Шим контроллер в ноутбуке за что отвечает
Доброго времени суток! Продолжаем обзор принципа работы системы питания ноутбука на базе платформы Compal LA-C801P REV: 1.A. Схему можно скачать тут .
В третьей части мы рассмотрели "дежурку", которая запитывает мультиконтроллер и обеспечивает режим ожидания. В продолжении темы рассмотрим базовые напряжения, которые формирует также "дежурка". Это напряжения, обозначенные на схеме +3VALW и +5VALW . Согласно карте питания (рассмотрена в четвертой части статьи), мы видим что их формируют гибридные ШИМ контроллеры SY8286BRAC и SY8286CRAC , обозначенные на схеме PU401 и PU402 соответственно. Отличие у них в цоколевке и в формируемом напряжении линейного и импульсного стабилизатора +3V и +5V соответственно. Заметьте что разница в одной букве в маркировке дает значительную разницу в характеристиках микросхемы! Т.е. надо быть крайне внимательным при подборе микросхемы на замену. Корпуса этих микросхем очень малы, всего 3 на 3 миллиметра, и физически производитель не смог бы нанести полную маркировку микросхемы, поэтому используется кодированное название. Для первой микросхемы это одно из: AWV5QB, AWV5BB, AWV5JA.
Для второй: AWW5LA, AWW5BZ, AWW5JC.
Документацию на эти микросхемы найти не удается, даже на официальном сайте производителя ее нет. Видимо данные микросхемы изготавливались по специальному заказу.. Но нам ничего не мешает для понимая сути рассмотреть функциональную схему микросхемы 8286A, принцип работы у них схож:
Данный DC-DC преобразователь состоит из:
- линейного стабилизатора (LDO - Linear Drop-Out regulators ) 3.3V
- Импульсного преобразователя, включающего PWM контроллер и выходных ключей (MOSFET)
- Системы защиты
Питание подается на вход IN (согласно документации от 4 до 23V), вход BS предназначен для подключения внешнего конденсатора к LX , LX - выход для подключения катушки индуктивности, собственно после катушки снимается выходное напряжение. GND - ground, "корпус" или просто "минус" в системе. VCC выход LDO 3.3V, BYP - байпас, сюда подаются внешние 3,3V, у нас не используется. FB - feed back, обратная связь - очень важный и критичный сигнал, с помощью этого сигнала мы настраиваем микросхему на нужное выходное напряжение с помощью резистивного делителя выходного напряжение по формуле:
FB всегда должно быть равно 0,6V, отсюда, зная какое нам нужно напряжение на выходе мы подбираем резисторы R1 и R2 так, чтобы FB было равно 0,6V. Отслеживая этот сигнал внутренний ШИМ механизм будет поднимать или опускать выходное напряжение, стабилизируя его. MODE и ILMT задают режимы работы микросхемы, подробно не будем рассматривать. EN - enable, логическая "1" - работа микросхемы разрешена. PG - power good, дает понять "старшим" что все хорошо, питания в норме, обычно подается в мультиконтроллер.
Рассмотрим схему включения PU401 :
Здесь выводы 2-5 входное напряжение, на них подается +19VB . LX выходное напряжение, к нему подключается катушка индуктивности, с которой "снимается" +3VALWP . GND - "корпус". LDO - выход линейного стабилизатора, от него питается мультиконтроллер (рассмотрели в третьей части). FF + OUT - обратная связь. Здесь два сигнала Enable: EN1 разрешает работу импульсного стабилизатора, при этом появляется напряжение на LX . EN2 разрешает работу линейного стабилизатора (LDO). В данной схеме EN2 формируется сразу из +19VB . Т.е. при подаче +19V сразу начинает работать линейный стабилизатор, выдавая +3VLP .
на EN1 подается сигнал 3V_EN , найдем в схеме (CTRl+F) как он формируется:
Тут мы видим: сигнал 3V_EN будет равен логической "1" если сигнал 3V_EN_R_EC (формируется мультиконтроллером) в высоком уровне и MAINPWON также в высоком уровне. Здесь присутствует диод Шоттки D2012 . Если вдруг MAINPWON станет равен логическому "0", то диод откроется и на 3V_EN будет низкий уровень, после чего сразу выключится +3VALW .
Давайте разберемся для чего это сделано. Найдем где используется и как формируется MAINPWON:
Здесь на микросхеме G718TM1U реализована термозащита процессора. Как только к ноутбуку подключен блок питания или вставлена заряженная батарея, включается дежурное напряжение +3VLP и в точке 2 резистора PR207 будет +3V, при условии что вывод 3 микросхемы в закрытом, не активном состоянии ( OT1 с чертой сверху, значит активный уровень "0") . Данная микросхема предназначена для сигнализирования о превышении допустимой температуры, ее значение "программируется" подбором терморезистора ( PH201 ) и резисторов PR206 , PR209 . В данной схеме при достижении температуры 92 градуса Цельсия, микросхема PU201 выставит вывод 3 в низкий уровень, а значит MAINPWON станет равен логическому "0", что приведет к отключению +3VALW.
С помощью MAINPWON также реализована функция Reset:
Теперь кратко рассмотрим схему включения PU402. Так как она практически идентична схеме PU401. Разница лишь в том что LDO PU402 выдает +5V и не используется:
Здравствуйте. Из этой статьи вы узнаете, как правильно провести диагностику и выявить неисправности шим контроллера, не выпаивая его из материнской платы ноутбука.
Шим контроллер расположен в цепи питания процессора. У него имеется два плеча: верхнее (фото 1) и нижнее (фото 2). Каждое их состоит из трех транзисторов (каждый на свою фазу).
Как правильно провести диагностику
Чтобы проверить работоспособность шим контроллера на материнской плате нужно, в первую очередь, измерить сопротивление на контактах всех транзисторов (измеряется на четвертом контакте транзистора). Это, по сути, ключи, которыми непосредственно управляет шим контроллер.
Сначала по очереди измеряем сопротивление во всех трех фазах верхнего плеча. Фиксируем в записях или запоминаем показания (измеряется в килоОм). Если на какой-либо из них сопротивление сильно занижено, то возможно фаза неисправна.
Далее измеряем сопротивление в фазах нижнего плеча (измеряется в мегаОм). Если на одной из фаз значение слишком низкое, то это может означать, что на ней произошло короткое замыкание.
Выводы и дальнейшие действия
Все показания, полученные при измерении сопротивления на фазах шим контроллера необходимо проанализировать. Опираясь на эти данные вы сможете сделать вывод: следует заменить шим контроллер на материнской плате ноутбука или нет.
Если необходимо – производим замену шим контроллера и обязательно еще раз производим все замеры. В рабочем состоянии все фазы в пределах одного плеча будут показывать примерно одинаковые значение. Нормальные показатели для верхнего плеча составляют порядка 280-290 килоОм. Для фаз нижнего плеча: 2,5 – 3 мегаОм.
Аналогичным способом вы сможете диагностировать работоспособность питания видеокарты, питания памяти и других шим контроллеров.
В этой статье пойдет речь о микросхеме, которая управляет работой всего ноутбука, в том числе, его включением. Её неисправности приводят к значительным последствиям для пользователя и чаще всего требуют ремонта материнской платы в сервисе.
Задачи мультиконтроллера
Мультиконтроллером, или, по-английски Super I/O (SIO) или Multi I/O (MIO), на сленге «мультик» (еще в документации встречается EC-контроллер), называется микросхема, обеспечивающая мониторинг напряжений и температур, работу с периферийными устройствами. Такими устройствами могут быть клавиатура, мышь, кнопка включения, датчик закрытия крышки и тп. Основным его предназначением является управление клавиатурой (даже в схемах он обозначается как KBC-контроллер), однако со временем производители начали нагружать его множеством дополнительных функций, таких, например, как индикация работы жесткого диска (светодиод на передней панели ноутбука) или управление частотой работы кулера. Именно на эту микросхему «приходят» все контактные дорожки шлейфа клавиатуры ноутбука. На самом деле на ножки мультиконтроллера приходят сигналы практически со всех устройств и микросхем ноутбука. Уровень сигнала может быть постоянный 3.3V (высокий логический уровень), либо изменяющийся в случае обмена данными (измеряется осциллографом).
В запуске ноутбука он вообще играет первостепенную роль, так как именно на него приходит сигнал с кнопки включения, и именно он запускает все источники напряжений и затем отдает сигнал южному мосту для начала инициализации.
Мультиконтроллер управляет включением ШИМ-контроллеров, вырабатывающих необходимые для работы узлов ноутбука напряжения, ключами, коммутирующими эти напряжения. Через мультиконтроллер по протоколу Firmware HUB или SPI подключена микросхема Flash c программным обеспечением (которую иногда приходятся прошивать). В состав мультиконтроллера могут входить контроллеры часов реального времени, жестких дисков, USB, интегрированный аудиоинтерфейс, интерфейс LPC.
Разновидности мультиконтроллеров
Мультиконтроллеры выпускают следующие фирмы: ENE; Winbond; Nuvoton; SMCS; ITE; Ricoh.
Сильно отличаются только последние, хотя бы методом пайки, они BGA.
На современных мультиконтроллерах имеется по 128 ножек, но их назначение сильно отличатся в зависимости от модели мультиконтроллера и даже от его ревизии. К примеру, KB926QF-D2 и KB926QF-C0. — два совершенно разных мультиконтроллера.
Неисправности мультиконтроллеров и их симптомы
Мультиконтроллер часто выходит из строя при залитии ноутбука жидкостью или вследствие выгорания ключей, формирующих 3.3В. Второе случается при скачках питания в сети.
К основным симптомам неисправности мультиконтроллера можно отнести некорректную работу клавиатуры и тачпада и отсутствие запуска как такого. Также, следствием неправильной работы «мультика» являются и глюки периферии — неправильная работа датчиков, кулера. Также по вине SIO может не определяться жесткий диск и другие накопители (работа USB при этом завязана на южный мост).
В диагностике и ремонте ноутбуков мультиконтроллер имеет ключевое значение, поскольку отсутствие на мультиконтроллере важных сигналов, приходящих с микросхем ноутбука, позволяет выявить неисправные микросхемы и произвести их замену. На мультиконтроллер приходит LPC шина, по который идет обмен с южным мостом, и с которой можно считать всем известные POST-коды. Для этого, кстати, в ремонте часто подпаиваются на прямую к ножкам мультиконтроллера тоненькими проводками и выводят коды на индикаторы.
Также иногда во время самостоятельной замены матрицы ноутбука забывают отключить аккумулятор. Это тоже может привести к выгоранию мультиконтроллера. Но, к счастью, микросхемы эти не очень дорогие и ремонт такой неисправности обходится дешевле, чем, например, замена южного моста или видео. Многие микросхемы взаимозаменяемы, а перепайка их — 15 минут (если не потребуется прошивать флэш память).
Диагностика запуска (или отсутствия старта) ноутбука
Для правильной диагностики старта ноутбука необходимо понимать его последовательность и участие в нем мультиконтроллера.
Последовательность включения ноутбука
При включении ноутбука дежурное напряжение через кнопку подается на мультиконтроллер, который запускает все ШИМ-контроллеры, вырабатывающие все напряжения (их много), и, при нормальном исходе, вырабатывают сигнал PowerGood. По этому сигналу снимается сигнал RESET с процессора и он начинает выполнять программный код, записанный в BIOS с адресом FFFF 0000.
Затем BIOS запускает POST (Power-On Self Test), который выполняет обнаружение и самотестирование системы. Во время самотестирования обнаруживается и инициализируется видеочип, включается подсветка, определяется тип процессора. Из данных BIOS определяется его тактовая частота, множитель, настройки. Затем определяется тип памяти, ее объем, проводится ее тестирование. После этого происходит обнаружение, инициализация и проверка подключенных накопителей – привода, жесткого диска, карт-ридера, флоппи дисковода и др., а после проверка и тестирование дополнительных устройств.
После завершения POST управление передается загрузчику операционной системы на жестком диске, который и загружает ее ядро.
Из описания выше видно, что мультиконтроллер вступает в работу на самой ранней стадии, и без его нормального запуска не сформируются управляющие напряжения. Вот условия, необходимые для того, чтобы мультиконтроллер дал команду на старт:
Для инициализации мультиконтроллера необходима микропрограмма, которая хранится либо в той же микросхеме флеш-памяти, что и прошивка BIOS (UEFI), либо в отдельной микросхеме меньшего объема, либо внутри самого мультиконтроллера. В первых двух случаях восстановить прошивку не представляется сложным. А вот прошить непосредственно мультиконтроллер пока могут не любые программаторы. Да и подключиться к нужным его выводам не всегда просто. Прошиваемые мультиконтроллеры — NPCE288N/388N, KB9010/9012/9016/9022, IT8585/8586/8587/8985/8987.
Лучше всего найти документацию и описание сигналов по мультикам IT, которые используются во многих бюджетных ноутбуках, в том числе ASUS и Dell. Благодаря схемам можно понять и отследить, где находятся выше указанные сигналы. Например, в случае IT8752 и аналогичных (используется, например, в семействе ASUS K40 и K50) для диагностики вас должны интересовать, помимо выше указанных, следующие сигналы на мультике:
Питание на IT85xx мульты поступает следующее: +3VA_EC, +3VPLL, +3VACC, без них микросхема не запустится.
Последовательность диагностики мультиконтроллера
Рассмотрим схему последовательности включения ноутбука:
Процедура включения материнской платы
Для диагностики в целом, вам нужно рассмотреть две ситуации:
1. Питание не появляется, светодиод питания не горит.
Ищем неисправность в схеме управления питанием. Проверяем 19 V со входа , приходящие на микросхему зарядки (charger), например, MAX. Проверяем наличие дежурных напряжений +3VSUS и т.п. Через форфмирователи +3 V питание поступает на мультик — проверяем это питание на входе. Проверяем выходные сигналы мультика. В некоторых случаях слетает прошивка микроконтроллера. В этом случае, при наличии входных напряжений, нужные управляющие сигналы с микросхемы контроллера не формируются при нажатии кнопки питания.
2. Питание есть, светодиод питания горит, но ноутбук не включается, экран темный. Индикатор жесткого диска сначала включается и гаснет, затем не горит.
Очевидно, мультик работает, управляющие сигналы формируются, однако, дальнейший запуска не происходит или он обрывается. Чаще всего виноваты в этом микросхемы чипсета, сам процессор или тактирующие генераторы, которые срывают генерацию сигналов. Для быстрой диагностики прогреваем микросхемы чипсета по-очереди. После каждого прогрева пробуем на включение. Если ноутбук включается, то виноват конкретный чип. Очень важна предыстория поломки — например, если до поломки перестали работать USB порты, то скорее всего вышел из строя южный мост. Если были артефакты на встроенном видео, то виноват северный мост.
Если же мы видим, что питающие напряжения присутствие, а сигналы с мультика нет (например, не снимается сигналы RESET), то изучаем все сигналы более подробно.
Вот обобщенный порядок следования сигналов при запуске EC:
<- входящий сигнал
-> исходящий сигнал
Вот алгоритм проверки популярного мульта KB3926, его можно применить и к аналогам:
- Проверить питание мульта 3,3v (9 нога)
- Проверить генерацию кварца (123 нога)
- Проверить сигнал с кн.вкл. ON/OFF 3,3v/0,5v (32 нога)
- Проверить АCCOF 0V (27 нога)
- Проверить ACIN 3.1V (127 нога)
- Проверить PBTN_OUT 0v/3,3v (117 нога)
- Проверить сигнал 0v/3,3v (14 нога)
- Проверить RSMRST 0v/3,3v (100 нога)
- Проверить PWROK 0v/3,3v (104 нога)
- Проверить SYSON 0v/3,3v (95 нога)
- Проверить VRON 0v/3,3v (121 нога)
- Проверить обмен мульта с югом 3,3v (77,78 нога)
- Проверить обмен мульта с югом 0v/3,3v (79,80 нога)
- Проверить генерацию PCICLK (12 нога)
- Проверить сигнал 0v/3,3v (1,2,3 нога)
- Проверить TP_CLK 0v/0,1v (87 нога)
- Проверить TP_DATA 0v/5v (88 нога)
- Проверить SUSP 0v/3,3v (116 нога)
- Проверить VGA_ON 0v/3,3v (108 нога)
Вот дополнительные контрольные значения напряжения:
Программатор от Сергея Вертьянова
В далекие, теперь уже времена прошлого века, в блоках питания для понижения или повышения напряжения применялись линейные трансформаторы. Диодный мост и электролитический конденсатор сглаживал пульсацию. Далее напряжение стабилизировалось линейными или интегральными стабилизаторами. Вес таких источников питания был достаточно большой, ничуть не меньше были и габариты. Чем большая мощность требовалась от БП, тем в несколько раз был объемнее и тяжелее сам блок питания.
Преимущества и определения ШИМ-контроллера
ШИМ-контроллер это совокупность нескольких функциональных схем для того чтобы управлять выходными силовыми каскадами, собранными обычно на транзисторах. Управляются они исходя из той информации, которую микросхема ШИМ получает от выходных цепей. В зависимости от тока или выходного напряжения на выходе блока питания ШИМ-контроллер регулирует время открытия ключевого транзистора. Таким образом, получается замкнутый круг. Эта часть блока питания называется обратная связь или ОС.
В литературе и интернет источниках можно встретить случаи, когда ШИМ-контроллерами называют различные генераторы сигналов с регулировкой широты импульса, НО без обратной связи! К таким генераторам (на NE555 и др.) не совсем корректно применять понятие контроллер, скорее регулятор или генератор.
Характеристики ШИМ.
Для Широтно-модулированного сигнала характеристик всего две:
- Частота следования импульсов
- Скважность импульсов, или коэффициент заполнения. По сути это одно и то же. Разница лишь в обозначении: для скважности -это D, для заполнения используем литеру S. Коэффициент заполнения = единица / период сигнала T
Возьмем пример:
Частота сигнала = 50 кГц.
Период сигнала = 20 мкс.
Теперь предположим, что ключ выхода ШИМ открывается на 4 мкс. Коэффициент заполнение составит минус 20%, а скважность будет равна 5.
Конечно же, в расчет необходимо брать конструкцию ШИМ, исходя из количества силовых ключей.
Отличительные особенности импульсных и линейных БП.
Существенным преимуществом импульсных источников питания перед линейными является хороший КПД (около 90%)
Структура ШИМ
Давайте рассмотрим структуру любого ШИМ-контроллера. Хоть в своем огромном семействе разные ШИМ-ы и обладают дополнительными функциональными особенностями, но все же они все похожи.
Заглянув в микросхему, мы увидим полупроводниковый кристалл, в котором находятся следующие функциональные составляющие:
- Генератор последовательных импульсов.
- Источник опорного напряжения.
- Схема обратной связи (ОС), усилитель ошибки.
- Генератор прямоугольных импульсов, управляющий транзисторами, которые в свою очередь коммутируют силовые ключевые каскады.
Количество этих ключей, зависит от предназначения самого ШИМ-контроллера. Например, простые обратноходовые схемы построены на 1-м силовом ключе, полу мостовые на 2-х, а мостовые преобразователи на 4-х ключах.
На заметку:
Многие ШИМ-контроллеры совмещаются с силовыми ключами в один корпус. Если этот контроллер для маломощного блока питания, то выходные транзисторы устанавливаются прямо в микросхему контроллера.
Грубо говоря, ШИМ-контроллер представляет собой компаратор, на один из входов которого приходит сигнал обратной связи, на другой пилообразный сигнал генератора. Когда первый по амплитуде превышает второй, на выходе формируется импульс.
Тем самым ширина импульса на выходе зависит от соотношения входных сигналов. Предположим, что мы подключили более мощную нагрузку к выходу БП, и напряжение дало просадку. На обратной связи будет тоже падение. Что же произойдет?
В периоде сигнала начнет преобладать пилообразный сигнал, длительность импульсов на выходе увеличится и напряжение компенсируется. Происходит это все в доли секунды.
Частота работы генератора ШИМ-а задается RC-цепью
Давайте разберем назначение и название этих выводов:
Для того чтобы закрепить сказанное выше рассмотрим пару примеров использования ШИМ-контроллеров, а так же их схем включения. Сделаем это на примере микросхем:
Эти микросхемы часто используются в различных блоках питания, в том числе и компьютерных. Когда дело доходит до переделки компьютерного блока питания в лабораторный бп или зарядное устройство для аккумулятора, то, как раз стараются подобрать бп на TL494.
Обзор ШИМ TL494
Технические характеристики ШИМ-контроллера TL494
Ниже на рисунке дана распиновка TL494:
Обзор микросхемы UC3843
Рассмотрим назначение выводов:
Структура микросхемы UC3843
Можно заметить, что и эта микросхема тоже похожа на все остальные ШИМ-контроллеры.
Простой блок питания на UC3842
Микросхема ШИМ с силовым ключом в одном корпусе
Подобные ШИМ-контроллеры используются как в импульсных блоках питания на базе импульсного трансформатора, так и в DC-DC понижающих или повышающих преобразователях.
LM2596 включает в себя все технические решения, описанные выше, плюс в неё еще интегрирован силовой ключ на ток до 3 Ампер.
Структура микросхемы LM2596
Как можно увидеть больших отличий от микросхем, которые мы рассматривали ранее в ней нет.
Изучая ШИМ-контроллеры можно сделать несколько выводов: Если мы имеем дело с мощным источником питания и нам необходима достаточная гибкость использования этого контроллера, то такая микросхема как TL494 (и подобные) подходит для таких задач лучше. А если блок питания средней и невысокой мощности, то вполне свою роль выполнят ШИМ-контроллеры с интегрированными в них силовыми ключами. В таких бп нет больших требований к пульсациям и помехам, а выходные цепи можно сгладить фильтрами. Обычно это блоки питания для бытовой техники, светодиодных лент, ноутбуков, зарядных адаптеров.
И напоследок.
Читайте также: