удаленность» от процессора. Чем «ближе» та или иная память к процессору, тем она, как правило, быстрее. Перед нами иерархическая пирамида компьютерной памяти, которая заслуживает подробного рассмотрения.
Вершиной пирамиды является регистр процессора.
За ним следует кеш-память первого (L1)
и второго уровня (L2)
Оперативная память делится на:
физическую и виртуальную
И кеш, и оперативная память являются временными хранилищами информации
Далее идут постоянные хранилища информации:
ПЗУ/BIOS; съемные диски; удаленные накопители (в локальной сети); жесткий диск
Подножие пирамиды образуют устройства ввода, к которым относятся:
клавиатура; мышь; подключаемые медиаустройства; сканер/камера/микрофон/видео; удаленные источники; другие источники
Процессор обращается к памяти в соответствии с ее местом в иерархии. Информация поступает с жесткого диска или устройства ввода (например, с клавиатуры) в оперативную память. Процессор сохраняет сегменты данных, к которой нужен быстрый доступ, в кеш-памяти. В регистре процессора содержатся специальные инструкции. К рассмотрению кеш-памяти и регистра процессора мы еще вернемся.
Роль оперативной памяти в общем «оркестре» компонентов компьютера
Работу компьютера следует рассматривать как «оркестр». «Музыкантами» в нем являются все его программные и аппаратные составляющие, в том числе центральный процессор, жесткий диск и операционная система, выполняющая, как известно нашим читателям, пять важнейших невидимых задач. Оперативная память, которую нередко называют просто «памятью» находится в числе наиболее важных компонентов компьютера. С того момента как вы включили компьютер и до того мгновения, когда вы его отключите, процессор будет непрерывно обращаться к памяти. Давайте рассмотрим типичный сценарий работы любого компьютера.
Вы включили компьютер. Он, в свою очередь, загрузил данные из постоянной памяти (ROM) и начал самотестирование при включении (power-on self-test, POST). Компьютер проверяет сам себя и определяет, исправен ли он и готов ли к новому трудовому сеансу. Целью этого этапа работы является проверка того, что все основные компоненты системы работают корректно. В ходе самотестирования контроллер памяти посредством быстрой операции чтения/записи проверяет все ячейки памяти на наличие или отсутствие ошибок. Процесс проверки выглядит так: бит информации записывается в память по определенному адресу, а затем считывается оттуда.
Компьютер загружает из ПЗУ базовую систему ввода-вывода, более известную по английской аббревиатуре BIOS. В этом «биосе» содержится базовая информация о накопителях, порядке загрузки, безопасности, автоматическом распознавании устройств (Plug and Play) и некоторые иные сведения.
Затем наступает черед загрузки операционной системы. Она загружается в оперативную память компьютера с жесткого диска (чаще всего в современном компьютере всё обстоит именно так, но возможны и иные сценарии). Важные компоненты операционной системы обычно находятся в оперативной памяти компьютера на протяжении всего времени работы с ним. Это дает центральному процессору возможность немедленного доступа к операционной системе, что повышает производительность и функциональность всего компьютера в целом.
Когда вы открываете приложение, оно записывается всё в ту же оперативную память. Объем памяти этого типа в наши дни хоть и велик, но при этом все равно значительно уступает ёмкости жесткого диска. В целях экономии оперативной памяти некоторые приложения записывают в нее только свои важнейшие компоненты, а остальные «подгружают» с жесткого диска по мере необходимости. Каждый файл, который загружается работающим приложением, тоже записывается в оперативную память.
Что происходит, когда вы сохраняете файл и закрываете приложение? Файл записывается на жесткий диск, а приложение «выталкивается» из оперативной памяти. То есть и само приложение, и связанные с ним файлы удаляются из оперативной памяти. Тем самым освобождается место для новой информации: других приложений и файлов. Если измененный файл не был сохранен перед удалением из временного хранилища, все изменения будут потеряны.
Из вышесказанного следует, что каждый раз, когда что-то загружается или открывается, оно помещается в оперативную память, то есть во временное хранилище данных. Центральному процессору проще получить доступ к информации из этого хранилища. Процессор запрашивает из оперативной памяти необходимые ему в процессе вычислений данные.
Всё это звучит несколько суховато и не дает полного представления о масштабах событий. Но поистине впечатляюще выглядит то, что в современных компьютерах обмен информацией между центральным процессором и оперативной памятью совершается миллионы раз в секунду.
Читайте также: