Сколько скоростей у вентилятора охлаждения
Лучшее охлаждение ПК в условиях ограниченного количества вентиляторов - разрушаем стереотипные схемы охлаждения и максимально эффективно продуваем корпус. Теория и практика охлаждения.
Вступление
Как эффективно охладить комплектующие внутри системного блока? Казалось бы, простой вопрос, над ответом на который не будет задумываться ни один опытный пользователь ПК, а уж тем более оверклокер или компьютерный энтузиаст. Мол что тут думать: холодный воздух идет по низу, а горячий воздух устремляется вверх - простая физика из школьного курса, следовательно, надо организовать вдув (забор холодного воздуха) снизу, а выдув горячего воздуха сверху, холодный воздух должен пройти через все комплектующие, попутно охлаждая у их и становясь теплым, и "выброситься" из корпуса по классике через вентилятор, расположенный на задней стенке. Но это теория. Теория, которая не учитывает воздушные потоки, создаваемые вентиляторами и количество этих самых вентиляторов.
реклама
Я же предлагаю рассмотреть более конкретную и приближенную к реальности ситуацию: как эффективно охладить комплектующие внутри системного блока, имея всего два вентилятора? Давайте рассмотрим как классические схемы охлаждения, так и нетипичные способы расположить вентиляторы в корпусе.
Предлагаю перейти к тестовому стенду.
Тестовый стенд
В статье такого формата было решено немного изменить структуру описания тестового стенда.
реклама
Итак, в качестве "подопытного" корпуса был выбран Thermaltake View 31 TG, довольно часто появляющийся в наших экспериментах. Выбор данной модели в качестве "испытуемой" был обусловлен тем, что View 31 TG позволяет практически как угодно расположить вентиляторы внутри себя, а благодаря съемной передней панели данный корпус позволяет имитировать модели с плохой и хорошей продуваемостью.
За охлаждение комплектующих внутри корпуса отвечали два комплектных вентилятора Riing 14 LED Blue. Участие этих вентиляторов в эксперименте обусловлено тем, что они создают достаточно мощный воздушный поток, относительно шума, исходящего от них. И, собственно, мощный воздушный поток "раскроет" схему расположения вентиляторов, так как слабые вентиляторы смогли бы обеспечить достаточную мощность вдува или выдува и эксперимент можно было бы считать не достаточно честным и объективным.
реклама
Прогревали корпус изнутри процессор AMD Ryzen 7 2700, разогнанный до частоты в 3.9 ГГц по всем ядрам, тепловыделение которого составило порядка 140 ватт, и видеокарта NVIDIA GeForce GTX 1060 c TDP около 120 ватт. За охлаждение процессора отвечала двухбашенная система охлаждение GELID Phantom, обзор и тестирование которой были проделаны в прошлой статье. Рекомендую к ознакомлению.
Тестирование проходило при комнатной температуре в 22 градуса. Температура поддерживалась сплит-системой. Прогрев комплектующих осуществлялся программой OCCT. В качестве теста был выбран стресс-тест как видеокарты, так и процессора одновременно, AVX инструкции при этом были задействованы. Каждый тестовый прогон длился чуть больше 15 минут, чтобы обеспечить практически максимально возможный нагрев комплектующих в созданных условиях.
Тест "пристрелочный": тестирование без использования вентиляторов
Для начала было решено провести "пристрелочное" тестирование, которое заключалось в том, что комплектующие внутри закрытого корпуса будут нагреваться при естественной циркуляции воздушных потоков. Смысл же этого тестирования заключался в том, чтобы выявить "эталонную" температуру, с которой мы в последующем будем сравнивать, чтобы определить, какая схема расположения вентиляторов покажет себя максимально эффективно.
В процессе тестирования горячие воздушные потоки будут выходить естественным путем через перфорационные отверстия на верхней крышке корпуса, а также "выбрасываться" через перфорацию в задней стенке при помощи башенного кулера GELID Phantom.
реклама
Были получены следующие результаты, с которыми вы можете ознакомиться во вложении.
Тест первый, схема первая: оба вентилятора на выдув, плохой забор воздуха спереди / хороший забор воздуха с передней стенки
Прошу обратить внимание на расположение вентилятора сверху. Именно такое расположение вентилятора в верхней части корпуса является максимально эффективным решением, так как располагать вентилятор сверху в передней части корпуса не имеет никакого смысла, так как данное решение максимально нецелесообразно - зачем выбрасывыть наружу еще холодный воздух? Также сразу хочется отметить, что в данной статье не будет схем со "вдувом сверху", так как мы намерены проверить реальные варианты схем, а не рассматривать всевозможные глупости неопытных пользователей.
Итак, при плохом заборе воздуха (закрытой передней стенке) нам удается выиграть практически 10 градусов по температуре процессора относительно корпуса без вентиляторов. Видеокарта становится холоднее на 4 градуса. А скорость вращения вентиляторов на башне сократилась на 100 оборотов. Компьютер стал заметно тише и холоднее.
Прошу ознакомиться с полученными результатами
При хорошем заборе воздуха (открытой передней панели) удается выиграть дополнительный градус по температуре процессора. Скорость вращения процессорных вентиляторов несколько сокращается. Компьютер становится более шумным из-за худшей звукоизоляции.
Прошу ознакомиться с более подробными результатами во вложении.
Тест дополнительный, схема упрощенная: один вентилятор на выдув (закрытая передняя панель)
Далее предлагаю выяснить, насколько необходимо иметь два вентилятора на выдув горячего воздуха. Для этого, разумеется, я убираю вентилятор, находящийся над процессорным кулером.
Данное действие привело к чуть заметному ухудшению результатов относительно схемы с двумя вентиляторами на выдув. Температура процессора поднялась на 1 градус, видеокарта же также прогрелась на 1 градус больше. Скорость вращения вентиляторов возросла.
Прошу ознакомиться с более подробными результатами во вложении.
Тест второй, схема вторая: два вентилятора на вдув, закрытая и открытая передняя панель
Теперь посмотрим, на сколько эффективными себя покажут оба вентилятора, расположенные спереди корпуса. Выдув горячего воздуха будет осуществляться силами вентиляторов башенного кулера, а также естественным путем через перфорацию в верхней части корпуса.
С закрытой передней панелью данная схема расположения вентиляторов оказалась абсолютно неэффективной. Температура процессора поднялась на два градуса относительно схемы без использования корпусных вентиляторов. Но видеокарту удалось охладить на пару градусов.
С более подробными результатами прошу ознакомиться в материалах, представленных во вложении.
Открытая передняя панель дает настоящий "глоток свежего воздуха" комплектующим. Относительно корпуса, лишенного вентиляторов, температура процессора снизилась на 9 градусов. Данная схема расположения показала себя существенно лучше, та же компоновка вентиляторов с закрытой панелью, но проигрывает двум вентиляторам на выдув, работающими даже с закрытой передней панелью. Превосходство над одним вентилятором на выдув на 0,3 градуса - погрешность.
С более подробными результатами прошу ознакомиться в материалах, представленных во вложении.
Тест третий, вариации "классических" схем: один вентилятор на вдув, один на выдув (разное расположение вентилятора на вдув спереди корпуса), открытая и закрытая передняя панель.
Теперь мы переходим к "классическим" схемам, объединенным в единый тест, так как все они предусматривают расположение одного вентилятора на вдув и одного на выдув.
Начнем с наиболее классического варианта, когда мы имеем вентилятор на вдув, расположенный внизу передней части корпуса и обдувающий жесткие диски, вентилятор на выдув располагается на задней стенке корпуса. Передняя панель корпуса закрыта.
Такое "классическое" расположение вентиляторов проигрывает по своей эффективности вариантам с двумя вентиляторами на выдув с точки зрения температуры процессора. Однако стоит заметить, что при таком расположении вентиляторов жесткие диски внутри системного блока охлаждаются куда лучше, чем в том варианте, когда в корпусе нет вентиляторов на вдув вовсе.
С более подробными результатами прошу ознакомиться в материалах, представленных во вложении.
Нагрев и скорость вращения: "классическое" расположение вентиляторов (вентилятор на вдув снизу, передняя панель закрыта)
А теперь все то же самое, но с открытой передней панелью.
Температура ЦП снизилась до уровня двух вентиляторов на выдув с закрытой передней панелью. Температура жестких дисков опустилась до минимального значения.
С более подробными результатами прошу ознакомиться в материалах, представленных во вложении.
Нагрев и скорость вращения: "классическое" расположение вентиляторов (вентилятор на вдув снизу, передняя панель открыта)
Переставляем вентилятор на вдув выше корзины с жесткими дисками и закрываем переднюю панель корпуса.
Определенно, данная схема расположения не имеет абсолютно никакого смысла, так как температура процессора стала даже выше, чем с одним вентилятором на выдув. Но стоит заметить, что при таком расположении.
С более подробными результатами прошу ознакомиться в материалах, представленных во вложении.
Нагрев и скорость вращения: "классическое" расположение вентиляторов (вентилятор на вдув сверху, передняя панель закрыта)
Сохраняем расположение вентиляторов и отрываем переднюю панель корпуса.
Температура процессора оказалась средней между двумя вентиляторами на выдув с закрытой крышкой и с открытой крышкой. Температура видеокарты осталась примерно на том же уровне. Эффективность охлаждения корзины с жесткими дисками определенно снизилась.
С более подробными результатами прошу ознакомиться в материалах, представленных во вложении.
Нагрев и скорость вращения: "классическое" расположение вентиляторов (вентилятор на вдув сверху, передняя панель открыта.
Заключение
В заключении напрашиваются как очевидные для многих, так и несколько не очевидные выводы: первое, передняя панель с боковой перфорацией ухудшает охлаждение комплектующих, выбирайте корпуса с прямым забором воздуха с передней части корпуса; второе, наиболее сбалансированной показала себя "классическая" схема с вентилятором, расположенным в нижней части передней панели, что помогает обдувать жесткие диски, однако, если в вашем ПК уже нет жестких дисков, то вам стоит задуматься о расположении двух вентиляторов на выдув; третье, выдув намного важнее, чем вдув - не зря даже в самые слабые и дешевые компьютеры ставят один вентилятор на выдув горячего воздуха из корпуса, хотя бы один вентилятор на выдув должен быть в вашем компьютере обязательно.
Дополнение
В тестировании не приняла участие схема продува, когда в корпусе имеется один вентилятор на вдув, забирающий воздух через перфорацию через нижнюю стенку корпуса, и один вентилятор на выдув, расположенный на верхней стенке корпуса над процессорным кулером. Определенно, такая схема имеет место быть, но требует горизонтального расположения башни, чтобы башенные вентиляторы забирали холодный воздух снизу и помогали "выбросить" его вверх к выдувающему вентилятору. Наиболее эффективно данная схема может себя показать в редких корпусах с горизонтальным расположением материнской платы, как, например, в легендарном SilverStone Raven RVX01:
А какая схема расположения вентиляторов в вашем системном блоке?
Подпишитесь на наш канал в Яндекс.Дзен или telegram-канал @overclockers_news - это удобные способы следить за новыми материалами на сайте. С картинками, расширенными описаниями и без рекламы.
Перенос образующегося при работе мотора тепла в атмосферу требует постоянного обдува радиатора системы охлаждения. Не всегда для этого достаточно интенсивности набегающего скоростного потока воздуха. При малых скоростях и полных остановках в дело вступает специально предназначенный вентилятор дополнительного охлаждения.
Принципиальная схема нагнетания воздуха в радиатор
Обеспечить прохождение воздушных масс через сотовую структуру радиатора возможно двумя способами – нагнетать воздух вдоль направления естественного потока с внешней стороны или создавать разрежение изнутри. Принципиальной разницы нет, особенно если используется система воздушных щитков – диффузоров. Они обеспечивают минимальный расход потока на бесполезные завихрения вокруг лопастей вентилятора.
Таким образом, типовых вариантов организации обдува два. В первом случае вентилятор располагается на двигателе или радиаторной рамке в подкапотном пространстве моторного отсека и создаёт напорный поток на двигатель, забирая воздух снаружи и пропуская его через радиатор. Чтобы лопасти не работали вхолостую, пространство между радиатором и крыльчаткой максимально плотно закрыто пластиковым или металлическим диффузором. Его форма также способствует использованию максимальной площади сот, поскольку обычно диаметр вентилятора значительно меньше, чем геометрические размеры радиатора.
При расположении крыльчатки с передней стороны привод вентилятора возможен лишь от электромотора, поскольку механической связи с двигателем препятствует радиаторная сердцевина. В обоих случаях выбранная форма радиатора и требуемая эффективность охлаждения может заставить использовать двойной вентилятор с крыльчатками меньшего диаметра. Такой подход обычно сопровождается усложнением алгоритма работы, вентиляторы способны коммутироваться раздельно, регулируя интенсивность обдува в зависимости от нагрузки и температуры.
Сама крыльчатка вентилятора может иметь достаточно сложную и аэродинамически проработанную конструкцию. К ней предъявляется целый ряд требований:
- количество, форма, профиль и шаг лопастей должны обеспечивать минимальные потери, не внося дополнительных затрат энергии на бесполезное перемалывание воздуха;
- в заданном диапазоне скоростей вращения срыв потока исключается, иначе падение эффективности отразится на тепловом режиме;
- вентилятор должен быть отбалансирован и не создавать как механических, так и аэродинамических вибраций, способных нагружать подшипники и соседствующие детали двигателя, особенно тонкие структуры радиаторов;
- шумность крыльчатки также минимизируется согласно общему тренду снижения производимого автомобилями акустического фона.
Если сравнить современные вентиляторы легковых автомобилей с примитивными пропеллерами полувековой давности, то можно отметить, что наука поработала и с такими достаточно очевидными деталями. Это видно даже внешне, а при работе хороший вентилятор почти бесшумно создаёт неожиданно мощный напор воздуха.
Типы привода вентиляторов
Создание интенсивного воздушного потока требует значительной мощности привода вентилятора. Энергию на это можно забирать от двигателя различными способами.
Непрерывное вращение от шкива
В ранних простейших конструкциях крыльчатка вентилятора просто надевалась на ременный шкив привода водяного насоса. Производительность обеспечивалась внушительным диаметром окружности лопастей, которые представляли собой просто отогнутые металлические пластины. Никаких требований по шумности не предъявлялось, находящийся рядом старинный двигатель заглушал все звуки.
Скорость вращения была прямо пропорциональна оборотам коленчатого вала. Определённый элемент регулирования температуры присутствовал, поскольку с ростом нагрузки на двигатель, а значит и скорости его вращения, вентилятор также начинал интенсивней прогонять воздух через радиатор. Дефлекторы ставились редко, всё компенсировалось переразмеренными радиаторами и большим объёмом охлаждающей воды. Тем не менее, понятие перегрева тогдашним водителям было хорошо знакомо, будучи платой за простоту и недостаточную продуманность.
Вязкостные муфты
У примитивных систем было несколько недостатков:
- плохое охлаждение на малых оборотах из-за низкой скорости прямого привода;
- при увеличении размеров крыльчатки и изменении передаточного числа для усиления обдува на холостых оборотах мотор начинал переохлаждаться с ростом скорости, а расход топлива на бестолковое вращение пропеллера достигал значительной величины;
- во время прогрева мотора вентилятор продолжал упорно охлаждать подкапотное пространство, выполняя в точности противоположную задачу.
Было ясно, что дальнейший рост экономичности и мощности двигателей потребует управления скоростью вентилятора. Задачу в какой-то степени решал механизм, известный в технике как вязкостная муфта. Но тут она должна быть устроена особым образом.
Муфта вентилятора, если представить её упрощенно и не учитывая различные варианты исполнения, состоит из двух дисков с насечками, между которыми располагается так называемая неньютоновская жидкость, то есть силиконовое масло, меняющее вязкость в зависимости от скорости относительного перемещения её слоёв. Вплоть до серьёзной связи между дисками через вязкий гель, в который она превратится. Остаётся лишь расположить там термочувствительный клапан, который подаст эту жидкость в зазор при росте температуры двигателя. Очень удачная конструкция, к сожалению, не всегда надёжная и долговечная. Но часто применявшаяся.
Ротор крепился к шкиву, вращающемуся от коленвала, а на статор надевалась крыльчатка. При высокой температуре и больших оборотах вентилятор выдавал максимальную производительность, что и требовалось. Не отнимая лишней энергии, когда обдув не нужен.
Магнитная муфта
Чтобы не страдать с химическими веществами в муфте, не всегда стабильными и долговечными, часто используется более понятное решение с точки зрения электротехники. Электромагнитная муфта состоит из фрикционных дисков, соприкасающихся и передающих вращение под действием тока, подаваемого в электромагнит. Ток происходил из реле управления, замыкающегося через датчик температуры, обычно устанавливаемый на радиаторе. Как только определялся недостаточный обдув, то есть жидкость в радиаторе перегревалась, контакты замыкались, муфта срабатывала, и крыльчатка раскручивалась всё тем же ремнём через шкивы. Способ часто используется на тяжёлых грузовиках с мощными вентиляторами.
Прямой электропривод
Наиболее часто на легковых автомобилях применяется вентилятор с крыльчаткой, непосредственно посаженной на вал электродвигателя. Питание этого мотора обеспечивается так же, как и в описанном случае с электромуфтой, только тут не требуется клиноременная передача со шкивами. Когда надо – электродвигатель создаёт обдув, отключаясь при нормальной температуре. Способ реализовали с появлением компактных и мощных электромоторов.
Удобным качеством такого привода является способность работать при остановленном двигателе. Современные системы охлаждения сильно нагружены, и если резко прекращается обдув, а помпа не работает, то возможны локальные перегревы в местах с максимальной температурой. Или закипание бензина в топливной системе. Вентилятор может поработать некоторое время после остановки, предотвратив проблемы.
Проблемы, неисправности и ремонт
Включение вентилятора уже можно считать аварийным режимом, поскольку регулирует температуру не он, а термостат. Поэтому систему принудительного обдува делают очень надёжно, и она редко отказывает. Но если вентилятор не включился, и мотор закипел, то следует проверить наиболее подверженные отказам детали:
- в ременной передаче возможно ослабление и пробуксовка ремня, а также его полный обрыв, всё это легко определить визуально;
- методика проверки вискомуфты не так проста, но если на горячем моторе она сильно пробуксовывает, то это сигнал к замене;
- электромагнитные приводы, как муфта, так и электромотор, проверяются замыканием датчика, или на инжекторном моторе снятием разъёма с датчика температуры системы управления двигателем, вентилятор должен начать вращение.
Неисправный вентилятор способен погубить двигатель, ведь перегрев чреват капитальным ремонтом. Поэтому ездить с такими дефектами нельзя даже зимой. Отказавшие детали следует немедленно заменять, причём использовать только запчасти от надёжного изготовителя. Цена вопроса – двигатель, если его поведёт от температуры, то и ремонт может не помочь. На этом фоне стоимость датчика или электромотора просто ничтожна.
Компактные электрические вентиляторы, благодаря невысокой цене, используются для охлаждения оборудования уже больше полувека. Тем не менее только в последние годы технологии управления вентиляторами стали значительно развиваться. В этой статье описано как и почему это развитие имело место быть и предложены некоторые полезные решения для разработчиков.
Один из трендов электроники - это создание компактных устройств, обладающих богатой функциональностью. Поэтому большинство электронных компонентов приобретают все меньшие размеры. Один из очевидных примеров - современные ноутбуки. Толщина и вес ноутбуков значительно уменьшается, но потребляемая мощность остается прежней или увеличивается. Другой пример - проекционные системы и телевизионные ресиверы.
В ноутбуках большая часть тепла выделяется процессором, в проекторе - источником света. Это тепло необходимо бесшумно и эффективно удалять из системы. Самый тихий способ избавления от тепла - это использование пассивных охлаждающих компонентов, таких как радиаторы или тепловые трубки. Однако для многих популярных пользовательских устройств такой способ неэффективен и дорог.
Другой способ удаления тепла - это активное охлаждение с использованием вентиляторов, создающих поток воздуха вокруг нагревающихся компонентов. Однако вентилятор являются источником шума и, кроме того, увеличивает суммарное энергопотребление устройства, что может быть критично при питании от аккумулятора. Также добавление вентилятора увеличивает количество механических компонентов в системе, что отрицательно сказывается на надежности изделия.
Контроль скорости вращения вентилятора позволяет уменьшить описанные недостатки. Поскольку запуск вентилятора на меньших оборотах снижает шум и энергопотребление и увеличивает срок его службы.
Существует несколько типов вентиляторов и способов их контроля. Один из вариантов классификации вентиляторов может быть таким:
1. 2-х проводные вентиляторы
2. 3-х проводные вентиляторы
3. 4-х проводные вентиляторы
Методы управления вентиляторами, обсуждаемые в этой статье, такие:
1. управление отсутствует
2. on/ff управление
3. линейное управление
4. низкочастотная широтно-импульсная модуляция (ШИМ, PWM)
5. высокочастотное управление
2-х проводные вентиляторы имеют только выводы питания - плюс и земля. В 3-х проводных вентиляторах добавляется тахометрический выход. На этом выходе присутствует сигнал, частота которого пропорциональна скорости вращения вентилятора. 4-х проводные вентиляторы, помимо выводов питания и тахометрического выхода, имеют вход управления. На этот вход подается ШИМ сигнал и ширина импульса этого сигнала определяет скорость вращения вентилятора.
2-х проводными вентиляторами можно управлять регулируя напряжение питания или скважность ШИМ сигнала. Однако без тахометрического сигнала невозможно понять на сколько быстро вентилятор вращается. Такая форма управления скоростью вращения вентилятора называется открытым контуром (open-loop).
3-х проводными вентиляторами можно управлять аналогичным образом, но в этом случае у нас есть обратная связь. Можно анализировать тахосигнал и устанавливать требуемую скорость. Такая форма управления называется закрытым контуром (closed-loop).
Если управлять вентилятором регулируя напряжение питания, тахосигнал будет иметь форму меандра. И в этом случае тахосигнал будет всегда валидным, пока на вентиляторе есть напряжение. Такой сигнал показан на рисунке 1 (ideal tach).
При управлении вентилятором с помощью ШИМ - ситуация сложнее. Тахометрический выход вентилятора обычно представляет собой открытый коллектор. Поэтому тахосигнал будет валидным только при наличии напряжения на вентиляторе (on фаза ШИМ сигнала), а при отсутствии (off фаза) он будет подтягиваться к высокому логическому уровню. Таким образом тахосигнал становится "порубленным" управляющим ШИМ сигналом и по нему уже нельзя достоверно определять скорость вращения. Этот сигнал показан на рисунке 1 (tach).
Рисунок 1. Идеальный тахосигнал и тахосигнал при внешнем ШИМ управлении.
Для решения данной проблемы, необходимо периодически включать вентилятор на такой отрезок времени, который позволит получить несколько достоверных циклов тахосигнала. Такой подход реализован в некоторых контроллерах фирмы Analog Device, например в ADM1031 и ADT7460.
4-х проводные вентиляторы имеют ШИМ вход, который управляет коммутацией обмоток вентилятора к плюсовой шине источника питания. Такая схема управления не портит тахосигнал, в отличии от стандартной, где используется внешний ключ и коммутируется отрицательная шина. Переключение обмоток вентилятора создает коммутационный шум. Чтобы "сдвинуть" этот шум за пределы звукового диапазона частоту ШИМ сигнала обычно выбирают больше 20 кГц.
Еще одно преимущество 4-х проводных вентиляторов - это возможность задания низкой скорости вращения - до 10% от максимальной скорости. На рисунке 2 показана разница между 3-х и 4-х проводными вентиляторами.
Рисунок 2. 3-х и 4-х проводные вентиляторы
Управление отсутствует
Простейший метод управления вентилятором - отсутствие какого-либо управления вообще. Вентилятор просто запускается на максимальной скорости и работает все время. Преимущества такого управления - гарантированное стабильное охлаждение и очень простые внешние цепи. Недостатки - уменьшение срока службы вентилятора, максимальное энергопотребление, даже когда охлаждение не требуется, и непрерывный шум.
On/off управление
Следующий простейший метод управления - термостатический или on/off. В этом случае вентилятор включается только тогда, когда требуется охлаждение. Условие включения вентилятора устанавливает пользователь, обычно это какое-то пороговое значение температуры.
Подходящий датчик для on/off управления - это ADM1032. Он имеет выход THERM, который управляется внутренним компаратором. В нормальном состоянии на этом выходе высокий логический уровень, а при превышении порогового температурного значения он переключается на низкий. На рисунке 3 показан пример цепи с использованием ADM1032.
Рисунок 3. Пример on/off управления
Недостаток on/off контроля - это его ограниченность. При включении вентилятора, он запускается на максимальной скорости вращения и создает шум. При выключении он полностью останавливается и шум тоже прекращается. Это очень заметно на слух, поэтому с точки зрения комфорта такой способ управления далеко не оптимальный.
Линейное управление
При линейном управлении скорость вращения вентилятора изменяется за счет изменения напряжения питания. Для получения низких оборотов напряжение уменьшается, для получения высоких увеличивается. Конечно, есть определенные границы изменения напряжения питания.
Рассмотрим, например, вентилятор на 12 вольт. Для запуска ему требуется не меньше 7 В и при этом напряжении он, вероятно, будет вращаться с половинной скоростью от своего максимального значения. Когда вентилятор запущен, для поддержания вращения требуется уже меньшее напряжение. Чтобы замедлить вентилятор, мы можем понижать напряжение питание, но до определенного предела, допустим, до 4-х вольт, после чего вентилятор остановится. Эти значения будут отличаться в зависимости от производителя, модели вентилятора и конкретного экземпляра.
5-и вольтовые вентиляторы позволяют регулировать скорость вращения в еще меньшем диапазоне, поскольку их стартовое напряжение близко к 5 В. Это принципиальный недостаток данного метода.
Линейное управление вентилятором можно реализовать на микросхеме ADM1028. Она имеет управляющий аналоговый выход, интерфейс для подключения диодного температурного датчика, который обычно используется в процессорах и ПЛИС, и работает от напряжения 3 - 5.5 В. На рисунке 4 показан пример схемы для реализации линейного управления. Микросхема ADM1028 подключается ко входу DAC.
Рисунок 4. Схема для реализации линейного управления 12-и вольтового вентилятора
Линейный метод управления тише, чем предыдущие. Однако, как вы могли заметить, он обеспечивает маленький диапазон регулировки скорости вращения вентилятора. 12-и вольтовые вентиляторы при напряжении питания от 7 до 12 В, позволяют устанавливать скорость вращения от 1/2 от максимума до максимальной. 5-и вольтовые вентиляторы при запуске от 3,5 - 4 В, вращаются практически с максимальной скоростью и диапазон регулирования у них еще меньше. Кроме того, линейный метод регулирования не оптимален с точки зрения энергопотребления, потому что снижение напряжения питания вентилятора выполняется за счет рассеяния мощности на транзисторе (смотри рисунок 4). И последний недостаток - относительная дороговизна схемы управления.
Наиболее популярный метод управления скоростью вращения вентилятора - это ШИМ управление. При таком методе управления вентилятор подключается к минусой шине питания через ключ, а на управляющий вход ключа подается ШИМ сигнал. В данном случае к вентилятору всегда приложено либо нулевое, либо рабочее напряжение питания и не возникает таких энергопотерь, как при линейном методе управления. На рисунке 5 показана типовая схема реализующая ШИМ управление.
Рисунок 5. ШИМ управление.
Преимущество данного метода управления - простота реализации, дешевизна, эффективность и широкий диапазон регулирования скорости вращения. Однако недостатки у этого метода тоже есть.
Один из недостатков ШИМ управления - это "порча" тахосигнала. Этот недостаток можно устранить, используя так называемую pulse stretching технику, то есть удлиняя импульс ШИМ сигнала на несколько периодов тахосигнала. Конечно, при этом скорость вращения вентилятора может немного увеличится. На рисунке 6 показан пример.
Рисунок 6. Удлинение импульса для получения информации о скорости вращения.
Другой недостаток ШИМ управления - это коммутационный шум. Во-первых коммутация индуктивной нагрузки вызывает появление помех в цепях питания, во-вторых может возникать акустический шум - пищание, жужжание. Электрические шумы подавляют фильтрами, а для борьбы с акустический шумом частоту ШИМ сигнала поднимают до 20 кГц.
Также стоит снова упомянуть о 4-х проводных вентиляторах, в которых схема управления уже встроена. В таких вентиляторах коммутируется плюсовая шина питания, что помогает избежать проблем с тахосигналом. Одна из микросхем, предназначенных для реализации ШИМ управления 4-х проводными вентиляторами, - это ADT7467. Условная схема приведена на рисунке 7.
Рисунок 7. Схема ШИМ управления 4-х проводным вентилятором
Подводя итоги можно сказать, что наиболее предпочтительный метод управления вентилятором - это высокочастотное ШИМ управление, реализованное в 4-х проводных вентиляторах. При таком управлении отсутствует акустический шум, значительные энергопотери и проблемы с тахосигналом. Кроме того, он позволяет менять скорость вращения вентилятора в широком диапазоне. Схема ШИМ управления с коммутацией отрицательной шины обладает практически теми же достоинствами и является более дешевой, но портит тахосигнал.
ПРИНЦИП РАБОТЫ ВЕНТИЛЯТОРА
- Механический. Лопасти либо установлены на шкиве коленвала, либо имеют постоянный ременный привод. Наиболее надежная, но устаревшая схема, применяется сегодня преимущественно на спецтехнике или тяжелых грузовиках (хотя в прошлом ее оснащались и легковые автомобили). Существенный минус – постоянное охлаждение двигателя, приводящее к недостаточному прогреву при низких температурах.
- Вискомуфта. Дальнейшее развитие механической схемы. Базовая часть вентилятора имеет постоянный ременной привод, а лопасти подключены через специальные биметаллические пластины, при нагреве которых обе части соединяются вязким гелем, передающим вращение наподобие гидротрансформатора АКПП. Главные недостатки – низкая точность температурного контроля и сложность конструкции. В настоящее время не применяется.
- От датчика температуры ОЖ, расположенного в радиаторе. Первый вариант электрической схемы подключения вентилятора. Применялся в карбюраторных автомобилях и первых поколениях инжекторных. Основной недостаток – нерелевантность контроля температуры, в особенности, при повреждении и последующем опустошении радиатора.
- От ЭБУ, блока управления двигателем. Наиболее точный и адекватный способ, применяется в современных автомобилях. На большинстве машин ЭБУ получает данные от нескольких датчиков, расположенных в разных частях двигателя, и на основе их показаний подает ток на электромотор вентилятора.Нагрев системы охлаждения происходит постепенно. Сначала нагревается малый контур: рубашка охлаждения двигателя и патрубки, идущие в салон и на некоторое навесное оборудование. По достижении в этом контуре температуры, близкой к рабочей, термостат открывает путь для жидкости в большой контур: радиатор и его патрубки. Соты радиатора, соприкасаясь с атмосферным воздухом, отдают ему тепло. Когда естественного обдува становится недостаточно, подключается принудительный при помощи вентилятора.Современные автомобили оснащаются преимущественно двумя (часто одинаковыми и взаимозаменяемыми) вентиляторами охлаждения. Но это далеко не всегда означает возможность двойного охлаждения: чаще всего один вентилятор несет ответственность за охлаждающую систему, а другой – за кондиционер, радиатор которого (конденсор) находится перед основным радиатором. Этот вентилятор включается тогда, когда нужно охладить фреон.
ПРИЧИНЫ СЛИШКОМ ЧАСТОГО ВКЛЮЧЕНИЯ ВЕНТИЛЯТОРА
-
обдув не включается при нагреве двигателя;
- Термостат. Устройство, регулирующее прохождение жидкости по системе охлаждения, может заклинить либо в закрытом (тогда ОЖ будет циркулировать по внутреннему кругу, не попадая в радиатор), либо в полузакрытом положении – движение антифриза в этом случае замедлится, а теплоотвод ухудшится. Двигатель начнет быстрее перегреваться, соответственно, чаще будет включаться вентилятор.
- Водяной насос (помпа). Недостаточно эффективная работа помпы также способствует понижению скорости циркуляции охлаждающей жидкости,как следствие – перегреву двигателя. Кроме проблем с частым включением вентилятора это еще и очень серьезный симптом – как правило, таким образом насос подает знаки, предшествующие его скорой окончательной поломке.
- Радиатор. Пыль и грязь, летящие с дороги, засоряют пространство между сотами радиатора, что приводит к ухудшению охлаждения антифриза и перегреву системы. В этом случае необходима очистка радиатора, желательно, с его демонтажом.
- Засор каналов охлаждающей системы. Если все вышеупомянутые системы работают в штатном режиме, а вентилятор все равно слишком часто включается, возможно, дело в загрязнении каналов. Нужно поменять антифриз и обязательно промыть систему.
- Воздушные пробки в системе охлаждения. Они могут образоваться при неправильной замене охлаждающей жидкости, а также из-за утечек в системе. При наличии воздуха антифриз нагревается неравномерно, что влечет за собой нестабильную работу вентилятора.
ЧТО ДЕЛАТЬ В СЛУЧАЕ НЕИСПРАВНОСТИ
Эксплуатировать автомобиль, у которого слишком часто включается вентилятор охлаждения, нельзя, даже если показания температуры при этом не доходят до критических значений. Ситуация может быть следствием локальных перегревов вне зоны ответственности датчиков температуры. Нужно как можно быстрее заняться выявлением проблем и их решением.
Если частое включение вентилятора застало в пути, нужно принять меры, позволяющие двигателю охлаждаться в штатном режиме:
- двигаться на небольших оборотах, но с довольно высокой скоростью (по возможности, от 60 км/ч), на прямой или повышенной передаче;
- включить отопитель, радиатор которого также будет отбирать тепло у системы, и кондиционер – его вентилятор поможет основному;
- при наличии, следить за показаниями температуры при помощи сканера;
- при критичном повышении температуры остановиться, но не выключать сразу двигатель, дать ему поработать на холостых оборотах. Ни в коем случае не открывать крышку радиатора или расширительного бачка – это может привести к выплескиванию антифриза и ожогам. Также не рекомендуется открывать капот в жаркую погоду – это не будет способствовать охлаждению двигателя.
Оптимальным решением проблем с включением вентилятора будет визит на станцию технического обслуживания – лучше всего, на одну из СТО сети умных автосервисов Wilgood. Наши квалифицированные мастера оперативно выявят причину и устранят ее, не допуская перегрева и дорогостоящего ремонта двигателя.
Читайте также: