Термоконтакт вентилятора принцип работы
Как только не называют биметаллические термостаты - термостатами, термопредохранителями, термореле, термодатчиками термопрерывателями.
Термостаты это термовыключатели которые при достижении определенной температуры переводят контакты в другое состояние. (из замкнутого в разомкнутое или наоборот)
1. По типу контактов термостаты бывают нормально открытые (NO) и нормально закрытые (NC)
1.1 Нормально открытые NO термостаты это такие термореле, контакты которых разомкнуты ниже определенной номинальной температуры.
Пример KSD301-10NO до 10 градусов Цельсия контакты разомкнуты, выше - замкнуты.
1.2 Нормально закрытые NC термостаты это такие термореле, контакты которых замкнуты ниже определенной номинальной температуры. Пример KSD301-5NC до 5 градусов Цельсия контакты замкнуты, выше - разомкнуты.
2. По количеству контактов - двухконтактные и четырехконтактные.
3. По материалу корпуса пластиковые и керамические.
4. По типу работы предохранительные -аварийный (не возвратные) и с автоматическим возвратом- рабочий.
Аварийный термостат оснащен возвратной кнопкой. После срабатывания данного термостата, для того, что бы контакты термореле перевести вновь в рабочее состояние, необходимо - Температура термореле должна быть меньше температуры возврата контактов.- В ручную нажать на клавишу возврата данного предохранителя.
Рабочий термостат не имеет аварийной клавиши, а возврат контактов осуществляется автоматически, при снижении температуры ниже температуры возврата контактов термореле.
5. По номинальному току термовыключатели бывают 5А, 10А, 16А, 20А.
6. Самый главный параметр термореле -это номинальная температура перевода контактов она часто указывается на корпусе термопредохранителя. К стати говоря, существует и еще одна температура возврата контактов, но она не указывается и является справочной величиной.
Самые распространенные термостаты это KSD 301, KSD 302 и KSD 9700 используются в кулерах воды, чайниках, утюгах, горелках, кофеварках, пароварках, масляных и воздушных обогревателях и другой технике.
Люди, далекие от радиоэлектроники, смутно представляют назначение и принцип действия терморезистора. Какие функции выполняет этот элемент? Для его он предусмотрен? Как маркируется? О каких тонкостях проверки и подключения необходимо знать? Какие бывают виды, и в чем их особенности? Эти и другие вопросы рассмотрим ниже.
Что такое терморезистор, общие положения
Терморезистор — полупроводниковый элемент с меняющимися характеристиками (по сопротивлению) в зависимости от температуры. Изделие изобрели в 1930 году, а его создателем считается известный ученый Самуэль Рубен.
С момента появления терморезистор получил широкое распространение в радиоэлектронике и успешно применяется во многих смежных сферах.
Деталь изготавливается с применением материалов, имеющих высокий температурный коэффициент (ТК). В основе лежат специальные полупроводники, по характеристикам превосходящие наиболее чистые металлы и их сплавы.
При получении главного резистивного элемента применяются оксиды некоторых металлов, галогениды и халькогениды. Для изготовления используется медь, никель, марганец, кобальт, германий, кремний и другие вещества.
В процессе производства полупроводнику придется разная форма. В продаже можно найти терморезисторы в виде тонких трубок, крупных шайб, тонких пластинок или небольших круглых элементов. Некоторые детали имеют габариты, исчисляемые несколькими микронами.
Основные виды терморезисторов — термисторы и позисторы (с отрицательным и положительным ТКС (температурный коэффициент сопротивления) соответственно. В термисторах с ростом температуры сопротивление падает, а позисторах, наоборот, увеличивается.
Где используется (сфера применения)
Терморезисторы активно применяются в разных сферах, тесно связанных с электроникой. Они особенно важных при реализации процессов, зависящих от правильности настройки температурного режима.
Такой подход актуален для компьютерных технологий, устройств передачи информации, высокоточного промышленного оборудования и т. д.
Распространенный способ применения терморезисторов — ограничение токов, возникающих в процессе пуска аппаратов.
При подаче напряжения к БП конденсатор быстро набирает емкость, что приводит к протеканию повышенного тока. Если не ограничить этот параметр, высок риск повреждения (пробоя) диодного моста.
Для защиты дорогостоящего узла применяется термистор — элемент, ограничивающий ток в случае резкого нагрева. После нормализации режима температура снижается до безопасного уровня, и сопротивление термистора возвращается до первоначального уровня.
Устройство и виды
Терморезистор — полупроводниковый элемент, который в зависимости от вида меняет сопротивление при росте/снижении температуры. Сегодня выделяется два вида изделий:
В зависимости от типа полупроводника при его производстве применяются разные элементы. Как отмечалось, при создании резистивных элементов используются оксиды, халькогениды и галогениды различных металлов, а конструктивное исполнение может меняться в зависимости от сферы назначения.
Типы по принципу действия
Терморезисторы различаются по принципу действия. Выделяется два типа:
- КОНТАКТНЫЕ . К этой категории относятся термопары, термодатчики, заполненные термометры и термометры биметаллического типа.
- БЕСКОНТАКТНЫЕ . В эту группу входят терморезисторы, построенные на инфракрасном принципе действия. Они активно применяются в оборонной сфере, благодаря способности выявлять тепловое излучение ИК и оптических лучей (выделяются газами и жидкостями).
Классификация по температурному срабатыванию
Терморезисторы отличаются по температуре, на которую они реагируют при срабатывании. С этой позиции выделяются следующие типы деталей:
- НИЗКОТЕМПЕРАТУРНЫЕ . Такие элементы срабатывают при температуре ниже 170 Кельвинов (минус 102 0 С). 1 Кельвин = минус 272,15 0 С.
- СРЕДНЕТЕМПЕРАТУРНЫЕ . Здесь диапазоне работы выше и находится между 170 и 510 Кельвинами.
- ВЫСОКОТЕМПЕРАТУРНЫЕ . Терморезисторы такого класса работают при температурах от 570 Кельвинов.
- ОТДЕЛЬНЫЙ КЛАСС . Выделятся также индивидуальная группа высокотемпературных термических резисторов, работающих в диапазоне от 900 до 1300 К.
Вне зависимости от вида (позисторы, термисторы) терморезисторы могут работать в разных температурных режимах и внешних условиях. При эксплуатации в условиях частых изменений температур первоначальные параметры детали могут меняться.
Речь идет о двух параметрах — сопротивлении детали в условиях комнатной температуры и коэффициенте сопротивления.
По виду нагрева
По способу нагревания терморезисторы делятся на два типа:
- ПРЯМОГО НАГРЕВА. Подразумевается изменение температуры детали под действием окружающего воздуха или тока, протекающего через деталь. Устройства с прямым нагревом чаще всего применяются для решения двух задач — изменения температуры или восстановления нормального режима. Такие терморезисторы применяются в градусниках, ЗУ, термостатах и других устройствах.
- КОСВЕННОГО НАГРЕВА. В отличие от прошлого типа здесь нагрев происходит из-за элементов, находящихся в непосредственной близости от резистора. Узлы никак не взаимосвязаны. При таком подходе сопротивление полупроводника обуславливается изменением тока, который проходит через близлежащий элементы. Терморезисторы, работающие на косвенном принципе, нашли применение в мультиметрах (комбинированных приборах).
Главные параметры терморезисторов
При выборе детали важно ориентироваться на ее показатели и характеристики, меняющиеся в зависимости от типа, производителя, исходного материала и других показателей.
При выборе изделия нужно выяснить главные параметры и определить, подходят они для решения поставленной задачи или нет.
- ГАБАРИТЫ. При покупке нужно быть уверенным, что деталь подходит по размеру и поместится на плате (в схеме).
- СОПРОТИВЛЕНИЯ RT и RT. Параметры измеряются в Омах и указываются применительно к текущей температуре в градусах Цельсия или Кельвинах. Если деталь рассчитана на работу при температурах от -100 до +200 градусов Цельсия, температурный режим для окружающей среды принимается на уровне 20-25 градусов Цельсия.
- ПОСТОЯННАЯ ВРЕМЕНИ Τ (СЕК). Параметр отражает тепловую инерционность. При расчете учитывается время, которое необходимо для изменения температуры термического резистора на 63% от разницы t детали и окружающего воздуха. В большинстве случаев этот параметр принимается равным 100 градусов Цельсия.
- ТКС (в % на один градус Цельсия). Как правило, этот показатель прописывается для той же температуры t, что и холодное сопротивление. В такой ситуации при обозначении используются другие цифры — at.
- Мощность рассеивания Pmax (предельно допустимый параметр), Вт. По этому показателю можно судить о пределе, до достижения которого в полупроводнике не происходит необратимых изменений (параметры остаются прежними). При этом превышение температуры tmax при достижении Pmax исключено.
- Температура tmax — максимально допустимый параметр, при котором характеристики терморезистора длительное время остаются без изменений (на установленном производителем уровне).
- Коэффициент энергетической чувствительности (измеряется в Вт/проценты*R). Обозначение — G. Показатель отражает мощность, которую необходимо рассеять на детали для снижения параметра R на один процент.
- Коэффициент рассевания (измеряется в Вт на один градус Цельсия). Условное обозначение — H. Параметр отражает мощность, которая рассеивается на термическом резисторе при разнице в температурных режимах детали и окружающего воздуха на один градус.
Рассмотренные выше коэффициенты (G и H) зависят от характеристик применяемого полупроводника и особенностей обмена тепла между изделием и окружающей его средой. Параметры связаны друг с другом через специальную формулу — G=H/100а.
- Теплоемкость (измеряется в Джоулях на один градус Цельсия). Условное обозначение — C. Показатель отражает объем тепла (энергии), необходимой для нагрева терморезистора на один градус.
Некоторые рассмотренные параметры связаны друг с другом. В частности, постоянная времени τ равна отношению между теплоемкостью и коэффициентом рассеивания.
При покупке позитрона, кроме указанных выше параметров, нужно учесть интервал позитивного температурного сопротивления и кратность изменения R в секторе положительного ТКС.
Базовые характеристики терморезисторов
При оценке терморезисторов нужно учесть и проанализировать их характеристики:
- Вольтамперная характеристика — кривая на графике, показывающая зависимость напряжения на образце от проходящего через терморезистор тока. График рисуется с учетом теплового равновесия с окружающей природой. Для позисторов и термисторов графики различаются.
- Температурная характеристика. При построении графика снимается зависимость сопротивления от температуры в определенном режиме. По оси R выставляется параметр по принципу десятикратного увеличения (10Х), а по оси времени пропускается участок в диапазоне от нуля до 223 Кельвинов.
- Подогревная характеристика. С помощью графика можно увидеть параметры термических резисторов, работающих на косвенном принципе. Иными словами, кривая отражает зависимость сопротивления детали от подаваемой к нему мощности. При указании графика масштаб по сопротивлению берется с учетом 10Х.
Общий принцип действия
Терморезисторы делаются максимально чувствительными к изменению температурного режима, ведь на этом принципе они и работают. При отсутствии нагрева атомы, входящие в состав детали, находятся в правильном порядке и формируют длинные ряды.
При изучении кривой зависимости сопротивления от температуры можно увидеть характеристику нелинейного типа. При этом лучшие характеристики терморезистор показывает в диапазоне от -90 до +130 градусов.
Важно учесть, что принцип действия таких деталей строится на корреляции между температурным режимом и металлами в составе детали.
Сам терморезистор изготавливается с применением полупроводниковых составов (оксидов, марганца, меди, никеля, силикатов, железа и других). Такие компоненты способны реагировать на малейшее изменение в температуре.
Создаваемое электрическое поле подталкивает электрон, который перемещается до момента удара об атом. По этой причине движение электрона затормаживается.
При росте температуры атомы двигаются активнее. При таких обстоятельствах исходный актом быстрее столкнется с другим элементом. В результате возникает дополнительное сопротивление.
В случае повышения температуры растет и показатель R. Но здесь нужно учесть тип терморезистора, от которого зависит принцип повышения и роста сопротивления при изменении температурного режима.
Терморезисторы NTC — изделия, имеющие отрицательный температурный коэффициент. Их особенность — повышенная чувствительность, высокий температурный коэффициент (на один или два порядка выше, чем у металла), небольшие габариты и широкий температурный диапазон.
Полупроводники NTC удобны в применении, стабильны в работе и способны выдерживать большую перегрузку.
Особенность NTC в том, что их сопротивление увеличивается при снижении температуры. И наоборот, если t снижается, параметр R растет. При изготовлении таких деталей применяются полупроводники.
Принцип действия прост. При повышении температуры число носителей заряда резко растет, и электроны направляются в зону проводимости. При изготовлении детали, кроме полупроводников, могут применяться и переходные металлы.
При анализе NTC нужно учесть бета-коэффициент. Он важен в случае, если изделие применяется при измерении температуры, для усреднения графика и вычислений с помощью микроконтроллеров.
Как правило, термисторы NTC применяются в температурном диапазоне от 25 до 200 градусов. Следовательно, их можно использовать для измерений в указанном пределе.
Отдельного нужно рассмотреть сфера их использования. Такие детали имеют небольшую цену и полезны для ограничения пусковых токов при старте электрических двигателей, для защиты Li аккумуляторов, снижения зарядных токов блока питания.
Терморезистор NTC также используется в автомобиле — датчик, применяемый для определения точки отключения и включения климат-контроля в машине.
Еще один способ применения — контроль температуры двигателя. В случае превышения безопасного предела, подается команда на реле, а дальше двигатель глушится.
Не менее важный элемент — датчик пожара, определяющий рост температуры и запускающий сигнализацию.
Терморезисторы NTC обозначаются буквами или имеют цветную маркировку в виде полос, колец или других обозначений. Варианты маркировки зависят от производителя, типа изделия и других параметров.
Пример обозначения 5D-20, где первая цифра показывает сопротивление терморезистора при 25 градусах Цельсия, а расположенная рядом с ней цифра (20) — диаметр.
Чем выше этот параметр, тем большую мощность рассеивания имеет изделие. Чтобы не ошибиться в маркировке, рекомендуется использовать официальную документацию.
В отличие от рассмотренных выше терморезисторов, PTC — термисторы, имеющие положительный коэффициент сопротивления. Это означает, что в случае нагрева детали увеличивается и ее сопротивление. Такие изделия активно применялись в старых телевизорах, оборудованных цветными телескопами.
Двухвыводные терморезисторы производятся с применением полупроводникового материала (чаще всего Si — кремний). Внешне изделие имеет вид небольшой пластинки с двумя выводами на разных концах.
Терморезисторы PTC применяются в разных сферах. Чаще всего их используют для защиты силового оборудования от перегруза или перегрева, а также поддержания температуры в безопасном режиме.
Главные направления применения:
- Защита электрических двигателей. Задача изделия состоит в защите обмотки от перегорания при клине ротора или в случае поломки системы охлаждения. Позистор играет роль датчика, подключаемого к управляющему прибору с исполняющим реле, контакторами и пускателями. При появлении форс-мажорной ситуации сопротивление растет, а сигнал направляется к управляющему элементу, дающему команду на отключение мотора.
- Защита трансформаторных обмоток от перегрева или перегруза. В такой схеме позистор устанавливается в цепи первичной обмотки.
- Нагревательный узел в пистолетах для приклеивания.
- В машинах для нагрева тракта впуска.
- Размагничивание ЭЛТ-кинескопов и т. д.
Как проверить с помощью мультиметра
Важный вопрос при эксплуатации термисторов — знание принципов их проверки. При оценке исправности нужно понимать, что термисторы бывают двух видов — с положительными и отрицательным температурным коэффициентом (об этом упоминалось выше). Следовательно, сопротивление детали снижается или уменьшается с ростом температуры.
С учетом этого факта для проверки термистора потребуется всего два элемента — паяльник для нагрева и мультиметр.
- Перевод прибора в режим замера сопротивления.
- Подключение щупов к клеммам терморезистора (расположение не имеет значения).
- Фиксация сопротивления на бумаге и поднесение нагретого паяльника к детали.
- Контроль сопротивления (оно растет или падает в зависимости от вида терморезистора).
- Если сопротивление снижается или увеличивается, полупроводник работает правильно.
Для примера можно использовать термистор NTC типа MF 72. В нормальном режиме он показывает сопротивление 6,9 Ом при обычной температуре.
После поднесения паяльника к изделию ситуация изменилась — сопротивление пошло в сторону снижения и остановилось на уровне двух Ом. По этой проверке можно сделать вывод, что терморезистор исправен.
Если сопротивление меняется резко или вообще не двигается, можно говорить о выходе детали из строя.
Стоит учесть, что такая проверка очень грубая. Для точного контроля нужно проверить температуру и сопротивление термистора, а после сравнить данные с официальными параметрами.
Как подключить
Принцип подключения термисторов прост (на примере Arduino). Для этого потребуется монтажная плата, деталь и резистор на 10 кОм. Так как изделие имеет высокое сопротивление, этот параметр для проводников не влияет на конечный результат.
Один контакт сопротивления подключается к контакту 5В, а второй — к контакту термистора.
Если возникают сомнения в сфере применения, терморезистор можно нагреть и посмотреть на его поведение. Если сопротивление будет меняться, это нужный элемент.
Терморезисторы используются почти везде — в плате зарядного устройства, в автомобильных усилителях, блоках питания ПК, в Li-Ion аккумуляторах и других устройства. Найти их на схеме не трудно.
SMD и встроенные терморезисторы
Существует также еще два вида терморезисторов, которым стоит уделить внимание:
В дополнение стоит сказать, что в электронике вместе с терморезисторами используются термореле и термические предохранители, которые работают на похожем принципе и также устанавливаются в электронных приборах.
Как только не называют биметаллические термостаты - термостатами, термопредохранителями, термореле, термодатчиками термопрерывателями.
Термостаты это термовыключатели которые при достижении определенной температуры переводят контакты в другое состояние. (из замкнутого в разомкнутое или наоборот)
1. По типу контактов термостаты бывают нормально открытые (NO) и нормально закрытые (NC)
1.1 Нормально открытые NO термостаты это такие термореле, контакты которых разомкнуты ниже определенной номинальной температуры.
Пример KSD301-10NO до 10 градусов Цельсия контакты разомкнуты, выше - замкнуты.
1.2 Нормально закрытые NC термостаты это такие термореле, контакты которых замкнуты ниже определенной номинальной температуры. Пример KSD301-5NC до 5 градусов Цельсия контакты замкнуты, выше - разомкнуты.
2. По количеству контактов - двухконтактные и четырехконтактные.
3. По материалу корпуса пластиковые и керамические.
4. По типу работы предохранительные -аварийный (не возвратные) и с автоматическим возвратом- рабочий.
Аварийный термостат оснащен возвратной кнопкой. После срабатывания данного термостата, для того, что бы контакты термореле перевести вновь в рабочее состояние, необходимо - Температура термореле должна быть меньше температуры возврата контактов.- В ручную нажать на клавишу возврата данного предохранителя.
Рабочий термостат не имеет аварийной клавиши, а возврат контактов осуществляется автоматически, при снижении температуры ниже температуры возврата контактов термореле.
5. По номинальному току термовыключатели бывают 5А, 10А, 16А, 20А.
6. Самый главный параметр термореле -это номинальная температура перевода контактов она часто указывается на корпусе термопредохранителя. К стати говоря, существует и еще одна температура возврата контактов, но она не указывается и является справочной величиной.
Самые распространенные термостаты это KSD 301, KSD 302 и KSD 9700 используются в кулерах воды, чайниках, утюгах, горелках, кофеварках, пароварках, масляных и воздушных обогревателях и другой технике.
Люди, далекие от радиоэлектроники, смутно представляют назначение и принцип действия терморезистора. Какие функции выполняет этот элемент? Для его он предусмотрен? Как маркируется? О каких тонкостях проверки и подключения необходимо знать? Какие бывают виды, и в чем их особенности? Эти и другие вопросы рассмотрим ниже.
Что такое терморезистор, общие положения
Терморезистор — полупроводниковый элемент с меняющимися характеристиками (по сопротивлению) в зависимости от температуры. Изделие изобрели в 1930 году, а его создателем считается известный ученый Самуэль Рубен.
С момента появления терморезистор получил широкое распространение в радиоэлектронике и успешно применяется во многих смежных сферах.
Деталь изготавливается с применением материалов, имеющих высокий температурный коэффициент (ТК). В основе лежат специальные полупроводники, по характеристикам превосходящие наиболее чистые металлы и их сплавы.
При получении главного резистивного элемента применяются оксиды некоторых металлов, галогениды и халькогениды. Для изготовления используется медь, никель, марганец, кобальт, германий, кремний и другие вещества.
В процессе производства полупроводнику придется разная форма. В продаже можно найти терморезисторы в виде тонких трубок, крупных шайб, тонких пластинок или небольших круглых элементов. Некоторые детали имеют габариты, исчисляемые несколькими микронами.
Основные виды терморезисторов — термисторы и позисторы (с отрицательным и положительным ТКС (температурный коэффициент сопротивления) соответственно. В термисторах с ростом температуры сопротивление падает, а позисторах, наоборот, увеличивается.
Где используется (сфера применения)
Терморезисторы активно применяются в разных сферах, тесно связанных с электроникой. Они особенно важных при реализации процессов, зависящих от правильности настройки температурного режима.
Такой подход актуален для компьютерных технологий, устройств передачи информации, высокоточного промышленного оборудования и т. д.
Распространенный способ применения терморезисторов — ограничение токов, возникающих в процессе пуска аппаратов.
При подаче напряжения к БП конденсатор быстро набирает емкость, что приводит к протеканию повышенного тока. Если не ограничить этот параметр, высок риск повреждения (пробоя) диодного моста.
Для защиты дорогостоящего узла применяется термистор — элемент, ограничивающий ток в случае резкого нагрева. После нормализации режима температура снижается до безопасного уровня, и сопротивление термистора возвращается до первоначального уровня.
Устройство и виды
Терморезистор — полупроводниковый элемент, который в зависимости от вида меняет сопротивление при росте/снижении температуры. Сегодня выделяется два вида изделий:
В зависимости от типа полупроводника при его производстве применяются разные элементы. Как отмечалось, при создании резистивных элементов используются оксиды, халькогениды и галогениды различных металлов, а конструктивное исполнение может меняться в зависимости от сферы назначения.
Типы по принципу действия
Терморезисторы различаются по принципу действия. Выделяется два типа:
- КОНТАКТНЫЕ . К этой категории относятся термопары, термодатчики, заполненные термометры и термометры биметаллического типа.
- БЕСКОНТАКТНЫЕ . В эту группу входят терморезисторы, построенные на инфракрасном принципе действия. Они активно применяются в оборонной сфере, благодаря способности выявлять тепловое излучение ИК и оптических лучей (выделяются газами и жидкостями).
Классификация по температурному срабатыванию
Терморезисторы отличаются по температуре, на которую они реагируют при срабатывании. С этой позиции выделяются следующие типы деталей:
- НИЗКОТЕМПЕРАТУРНЫЕ . Такие элементы срабатывают при температуре ниже 170 Кельвинов (минус 102 0 С). 1 Кельвин = минус 272,15 0 С.
- СРЕДНЕТЕМПЕРАТУРНЫЕ . Здесь диапазоне работы выше и находится между 170 и 510 Кельвинами.
- ВЫСОКОТЕМПЕРАТУРНЫЕ . Терморезисторы такого класса работают при температурах от 570 Кельвинов.
- ОТДЕЛЬНЫЙ КЛАСС . Выделятся также индивидуальная группа высокотемпературных термических резисторов, работающих в диапазоне от 900 до 1300 К.
Вне зависимости от вида (позисторы, термисторы) терморезисторы могут работать в разных температурных режимах и внешних условиях. При эксплуатации в условиях частых изменений температур первоначальные параметры детали могут меняться.
Речь идет о двух параметрах — сопротивлении детали в условиях комнатной температуры и коэффициенте сопротивления.
По виду нагрева
По способу нагревания терморезисторы делятся на два типа:
- ПРЯМОГО НАГРЕВА. Подразумевается изменение температуры детали под действием окружающего воздуха или тока, протекающего через деталь. Устройства с прямым нагревом чаще всего применяются для решения двух задач — изменения температуры или восстановления нормального режима. Такие терморезисторы применяются в градусниках, ЗУ, термостатах и других устройствах.
- КОСВЕННОГО НАГРЕВА. В отличие от прошлого типа здесь нагрев происходит из-за элементов, находящихся в непосредственной близости от резистора. Узлы никак не взаимосвязаны. При таком подходе сопротивление полупроводника обуславливается изменением тока, который проходит через близлежащий элементы. Терморезисторы, работающие на косвенном принципе, нашли применение в мультиметрах (комбинированных приборах).
Главные параметры терморезисторов
При выборе детали важно ориентироваться на ее показатели и характеристики, меняющиеся в зависимости от типа, производителя, исходного материала и других показателей.
При выборе изделия нужно выяснить главные параметры и определить, подходят они для решения поставленной задачи или нет.
- ГАБАРИТЫ. При покупке нужно быть уверенным, что деталь подходит по размеру и поместится на плате (в схеме).
- СОПРОТИВЛЕНИЯ RT и RT. Параметры измеряются в Омах и указываются применительно к текущей температуре в градусах Цельсия или Кельвинах. Если деталь рассчитана на работу при температурах от -100 до +200 градусов Цельсия, температурный режим для окружающей среды принимается на уровне 20-25 градусов Цельсия.
- ПОСТОЯННАЯ ВРЕМЕНИ Τ (СЕК). Параметр отражает тепловую инерционность. При расчете учитывается время, которое необходимо для изменения температуры термического резистора на 63% от разницы t детали и окружающего воздуха. В большинстве случаев этот параметр принимается равным 100 градусов Цельсия.
- ТКС (в % на один градус Цельсия). Как правило, этот показатель прописывается для той же температуры t, что и холодное сопротивление. В такой ситуации при обозначении используются другие цифры — at.
- Мощность рассеивания Pmax (предельно допустимый параметр), Вт. По этому показателю можно судить о пределе, до достижения которого в полупроводнике не происходит необратимых изменений (параметры остаются прежними). При этом превышение температуры tmax при достижении Pmax исключено.
- Температура tmax — максимально допустимый параметр, при котором характеристики терморезистора длительное время остаются без изменений (на установленном производителем уровне).
- Коэффициент энергетической чувствительности (измеряется в Вт/проценты*R). Обозначение — G. Показатель отражает мощность, которую необходимо рассеять на детали для снижения параметра R на один процент.
- Коэффициент рассевания (измеряется в Вт на один градус Цельсия). Условное обозначение — H. Параметр отражает мощность, которая рассеивается на термическом резисторе при разнице в температурных режимах детали и окружающего воздуха на один градус.
Рассмотренные выше коэффициенты (G и H) зависят от характеристик применяемого полупроводника и особенностей обмена тепла между изделием и окружающей его средой. Параметры связаны друг с другом через специальную формулу — G=H/100а.
- Теплоемкость (измеряется в Джоулях на один градус Цельсия). Условное обозначение — C. Показатель отражает объем тепла (энергии), необходимой для нагрева терморезистора на один градус.
Некоторые рассмотренные параметры связаны друг с другом. В частности, постоянная времени τ равна отношению между теплоемкостью и коэффициентом рассеивания.
При покупке позитрона, кроме указанных выше параметров, нужно учесть интервал позитивного температурного сопротивления и кратность изменения R в секторе положительного ТКС.
Базовые характеристики терморезисторов
При оценке терморезисторов нужно учесть и проанализировать их характеристики:
- Вольтамперная характеристика — кривая на графике, показывающая зависимость напряжения на образце от проходящего через терморезистор тока. График рисуется с учетом теплового равновесия с окружающей природой. Для позисторов и термисторов графики различаются.
- Температурная характеристика. При построении графика снимается зависимость сопротивления от температуры в определенном режиме. По оси R выставляется параметр по принципу десятикратного увеличения (10Х), а по оси времени пропускается участок в диапазоне от нуля до 223 Кельвинов.
- Подогревная характеристика. С помощью графика можно увидеть параметры термических резисторов, работающих на косвенном принципе. Иными словами, кривая отражает зависимость сопротивления детали от подаваемой к нему мощности. При указании графика масштаб по сопротивлению берется с учетом 10Х.
Общий принцип действия
Терморезисторы делаются максимально чувствительными к изменению температурного режима, ведь на этом принципе они и работают. При отсутствии нагрева атомы, входящие в состав детали, находятся в правильном порядке и формируют длинные ряды.
При изучении кривой зависимости сопротивления от температуры можно увидеть характеристику нелинейного типа. При этом лучшие характеристики терморезистор показывает в диапазоне от -90 до +130 градусов.
Важно учесть, что принцип действия таких деталей строится на корреляции между температурным режимом и металлами в составе детали.
Сам терморезистор изготавливается с применением полупроводниковых составов (оксидов, марганца, меди, никеля, силикатов, железа и других). Такие компоненты способны реагировать на малейшее изменение в температуре.
Создаваемое электрическое поле подталкивает электрон, который перемещается до момента удара об атом. По этой причине движение электрона затормаживается.
При росте температуры атомы двигаются активнее. При таких обстоятельствах исходный актом быстрее столкнется с другим элементом. В результате возникает дополнительное сопротивление.
В случае повышения температуры растет и показатель R. Но здесь нужно учесть тип терморезистора, от которого зависит принцип повышения и роста сопротивления при изменении температурного режима.
Терморезисторы NTC — изделия, имеющие отрицательный температурный коэффициент. Их особенность — повышенная чувствительность, высокий температурный коэффициент (на один или два порядка выше, чем у металла), небольшие габариты и широкий температурный диапазон.
Полупроводники NTC удобны в применении, стабильны в работе и способны выдерживать большую перегрузку.
Особенность NTC в том, что их сопротивление увеличивается при снижении температуры. И наоборот, если t снижается, параметр R растет. При изготовлении таких деталей применяются полупроводники.
Принцип действия прост. При повышении температуры число носителей заряда резко растет, и электроны направляются в зону проводимости. При изготовлении детали, кроме полупроводников, могут применяться и переходные металлы.
При анализе NTC нужно учесть бета-коэффициент. Он важен в случае, если изделие применяется при измерении температуры, для усреднения графика и вычислений с помощью микроконтроллеров.
Как правило, термисторы NTC применяются в температурном диапазоне от 25 до 200 градусов. Следовательно, их можно использовать для измерений в указанном пределе.
Отдельного нужно рассмотреть сфера их использования. Такие детали имеют небольшую цену и полезны для ограничения пусковых токов при старте электрических двигателей, для защиты Li аккумуляторов, снижения зарядных токов блока питания.
Терморезистор NTC также используется в автомобиле — датчик, применяемый для определения точки отключения и включения климат-контроля в машине.
Еще один способ применения — контроль температуры двигателя. В случае превышения безопасного предела, подается команда на реле, а дальше двигатель глушится.
Не менее важный элемент — датчик пожара, определяющий рост температуры и запускающий сигнализацию.
Терморезисторы NTC обозначаются буквами или имеют цветную маркировку в виде полос, колец или других обозначений. Варианты маркировки зависят от производителя, типа изделия и других параметров.
Пример обозначения 5D-20, где первая цифра показывает сопротивление терморезистора при 25 градусах Цельсия, а расположенная рядом с ней цифра (20) — диаметр.
Чем выше этот параметр, тем большую мощность рассеивания имеет изделие. Чтобы не ошибиться в маркировке, рекомендуется использовать официальную документацию.
В отличие от рассмотренных выше терморезисторов, PTC — термисторы, имеющие положительный коэффициент сопротивления. Это означает, что в случае нагрева детали увеличивается и ее сопротивление. Такие изделия активно применялись в старых телевизорах, оборудованных цветными телескопами.
Двухвыводные терморезисторы производятся с применением полупроводникового материала (чаще всего Si — кремний). Внешне изделие имеет вид небольшой пластинки с двумя выводами на разных концах.
Терморезисторы PTC применяются в разных сферах. Чаще всего их используют для защиты силового оборудования от перегруза или перегрева, а также поддержания температуры в безопасном режиме.
Главные направления применения:
- Защита электрических двигателей. Задача изделия состоит в защите обмотки от перегорания при клине ротора или в случае поломки системы охлаждения. Позистор играет роль датчика, подключаемого к управляющему прибору с исполняющим реле, контакторами и пускателями. При появлении форс-мажорной ситуации сопротивление растет, а сигнал направляется к управляющему элементу, дающему команду на отключение мотора.
- Защита трансформаторных обмоток от перегрева или перегруза. В такой схеме позистор устанавливается в цепи первичной обмотки.
- Нагревательный узел в пистолетах для приклеивания.
- В машинах для нагрева тракта впуска.
- Размагничивание ЭЛТ-кинескопов и т. д.
Как проверить с помощью мультиметра
Важный вопрос при эксплуатации термисторов — знание принципов их проверки. При оценке исправности нужно понимать, что термисторы бывают двух видов — с положительными и отрицательным температурным коэффициентом (об этом упоминалось выше). Следовательно, сопротивление детали снижается или уменьшается с ростом температуры.
С учетом этого факта для проверки термистора потребуется всего два элемента — паяльник для нагрева и мультиметр.
- Перевод прибора в режим замера сопротивления.
- Подключение щупов к клеммам терморезистора (расположение не имеет значения).
- Фиксация сопротивления на бумаге и поднесение нагретого паяльника к детали.
- Контроль сопротивления (оно растет или падает в зависимости от вида терморезистора).
- Если сопротивление снижается или увеличивается, полупроводник работает правильно.
Для примера можно использовать термистор NTC типа MF 72. В нормальном режиме он показывает сопротивление 6,9 Ом при обычной температуре.
После поднесения паяльника к изделию ситуация изменилась — сопротивление пошло в сторону снижения и остановилось на уровне двух Ом. По этой проверке можно сделать вывод, что терморезистор исправен.
Если сопротивление меняется резко или вообще не двигается, можно говорить о выходе детали из строя.
Стоит учесть, что такая проверка очень грубая. Для точного контроля нужно проверить температуру и сопротивление термистора, а после сравнить данные с официальными параметрами.
Как подключить
Принцип подключения термисторов прост (на примере Arduino). Для этого потребуется монтажная плата, деталь и резистор на 10 кОм. Так как изделие имеет высокое сопротивление, этот параметр для проводников не влияет на конечный результат.
Один контакт сопротивления подключается к контакту 5В, а второй — к контакту термистора.
Если возникают сомнения в сфере применения, терморезистор можно нагреть и посмотреть на его поведение. Если сопротивление будет меняться, это нужный элемент.
Терморезисторы используются почти везде — в плате зарядного устройства, в автомобильных усилителях, блоках питания ПК, в Li-Ion аккумуляторах и других устройства. Найти их на схеме не трудно.
SMD и встроенные терморезисторы
Существует также еще два вида терморезисторов, которым стоит уделить внимание:
В дополнение стоит сказать, что в электронике вместе с терморезисторами используются термореле и термические предохранители, которые работают на похожем принципе и также устанавливаются в электронных приборах.
Читайте также: