Тестер газоразрядных индикаторов своими руками
В ремонтной мастерской часто нужно проверять на исправность различные как одиночные светодиоды так и линейки светодиодов и светодиодные матрицы. Для быстрой проверки таких светодиодных сборок существует приборы для проверки сразу всей матрицы или линейки светодиодов, что ускоряет ремонт, он на выходе, на своих щупах выдаёт напряжение более 200В, при очень низком токе, что позволяет при таком высоком напряжении проверить даже единичный светодиод с низким напряжением не выводя его из строя.
Подобные тестеры стоят к сожалению не дёшево и они обычно подключаются сетевым шнуром к розетке. Но Вы можете собрать тестер светодиодов сами и это не сложно на самом деле и большим его плюсом будет по сравнению с коммерческим прибором это то, что он абсолютно автономный, имеет встроенный аккумулятор. Кроме проверки светодиодов прибор умеет также проверять стабилитроны, на индикаторе тестера при этом указывается рабочее напряжение стабилизации, а низкий ток на выходе прибора не повредит его при проверке. При подключении же светодиода или линейки светодиодов на индикаторе будет высвечиваться номинальное рабочее напряжение светодиода или суммарное всей линейки.
Детали которые нужны для создания тестера светодиодов:
- Транзистор IRF840 или подобные мощные, например IRF740;
- Импульсный диод FR107 или UF4004;
- Резистор 1 кОм;
- Резистор 100 кОм (подойдёт любой до 150 кОм);
- Резистор 330 кОм;
- Конденсатор пойдёт из энергосберегающей лампы которые там обычно стоят с напряжением в 400В, ёмкость может быть от 4,7 до 10 мкФ;
- Ферритовый стержень 8х32 мм, был взят от дросселя БП от компьютера;
- Li-Ion аккумулятор на 3,7 В;
- Намоточный провод в лаковой изоляции диаметром – 0,8 мм;
- Намоточный провод в лаковой изоляции диаметром – 0,5 мм.
- Мини-вольтметр, можно заказать такой на Aliexpress;
- Модуль защиты и зарядки аккумулятора TP4056, купить такой на Aliexpress;
- Корпус от зарядки для телефона (или любой другой подходящий по габаритам).
Тестер светодиодов и стабилитронов своими руками
Как сделать тестер светодиодов и стабилитронов, пошаговая инструкция:
Изолируем ферритовый стержень малярным скотчем, хватит 2-х витков скотча. После этого наматываем первичную обмотку проводом 0,8 мм, начало обмотки, чтобы не разматывалась я зафиксировал суперклеем. У меня получилось 44 витка, столько уместилось на стержне, наматывал я первую обмотку по часовой стрелке.
Тестер светодиодов и стабилитронов своими руками
Тестер светодиодов и стабилитронов своими руками
Далее снова наматываем малярный скотч в два слоя для межслойной изоляции.
Тестер светодиодов и стабилитронов своими руками
Теперь наматываем вторичную обмотку проводом 0,5 мм в том же направлении (по часовой стрелке), для этого кончик обмотки можно смотать с концом первичной обмотки, это и будет средняя точка трансформатора.
Тестер светодиодов и стабилитронов своими руками
Получилось намотать первый слой вторичной обмотки 54 витка, теперь нужно опять проложить межслойную изоляцию и продолжаем мотать дальше следующий слой этим же проводом, затем опять слой изоляции и снова 3-тий слой этим же проводом и того получится во вторичке в общем счёте – 162 витка.
Тестер светодиодов и стабилитронов своими руками
В конце можно заизолировать верхнюю обмотку всё тем же малярным скотчем. Получился довольно компактный трансформатор.
Тестер светодиодов и стабилитронов своими руками
Паяем прибор по схеме:
Тестер светодиодов и стабилитронов своими руками
Я пока для проверки спаял всё навесным монтажом. Припаял к собранной схеме щупы, чтобы можно было удобно проверять светодиоды. А также подпаял аккумулятор.
Тестер светодиодов и стабилитронов своими руками
Тестер светодиодов и стабилитронов своими руками
После включения питания на выходе (на щупах) без нагрузки получилось почти 500В. Если нужно меньшее напряжение то можно уменьшить количество витков вторичной обмотки, отмотав некоторое количество витков.
Тестер светодиодов и стабилитронов своими руками
Теперь можно протестировать работу прибора для проверки светодиодов и стабилитронов на каком-нибудь простом светодиоде, как видим он засветился и всё работает как надо хоть и напряжение на выходе щупов достаточно большое, всё от того, что ток очень мизерный.
Тестер светодиодов и стабилитронов своими руками
Теперь можем проверить и что-то по более прожорливое, то есть линейку из последовательно включенных светодиодов и как видим тоже всё работает отлично.
Тестер светодиодов и стабилитронов своими руками
Тестер светодиодов и стабилитронов своими руками
Или же вот работа прибора со светодиодной лампой на 220В.
Тестер светодиодов и стабилитронов своими руками
Здесь я подключил вольтметр к выходу прибора и он показывает, что номинальное напряжение всей линейки светодиодов в лампе составляет 218В.
Тестер светодиодов и стабилитронов своими руками
А на маленьком светодиоде показывает падение 1,92В.
Тестер светодиодов и стабилитронов своими руками
Когда убедились, что наш прибор для проверки светодиодов и стабилитронов работает можем приступать к его облагораживанию, добавить китайский маленький вольтметр, плату защиты и заряда аккумулятора, а также выключатель питания и разместить всё в подходящий корпус. Я в качестве корпуса для тестера светодиодов взял корпус от старого зарядника для телефона, получилось одень даже неплохо, тестер для светодиодов, линеек светодиодов и стабилитронов сделанный своими руками готов!
Введение
Если быть точным, то в лампах ИН-12Б присутствует ещё один катод — в виде точки, он в данных часах не используется.
Также в данных часах для разделения часов и минут используется ещё один газоразрядный индикатор — ИНС-1
Индикация осуществляется через линзовый купол баллона, выглядит как светящаяся точка оранжевого цвета.
Схема
Схема часов была найдена на просторах сети, автор Тимофей Носов. В основе её микроконтроллер PIC16F628A и советская микросхема К155ИД1, представляет собой высоковольтный дешифратор управления газоразрядными индикаторами.
Питание ламп реализовано с помощью повышающего импульсного преобразователя, собранного на полевом транзисторе, индуктивности, конденсаторе и диоде, сигнал ШИМ генерирует микроконтроллер. В данной схеме используется динамическая индикация, микроконтроллер с помощью дешифратора К155ИД1 управляет катодами сразу всех ламп, синхронно управляет анодами ламп через оптопары. Скорость переключения ламп происходит с высокой частотой, а так как газоразрядным индикаторам, как и любой лампе, нужно время чтобы потухнуть, то мерцания человеческий глаз не видит (скажу больше — не видит даже камера).
В схеме реализовано резервное питание на элементе CR2032, при отключении питания индикация тухнет, а часы продолжают идти.
Электронная часть
Схема часов разделена на две части — плата с лампами и основная плата устройства.
Ссылка на архив с файлом для Splint Layout — тут
С помощью ЛУТ сделал две платы
Собираем плату с лампами
Лампы мне достались со старой советской техники, собственно эта находка и побудила меня собрать эти часы.
Собираем основную плату
Платы соединяются через разъемы PLS и PBS, которые припаиваются со стороны дорожек. Вот так выглядит в собранном виде:
Микроконтроллер PIC16F628A покупал — тут
Оптопары покупал — тут
Полевой транзистор IFR840 — тут
Остальное было в наличии, или нашлось по месту.
Осталось прошить микроконтроллер. Прошивать будем с помощью программатора PICkit2, покупался давно — тут
Запускаем программу PICkit2 и прошиваем наш микроконтроллер
прошивка
После прошивки включаю часы… а цифры не светятся, мигает только секундный индикатор (ИНС-1). После нашел свою ошибку, в цепи питания ламп вместо резистора 4,7К был установлен 47К. После замены схема заработала, надо делать корпус.
Корпус
Вот так выглядит эта красота в темноте
В итоге имеем красивую вещь, сделанную своими руками. В будущем возможно сделаю другие часы в другом корпусе, есть одна задумка.
Генератор образцовых частот
Даже простейший генератор сигналов в радиолюбительской практике полезен сам по себе и часто входит в других приборов, например, измеряющих ёмкости и индуктивности. Здесь удобно применить в качестве генератора широко известная схема на цифровых элементах, простую и легко повторяемую:
Задающий генератор на МС типа К561ЛА7 (или К561ЛЕ5, К176ЛА7, ЛЕ5 и подобные) выдаёт на своём выходе частоту, которая стабилизирована кварцевым резонатором в цепи обратной связи — в данном случае 1 МГц. Далее сигнал проходит через несколько каскадов-делителей частоты на 10 например, на МС К176ИЕ4, СD4026 или любых других счётчиков-делителей на 10) и с выхода каждого каскада снимается сигнал с частотой, в десять раз меньше предудыщей.
С помощью любого подходящег переключателя коммутируем один из выходов счётчиков-делителей и получаем, таким образом, набор фиксированных частот. Конденсатором С1 можно подстроить частоту в небольших пределах, если это необходимо, никаких других настроек данная схема не требует и питается от источника напряжением 9-12 вольт (при указанных выше типах микросхем).
Модуль измерения L, C
Первая схема представляет собой узел измерения емкостей конденсаторов от 10 пФ до 10 мкФ и индуктивностей от 10 мкГ до 10 Гн (рис.2).
Модуль измерения электролитических конденсаторов (+ C и ESR)
Для проверки электролитических конденсаторов был собран узел по схеме (рис.3):
Узел измерения ESR содержит отдельный генератор на 100 кГц, собранный на МС типа 561ЛА7 (ЛЕ5), по такой же схеме, как и задающий генератор на рис.1. Можно, конечно же, использовать и уже имеющуюся частоту 100 кГц, которая присутствует на нашем основном генераторе с делителями частоты. Но при пользовании прибором оказалось гораздо удобнее иметь независимый генератор для этого модуля, так как это упрощает коммутацию.
Здесь частота может быть в пределах 80-120 кГц, поэтому применение кварца не требуется. От величины ESR подключенного к клеммам конденсатора зависит ток, протекающий через обмотку I трансформатора ( он намотан на ферритовом кольце диаметром 15 — 20 мм. Марка феррита роли не играет, но, возможно, число витков первичной обмотки нужно будет подкорректировать. Поэтому лучше будет сначала намотать обмотку II, а первичную — сверху неё).
Переменное напряжение 100 кГц, наведённое во вторичной обмотке, выпрямляется диодом VD5 и подаётся на измерительную головку (см. модуль индикации на рис.4). Диоды VD3, VD4 нужны для защиты стрелочной головки от перегрузки и могут быть любые, а VD1, VD2 также желательно применить германиевые.
В этой схеме при измерениях также не важна полярность подключения конденсаторов и измерять параметры конденсаторов можно прямо в схеме, без выпайки. Пределы измерения задаются при настройке и их можно менять в широких пределах подстроечником R5, от десятых долей Ома, до нескольких Ом.
Величины типовых (максимально допустимых) значений ESR различных конденсаторов даны ниже в таблице (позаимствованно из открытых источников).
Функциональная схема соединений модулей прибора
Дополнения
Составной транзистор Т1 (КТ829, схема рис.3) можно заменить двумя транзисторами меньшей мощности по типовой схеме, а для питания 1,4 В можно собрать простой стабилизатор на одном транзисторе. Эти схемы показаны на рис. 5 и 6 соответственно.
Кремниевые диоды VD1-VD3 здесь применены в качестве стабилитрона, примерно на 1,5 В. В отличие от стабилитрона, включать диоды следует в прямом направлении.
При желании можно дополнить прибор модулем для быстрой проверки работоспособности и цоколёвки транзисторов. С его помощью можно проверять любые биполярные транзисторы, а также полевые транзисторы малой и средней мощности. Причём биполярные транзисторы можно проверять без выпайки их из схемы. Схема представлена на рис.7.
Прибор с применением всех перечисленных модулей был собран в корпусе размерами 140х110х40 мм и позволяет проверить практически все основные типы радиодеталей чаще всего используемых на практике, с достаточной для радиолюбителей точностью. Используется несколько лет и нареканий не вызывает.
Примечания к схеме
Схемы, приведённые в данной статье, рисовались несколько лет назад и оригинальные файлы формата .spl безвозвратно утеряны. Из-за чего проблематично было оперативно внести необходимые изменения в схему, в частности рис.1. Поэтому приведу ниже подкорректированное и правильное соответствие частот генератора и диапазонов измерений:
- 1 МГц — 100 пФ — 100 мкГн
- 100 кГц — 1000 пФ — 1 мГн
- 10 кГц — 0,01 мкФ — 10 мГн
- 1 кГц — 0,1 (+100) мкФ — 100 мГн
- 100 Гц — 1 (+1000) мкФ — 1 Гн
- 10 Гц — 10 (+10000) мкФ — 10 Гн
(в скобках указаны значения ёмкости для электролитических конденсаторов)
Материал в редакцию сайта Радиосхемы прислал автор - Андрей Барышев.
Форум по обсуждению материала УНИВЕРСАЛЬНЫЙ СТРЕЛОЧНЫЙ ПРИБОР ДЛЯ ПРОВЕРКИ ДЕТАЛЕЙ
Переделываем игрушку обычный трактор в радиоуправляемый - фотографии процесса и получившийся результат.
В каком направлении течет ток - от плюса к минусу или наоборот? Занимательная теория сути электричества.
Приводятся основные сведения о планарных предохранителях, включая их технические характеристики и применение.
Про использование технологии беспроводного питания различных устройств.
Сейчас индикаторы тлеющего разряда уже являются дефицитными электронными компонентами и достаточно дороги. Поэтому, многие радиолюбители в своих конструкциях вынуждены использовать разные индикаторы, которые сняты с какого-либо оборудования. И часто, такие индикаторы имеют отравленные катоды — какая-то часть цифры или знака не светится. Но такие индикаторы можно восстановить.
У меня в руках находится индикатор, у которого неисправен катод. Видно, что цифра 2 полностью не светится.
На вход подается 220 вольт, переменное напряжение выпрямляется диодным мостом, затем стоит фильтрующая емкость 10 микрофарад 400 вольт. Затем стоят резисторы, задающие ток и переключатель выбора тока. Собирать устройство я на плате не стал, все сделано, скажем так, "навесным монтажом". Для выбора необходимого катода используется зажим типа "крокодил".
Устройство для электробезопасности к сети 220 вольт я подключаю через разделительный трансформатор. Хотя можно подключать к сети 220 вольт на прямую.
Принцип восстановления индикаторов основан на том, что на индикатор тлеющего разряда подается ток выше номинального.
Для индикатора ИН-4, ИН-12 максимальный ток составляет 2,5мА. Устройство же подает для восстановления индикаторов ток 5,4 миллиампера. Для контроля восстановился индикатор или нет имеется возможность подать ток на электроды индикатора величиной 1,4 миллиампера.
Как же проводится восстановление индикаторов тлеющего разряда? После подключения устройства к индикатору подается ток 1,4 мА для предварительного осмотра, в каком состоянии находятся катоды индикатора — т. е. полностью ли святятся цифры или знаки, и определяются катоды, которым требуется восстановление. Затем, на катод который требует восстановления подается ток выше номинального — 5,4 мА. При этом периодически ведется визуальный контроль, как проходит восстановление. Само восстановление занимает некоторое время, в каждом случае оно разное, в зависимости от степени отравления катода. После того, как на повышенном токе засветился весь катод, на тлеющий индикатор путем переключения тумблера подается номинальный ток 1,4 мА. Проводится визуальный контроль свечения катода на номинальном токе. При необходимости процедуру восстановления можно повторить. При восстановлении индикатора повышенным ток возможен нагрев индикатора.
На фотографии: На индикатор подан ток выше номинально в два раза.
На фотографии: Индикатор тлеющего разряда уже с восстановленным катодом при номинальном рабочем токе.
Видео. Восстановление газоразрядных индикаторов.
Читайте также: