Греется sfp модуль сильно
Подбор необходимых трансиверов начинается с их форм-фактора, он зависит от порта маршрутизатора или коммутатора и от скорости передачи канала, который необходимо организовать. В данной статье мы рассмотрим, как правильно выбрать SFP модули, поговорим о совместимости и нюансах эксплуатацию.
Съемный трансивер форм-фактора SFP (Small Form factor Pluggable), представляет собой компактное устройство в металлическом корпусе. Модули SFP поддерживают передачу данных на скоростях от 100 Мбит/с до 4.25 Гбит/с, а именно:
- 100 Мбит/с – FastEthrnet;
- 155 Мбит/с – STM-1;
- 622 Мбит/с – STM-4;
- 1,06 Гбит/с – 1 Gigabit Fiber Channel;
- 1,25 Гбит/с – GigabitEthernet;
- 2,125 Гбит/с – 2 Gigabit Fiber Channel;
- 2,5 Гбит/с – STM-16;
- 4,25 Гбит/с – 4 Gigabit Fiber Channel.
После определения скорости передачи и протокола передачи, необходимо определиться с технологией передачи (тип волокна, количество свободных волокон, протяженность оптической трассы). По технологии передачи трансиверы SFP можно разделить на следующие типы:
- Двухволоконные SFP трансиверы – используются для организации связи по двум волокнам многомодовым или одномодовым, одно из которых задействовано для передачи, второе для приема оптических сигналов;
- Одноволоконные (WDM, BiDirectional) SFP модули – используются для организации каналов передачи данных по одному одномодовому волокну, принимаемый (Rx) и передаваемый (Tx) оптические сигналы передаются в разных направлениях и имеют отличную друг от друга длину волны;
- CWDM SFP модули – это оптические трансиверы рассчитанные для формирования оптических сигналов в спектрального уплотнения CWDM. Визуально CWDM SFP ничем не отличаются от двухволоконных аналогов, но за счет специально настроенных передатчиков – лазеров и CWDM мультиплексоров позволяют создавать многоканальные системы передачи в рамках одного или нескольких одномодовых волокон;
- DWDM SFP трансиверы – оптические модули используемые в системах спектрального уплотнения DWDM, позволяющие создавать протяженное и многоканальные системы передачи в рамках одного или нескольких одномодовых волокон.
Приведем несколько примеров для иллюстрации. В пределах серверной или здания, чаще всего используется пара волокон. Для подобного подключения подойдут двухволоконные SFP модули SX / LX, на оба конца линии устанавливается два одинаковых модуля.
Для соединения площадок внутри города, целесообразнее использовать одноволоконные WDM модули. Они незначительно дороже двухволоконных, но помогут эффективнее использовать ёмкость существующих кабельных линий. Особенностью данного вида трансиверов является работа на разных длинах волн. На одном конце линии устанавливается модуль, который передаёт информацию на волне 1310 нм и принимает на волне 1550 нм. На другой стороне используется обратный модуль, с передачей на волне 1550 нм и приёмом сигнала на 1310 нм. Такие длины волн для передачи используют оптические трансиверы WDM SFP LX, дальностью до 40 км. Для передачи сигнала на расстояние 80 км и более используются модули WDM SFP ZX с длинами волн передачи 1490/1550 нм.
В городских Metro сетях, часто встречается нехватка свободных волокон, поэтому вполне возможно на волокне уже используется система уплотнения CWDM или DWDM. Тогда необходимо выяснить какие длины волн «свободны» (не задействованы на данный момент для передачи) и какие трансиверы используются. Останется только проверить показаниям системы DDM и убедиться в том, что модулей с аналогичным оптическим бюджетом будет достаточно.
Совместимость SFP модулей
Говоря про совместимость SFP трансиверов, подразумеваются два основных фактора:
- Совместимость SFP модулей с сетевым оборудованием (коммутаторы, маршрутизаторы, транспондеры и т.д.);
- Совместимость приемо-передатчиков с ответной частью (трансиверами на другой стороне линии).
При проверке совместимости трансиверов с сетевым оборудованием первое на что необходимо обратить свое внимание – это список поддерживаемых оборудованием трансиверов. Данный список уникален для каждой модели сетевого оборудования и может варьироваться в зависимости от версии операционной системы. Так же подробный список поддерживаемых трансиверов можно узнать из технической спецификации на оборудования, которая доступна на сайте производителя или приложена в комплекте с устройством.
Кроме списка совместимости, необходимо учитывать «специфичность» прошивок трансиверов каждого производителя. В стандарте MSA SFF-8472 напрямую указывается на специально выделенные области в прошивки для «специальной» информации производителя – Vendor Specific, которые могут использоваться по усмотрению производителя. Данная информация весьма специфична и знания по данному вопросу можно подчерпнуть из специализированных ресурсов или форумов.
В том случае, если заказывать SFP модули у проверенных поставщиков OEM продукции, необходимо лишь указать с каким оборудованием необходима совместимость, дальше это задача сервисно-инженерного отдела поставщика. Более подробно о перепрошивке трансиверов можно узнать по ссылке.
После определения совместимости трансивера с сетевым оборудованием, необходимо удостовериться в совместимости выбранного SFP модуля с ответной частью.
Главное что необходимо помнить, что аналогичные SFP модули разных производителей совместимы друг с другом, так как выполнены в рамках одних и тех же международных стандартов. Дальнейший подбор SFP модуля заключается в поиске технологической пары уже установленному трансиверу. Более подробно о выборе оптических трансиверов можно прочитать по ссылке.
Отдельно отметим, что совместимы, не только SFP модули разных производителей, но и подходящие друг другу по техническим характеристикам трансиверы разных форм-факторов, например:
- SFP < > GBIC;
- SFP+ < > XFP;
- SFP+ < > X2/XENPAK;
- XFP < > X2/XENPAK.
Перепрошивка SFP модулей
Для изменения служебной информации, записанной во внутреннюю память трансивера – смены прошивки, необходимо специальное устройство – программатор (на англ. – programming board). Программатор модулей представляет собой печатную плату, с одним или несколькими слотами для модулей, которая позволяет считывать и записывать информацию в память EEPROM трансивера. Так же для перепрошивки SFP необходим файл прошивки, в котором содержится вся информация о трансивере (тип, производитель, совместимость с оборудованием и т.д.). Сам по себе процесс смены кода занимает несколько секунд, т.к. полный объём EEPROM составляет всего 512 байт, а для совместимости необходимо заменить лишь 128 или 256 байт. Более подробно о процессе перепрошивки SFP модулей можно ознакомиться по ссылке.
Подключение SFP модулей
Все современные трансиверы SFP поддерживают «горячее» подключение, это значит, что трансивер можно устанавливать в порт работающего коммутатора без необходимости предварительно выключать сетевое оборудование. Для установки SFP модуля:
- Вставьте модуль в порт;
- С небольшим усилием толкайте его вперёд;
- В момент стыковки контактной группы появится небольшое усилие.
- В конце раздастся щелчок механизма фиксации – модуль установлен.
Через несколько секунд после установки, SFP модуль станет доступен в системе управления сетевого устройства.
Никогда не заглядывайте в оптические разъёмы модуля установленного в оборудование, лазер может нанести вред зрению!
После успешной инициализации трансивера, необходимо подключить его к линии передачи. Для этого необходимо:
- Снять заглушку с оптического разъема трансивера;
- Подключить оптический (-кие) коннекторы патч-кора к разъему.
Заглушку оптического разъёма лучше всего снимать в последний момент, непосредственно перед подключением. Это позволит минимизировать возможное попадание пыли внутрь оптического разъёма трансивера. Внимательное отношение к оптическим соединениям позволит облегчить запуска каналов и оборудования, а так же это способствует длительной и надёжной работе.
Для извлечения модуля из порта, необходимо отключить оптические патч-корды и потянуть рычаг толкателя. После чего аккуратно вытянуть модуль из порта и установить заглушку оптического порта.
Хранить трансиверы необходимо с установленной заглушкой в специальном блистере, либо антистатическом пакете в условиях, описанных в технической документации. Обычно, температура хранения составляет -40…+85°С, при влажности от 0 до 95% без конденсата. Такой способ хранения убережёт модули от загрязнений и возможных механических повреждений или электростатических разрядов.
Мониторинг параметров работы SFP трансиверов
Все современные SFP модули оснащены системой DDM (Digital Diagnostic Monitoring). Система цифрового мониторинга в реальном времени показывает значения: уровня оптических приёма и передачи, подаваемого на модуль напряжения, температуры и тока смещения лазера. Кроме текущего значения, в системе так же отображаются пороговые значения каждого из параметров. Эти значения записаны в трансивере и индивидуальны для каждого типа трансиверов.
Рассмотрим подробнее каждый из этих параметров DDM:
- Уровень сигнала Tx – данный параметр сообщает мощность излучения лазера. Если значение этого параметра ниже или выше допустимого, значит трансивер неисправен.
- Уровень сигнала Rx – пожалуй самый востребованный параметр. Если текущее значение ниже порога чувствительности, в канале начнут возникать ошибки. Чем ниже уровень принимаемого сигнала, тем больше ошибок будет появляться при передаче. Необходимо знать, что «дальнобойные» трансиверы (80 км и более) оснащаются APD приёмниками, их особенность в том, что при превышении уровня допустимого сигнала приёмник может выйти из строя. Поэтому такие трансиверы нельзя устанавливать на короткие линии с маленьким затуханием.
- Напряжение – нормальное значение для любого SFP / SFP+ составит около 3.3В
- Температура – перегрев модуля может вызывать ошибки на приёме, а так же сокращает ресурс модуля.
- Ток смещения BIAS – редко используемый параметр, отражает состояние лазера. Значения близкие к пороговым, означают о возможной неисправности, либо сообщают о скором выходе из строя.
Система DDM удобный и информативный инструмент для диагностики неисправностей и предотвращение возможных неполадок. Более подробно о системе Digital Diagnostic Monitoring можно ознакомиться по ссылке.
Основные проблемы при использовании модулей
При эксплуатации SFP трансиверов можно столкнуться с разнообразными проблемами и неполадками. Мы постараемся рассмотреть наиболее распространённые.
Стандарты SFP MSA чётко описывают габаритные размеры и конструкцию, как трансиверов, так и портов в оборудовании. Тем не менее, случаются ситуации, когда SFP модуль застревает в порту. Причиной как правило служит искривление края отверстия в язычке SFP порта. Как вытащить застрявший SFP модуль?
Начните с осмотра соседних свободных портов, если такие имеются, и аналогичного модуля. Обратите внимания на то, какими элементами модуль фиксируется в корпусе порта.
Для извлечения застрявшего трансивера необходимо:
- Перевести скобу толкателя трансивера в горизонтальное положение;
- Надавливая на нижнюю часть трансивера, попробуйте толкать его вверх и с не большим усилием тянуть на себя.
Если это не помогает, нужно отогнуть язычок SFP порта, для этого удобнее всего использовать плоское и прочное лезвие канцелярского ножа. Его необходимо просунуть между нижней стороной модуля и корпусом порта. Таким образом, вы освободите запорный механизм SFP модуля и сможете извлечь его из порта.
В нашей практике была и обратная ситуация: SFP модули плохо фиксировались в портах коммутатора. Проблема заключалась в том, что трансивер можно было легко вытащить, просто потянув за подключенные патч-корды. После небольшого расследования выяснилось, что размеры портов коммутатора не удовлетворяли требованиям SFP MSA и были значительно больше необходимого. То есть, в следствии несоблюдения габаритных размеров корзины SFP порта, запорный механизм установленного в нее SFP модуля не мог зафиксировать трансивер внутри.
На практике часто встречается ситуация, когда модуль «не светит», то есть не запускает лазер или испускаемый лазером импульс слишком мал. Это может происходить по нескольким причинам:
- Засорен оптический порт «Тх»;
- Порт коммутатора не активирован (shutdown);
- Неисправность лазера.
Проверить чистоту оптического порта можно при помощи специального микроскопа для проверки оптических разъемов и коннекторов.
Если в ходе осмотра порта выясниться что он засорен, и оптический сигнал не может «преодолеть» загрязнение, необходимо произвести очистку при помощи специального чистящего устройства One-Click-Cleaner или при помощи специальных безворсовых палочек. В том случае, если у вас нет микроскопа, необходимо произвести чистку оптического порта превентивно, указанными выше инструментами. Отдельно отметим, что не рекомендуется использовать спирт или спиртосодержащие смеси для очистки оптических разъемов трансиверов.
Для проверки активности порта необходимо подключиться к сетевому оборудованию и зайти в конфигурацию конкретного порта, в ней должна стоять отметка, указывающая на активность порта. В том случае если порт не активен, его необходимо перевести в активное состояние.
Если перечисленные действия не произвели требуемого эффекта, то можно констатировать неисправность лазера и обращаться к производителю для получения сервисного обслуживания: ремонта или замены неисправного SFP модуля.
Так же распространённой неполадкой является ситуация, когда порт в состоянии «link up», но при этом передача данных не происходит. В таком случае необходимо произвести следующие манипуляции:
- Проверить корректность кроссировки трансиверов;
- Удостовериться в согласованности скоростей передачи и протоколов между соединяемыми портами;
- Проверить показания DDM на обоих трансивера и сравнить их с пороговыми значениями;
- Проверить корректность оборудования оптической системы (оптических усилителей, мультиплексоров, компенсаторов хроматической дисперсии).
Важно отметить, что стандарт SFF-8472 допускает погрешность при измерении параметров. Для уровней Tx и Rx точность измерения составляет ±3дБ. На практике фактическая точность измерения гораздо лучше, но необходимо учитывать эту особенность. При диагностике неисправностей следует перепроверять показания DDM измерителем мощности.
Так же, вывести из строя оптический трансивер может аппарат для сварки волокон. После повреждении линии передачи, оборудование не всегда физически отключают от самой линии. При ремонтно-восстановительных работах волокна будут свариваться. В момент сведения волокон сигнал может отражаться от торца волокна и «засвечивать» трансиверы, что негативно влияет на лазеры и фотоприёмники. После сведения волокон, происходит разряд который и сваривает два волокна вместе. Разряд сопровождается мощной вспышкой света, который так же может попасть в волокно и достигнуть чувствительного приёмника трансивера. Особенно подвержены риску модули оснащенные чувствительными APD приёмниками. Чем ближе место проведения сварочных работ к площадке с оборудованием, тем выше риск выхода модулей из строя.
Рефлектометры также способны навредить трансиверам, причины те же самые. Во время измерения прибор подаёт в волокно мощные импульсы, и принимает отражённую мощность. Этот исходящий сигнал способен вывести трансивер из строя.
Бесплатный чек-лист
по настройке RouterOS
на 28 пунктов
hEX S греется при питании по POE
Доброго дня. Есть RB760iGS с sfp модулем. Firmware 6.43.16. Запитан родным адаптером питания на 220 вольт. Если запитать его по PoE 802.3af/at от TL-SG1008PE, то температура резко возрастает.Надо отметить что нагрузка на роутер в данное время нулевая, пробовал частоту CPU как стандартную, так и пониженную до 600 MHz, разницы нет.
Транзитом PoE Out ничего не запитано.
SFP модуль присутствует, его температура стабильно около 50 градусов.
Подскажите, нормальное ли это поведение устройства или брак и лучше отказаться от питания устройства по PoE?
В дальнейшем планировал запитать транзитом точку доступа.
Мне как то тоже не нравится температурный режим работы HEX S
питание от 220, блок питания комплектный.
Настраивал человеку данный роутер (с неделю назад) со связкой (по оптике) на свитч (SFP)
+ в роутер подключёна Точка Доступа, (питание РоЕ от роутера не используется).
Канал во внешку 100мбит, нагрузка средняя, около 5-8 клиентские устройств.
(2 сети, 2 DHCP сервера, файрвол).
Роутер у человека дома, на тумбочке (кажется).
Температура (посмотрел сейчас) 46-47 градусов.
Прошивка (ветка long-term) 6.43.16
На работе(ах): 2xCCR1016-12G, RB3011UiAS и hAP lite (RB941)
Дома: CCR1016-12G, RBcAP2n (standalone), RB wAP LTE kit
Для тестов(под рукой): RB3011UiAS, hAP mini (RB931) и что-то ещё по мелочи
MTCNA
MTCRE
Настраивал человеку данный роутер (с неделю назад) со связкой (по оптике) на свитч (SFP)
+ в роутер подключёна Точка Доступа, (питание РоЕ от роутера не используется).
Канал во внешку 100мбит, нагрузка средняя, около 5-8 клиентские устройств.
(2 сети, 2 DHCP сервера, файрвол).
Роутер у человека дома, на тумбочке (кажется).
Температура (посмотрел сейчас) 46-47 градусов.
Прошивка (ветка long-term) 6.43.16
Прошу прощения. 5-8 клиенстких устройств на точке доступа, которая подключена к HEX S - это средняя нагрузка для хекса?
Я не претендую на специалиста, и являюсь обычным домашним пользователем и мне казалось что эту лошадь дома нагрузить будет сложно.
У меня 53 цельсия стабильно, но скажу что подключен IPTV - 3mbit. ну и рядом на полке в 2-3 см с каждой стороны стоит еще по сковородке - приставка иптв и mqtt серверок на роутере.
Прошу прощения. 5-8 клиенстких устройств на точке доступа, которая подключена к HEX S - это средняя нагрузка для хекса?Я не претендую на специалиста, и являюсь обычным домашним пользователем и мне казалось что эту лошадь дома нагрузить будет сложно. Я описал среднее значение, нагрузка средняя, это в общем.
Задача HEX S - обслуживать подключение, сеть, там тоже есть и IPTV,
и пару виланов. ТОЧКА доступа работает только как точка, делает авторизацию клиентов,
а DHCP и NAT = уже на HEX S.
Роутер покупался с запасом, + с расчётом на более высокий тариф подключения,
сейчас человек подключился по 100мбит, но после ремонта, и когда переедет туда
уже основательно, у него будет 3-4 телевизора, PS4, мультиприставка Дюна и так далее,
да и человек любит покачать, и детки его тоже, так что скорее всего он потом возьмёт
тариф 300мбит, гигабитные порты есть у 760 и у hAP ac2, АС2 = можно было взять,
но разделить роутер отдельно, и отдельно взять 2-х диапазонную мощную точку = такое решение более
оптимальное и гибче (но чуть дороже). Зато запас есть.
У меня 53 цельсия стабильно, но скажу что подключен IPTV - 3mbit. ну и рядом на полке в 2-3 см с каждой стороны стоит еще по сковородке - приставка иптв и mqtt серверок на роутере.
Ну я бы отделил бы роутер подальше от нагрева, не уж то 30-70см
перенести нельзя?
В целом роутеры Микротика в обычном состоянии или даже в простое не греются.
И ещё, видел на ютубе (канал - "Vladimir Zhurkin") - я так понял они электронщики,
обсуждали там они роутеры и схемотехнику и сказали про 760 что вентиляция не особо
продумана, возможно что проще вскрыть Ваш роутер (если не жалко гарантии) и наделать побольше
отверстий для вентиляции, но если всё же рядом есть нагрев, то увы и ах, надо убрать нагрев.
P.S.
А проверьте по утилите Profiles = что там создаёт нагрузку. уже интересно стало.
Ещё вопрос = какая SFP используется? Случаем не на 20 или не на 40км?
У человека используется пассивный оптический кабель (родной микротиковский).
Он там идёт 1м, и по мощности я так понимаю, там лазер очень не дерзкий.
На работе(ах): 2xCCR1016-12G, RB3011UiAS и hAP lite (RB941)
Дома: CCR1016-12G, RBcAP2n (standalone), RB wAP LTE kit
Для тестов(под рукой): RB3011UiAS, hAP mini (RB931) и что-то ещё по мелочи
MTCNA
MTCRE
Нагрузки на данный момент нет вообще. роутер подключен по вану к билайну. Ну вот я сижу пишу тут. это и есть вся нагрузка. с момента последнего поста отключил иптв. Температура как была 53, так и есть.
Насчет отодвинуть. На данный момент роутер не на своем месте. Но даже если и не на своем - логично предположить что в конечном варианте в сети частного дома предполагается нахождение рядом нескольких устройств выделяющих тепло. Как то не логично раскидывать коробки далеко друг от друга.
На офф форуме (англоязычном) так же обсуждался вопрос по хексу S. и вроде как сказали так и должно быть. Конструктивная особенность.
Ну а вопрос человека был в питании Poe. Я думаю что питание пое организуется альтернативной ( относительной блока питания) схемой в которой, вполне возможно участвуют еще и дополнительные "генераторы" тепла. В конце концов при плачевном сценарии не думаю что проблему решить по гарантии не удасться.
Как они надоели с этим SFP и прочими дорогими игрушками! — скажет экономный сисадмин: «И коннекторы недешёвые, и лишний «огород городить». Неужели так трудно всё порты 1GBE и 10GBE делать под старую добрую витую пару? 10 Gigabit витая пара поддерживает и вперёд!»
И правда, зачем всё это? Берём 6 категорию для соединений уровня доступа Gigabit Ethernet (мы же не жадные, заботимся о скорости и стабильности) и категорию 6А для 10 Gigabit Ethernet и радуемся жизни. Дёшево и сердито!
Но это всё хорошо, если соединение между отдельными точками не превышает 100 метров (иногда даже и меньше). На практике даже в одном здании можно запросто выйти за предел 100 метров, просто обходя все углы.
Представим себе более сложную ситуацию
У нас имеются три различных офиса, в каждом из которых работает по 20 человек. Необходимо выбрать коммутаторы, которые подходят для подключения пользователей по гигабитной сети с 10 гигабитным Uplink.
Вроде бы задача проста: нужно 3 гигабитных коммутатора уровня доступа на 24 гигабитных порта с Uplink 10 Gigabit Ethernet, и ещё один 10 гигабитный коммутатор уровня агрегации для объединения Uplink всех трёх коммутаторов в одну сеть.
Можно даже замахнуться на отказоустойчивую схему из двух коммутаторов 10GBE. В любом случае всё выглядит не так сложно.
Усложним немного задачу. Представим, что первый офис находится рядом с серверной, второй — в соседнем здании на расстоянии более 100м, и, чтобы достать туда, требуется много раз обогнуть препятствия под разным углом, а третий — вроде бы по прямой, но на расстоянии более 550 м. И что тут делать?
Вроде бы задача по-прежнему выглядит не такой сложной. Покупаем три коммутатора уровня доступа:
Один, который поставим рядом с серверной, будет с Uplink 10 Gigabit Ethernet для витой пары.
Второй коммутатор — так как общее расстояние выше — с Uplink для многомодового оптоволокна дальностью до 550 м, который за счёт своих физических свойств позволяет «обойти все углы».
И третий коммутатор с Uplink для одномодового кабеля при расстоянии свыше 550 м.
Вроде бы весело и замечательно. А теперь представьте, что для объединения их в одну сеть на следующем уровне понадобится коммутатор 10 Gigabit Ethernet с тремя различными типами портов под разные типы кабелей.
И это ещё «цветочки». Для связи этого коммутатора с «верхним уровнем» (уровнем ядра сети, например) может потребоваться Uplink для сетей 40GBE или даже 100GBE. Особенно интересная ситуация возникает, когда число таких Uplink и Downlink (Downlink — порт для соединения с нижеследующим уровнем) не удаётся предугадать раз и навсегда, и всё меняется в процессе эксплуатации…
И вот тут возникает интересный момент: а сколько таких коммутаторов нам понадобится? А если не хватит одного-двух портов одного типа, зато порты другого типа окажутся в избытке? Покупать новый? А как это отразиться на архитектуре сети? Например, если по проекту заложено, что все три офисных коммутатора уровня доступа общаются напрямую через один коммутатор уровня агрегации, не выходя на ядро сети?
Значит нужно придумать единый стандарт для разъёма, в который при помощи соответствующих переходников (трансиверов) можно подключать различные кабели.
В принципе, универсальность и взаимозаменяемость явилась главной причиной создания SFP. Данная технология, естественно, не стояла на месте и появились более поздние стандарты, такие как SFP+ и XFP. Но обо всем по порядку.
Примечание. На практике не всё обстоит так гладко. Некоторые вендоры, искусственно ограничивают применение переходников от разных производителей. Например, есть такая сисадминская примета: если нужно использовать сетевое оборудование Cisco, то лучше использовать и трансиверы этого же вендора. Возможно, это не всегда так, но рисковать никто не хочет.
Однако мир не идеален, и порой приходится поддерживать мультивендорное решение. В таких случаях лучше подбирать оборудование от более демократичных вендоров, которые не создают дополнительных ограничений.
Существует мнение, что при разработке стандарта SFP (Small Form-factor Pluggable) учитывалось требование сохранить ту же плотность портов на 1U в 19 дюймовой стойке, что и в случае с разъёмами под витую пару. То есть 48 портов для подключения устройств и минимум 2 Uplink. Небольшие размеры SFP позволили решить данную задачу.
Рисунок 2. Коммутатор L3 Zyxel XGS4600-52F на 48 портов Gigabit Ethernet SFP, с четырьмя портами Uplink 10 Gigabit Ethernet SFP+
SFP стандарт используется для поддержки следующих протоколов:
- Fast Ethernet (100 Mb/s);
- Gigabit Ethernet (1 Gb/s);
- SDH (155 Mbps, 622 Mbps, 1.25 Gbps, 2,488 Gbps);
- Fibre Channel (1, 2, 4, 8 Gbps).
Рисунок 3. Трансивер Zyxel SFP10G-SR SFP Plus для 10 Gigabit Ethernet
Рисунок 4. Трансивер 10GbE Fiber FTLX1412D3BCL
Существует сетевое оборудование, способное принимать несколько видов трафика по одному порту, например, Ethernet и Fibre Channel с последующим разделением. Разумеется, для такого соединения нужны соответствующие сетевые карты и трансиверы, поддерживающие подобный «универсальный подход».
Особенности SFP поддержки различных типов оптики
Однако есть и другие модели трансиверов, например, SFP WDM, и разумеется, трансиверы с разъёмом RJ45, о которых шла речь выше.
Существует классификация SFP модулей по доступному расстоянию для передачи данных:
- 550 м — для многомодовых;
- 20, 40, 80, 120, 150 км для одномодовых модулей.
Выпускаются SFP модули нескольких стандартов с различными комбинациями приёмника (RX) и передатчика (TX).
Такой подход даёт возможность выбрать необходимую комбинацию для заданного соединения, исходя из используемого типа оптоволоконного кабеля: многомодовое (MM) или одномодовое (SM).
Помимо деления по типу оптоволокна, есть разделение по количеству используемых волокон. Есть SFP модули для парных оптических проводников: многомодовые и одномодовые.
Существуют и одноволоконные модули: WDM, а также CWDM и DWDM.
SFP модули для многомодовых патчкордов используют раздельные приёмник и передатчик фиксированной длины волны 850нм (собственно, для этого и нужно два оптических проводника в одном патчкорде).
В таких патчкордах используется крестообразное соединение от передатчика к приёмнику. (TX1\<—>RX2, RX1\<—>TX2).
Преимуществом многомодового оптоволокна является невосприимчивость к изгибам (до определённого разумного предела), что позволяет использовать, например, при монтаже стоечного оборудования, когда излишки длины патчкорда можно убрать в органайзер.
Как было уже указано выше, ограничением для многомодового оптоволокна является сравнительно небольшая длина (до 550м).
SFP модули для парных одномодовых соединений имеют раздельные приёмник и передатчик фиксированной длины волны либо 1310нм, либо 1550нм. Подключение делается по той же крестообразной схеме. Применение одномодовых SFP модулей делает возможным передачу данных на расстояния до 120км.
Однако не во всех случаях можно использовать парные оптоволоконные кабели. В некоторых случаях гораздо удобнее передавать сигнал в обе стороны по одному оптическому световоду.
SFP WDM — сокращение от Wavelength Division Multiplexing (спектральное уплотнение каналов). В данном случае модули (они же WDM Bi‑Directional, или Bi‑Di) используют совмещённый приёмопередатчик и работают в парах. Пара состоит из двух модулей с разной длиной волны: 1310нм и 1550нм.
В первом случае используется передатчик с длиной волны 1550нм и приёмник с длиной волны 1310нм.
Во втором случае: наоборот, передатчик с длиной волны 1310нм и приёмник с длиной волны 1550нм.
Расстояние между двумя этими каналами составляет 240нм, что достаточно для того, чтобы различать эти два сигнала без специальных средств детектирования, и позволяет объединить эти два сигнала в одном световоде.
Благодаря совмещению каналов для соединения таких модулей нужна только одна оптоволоконная жила. Стандартные SFP WDM модули имеют разъём типа SC для одножильного соединения.
SFP CWDM — Coarse WDM — что дословно значит «грубый» WDM — это более поздняя реализация WDM с раздельными приёмником и передатчиком. SFPCWDM отличаются, в первую очередь, диапазоном каналов передачи, который варьируется от 1270нм до 1610нм:
2 дополнительных канала 1270нм и 1290нм;
16 основных (1310нм — 1610нм с шагом 20нм).
Данные модули имеют широкополосный приёмник, что позволяет 2 модулям с любыми длинами волн передачи работать в паре. Но для работы в паре такие модули использовать нерационально, более оптимально использовать 16 каналов с разными длинами волн, подключёнными к мультиплексору. Мультиплексор «собирает» свет разных длин волн, который излучают передатчики модулей, «объединяет» собранное в единый световой пучок и направляет по единственному одномодовому волокну далее. При приёме данных производится обратная процедура.
Рассказывая о кабелях и стандартах, стоит также упомянуть 10 гигабитный Direct Attached Cable (DAC) SFP+, работающий по стандарту 10GBASE и совместимый со стандартами 10G Ethernet, 8/10G Fibre Channel. Такие кабели стоят относительно недорого и чаще всего применяются на небольших расстояниях, например, для подключения СХД, серверов и других устройств к скоростной сети.
Рисунок 5. DAC10G-3M кабель Direct Attach
Отличия SFP от SFP+
SFP модуль всем хорош, одна неприятность — не поддерживает высоких скоростей. А технический прогресс требовал перехода на сети 10 Gigabit. И появились новые стандарты, одним из которых стал SFP+
Как часто бывает с родственными технологиями и стандартами — SFP+ совместим с SFP сверху вниз. То есть в порт SFP+, можно подключить более старые трансиверы SFP, а вот наоборот — включить может и получится, но работать они не будут.
Однако возможны неприятные исключения. В оборудовании некоторых производителей (к счастью, Zyxel в их число не входит) совместимость сверху вниз не поддерживается. Всегда лучше на всякий случай уточнить у продавца, будет ли работать данный трансивер с данным портом на данном оборудовании.
Особенности стандарта XFP
Стандарт XFP был разработан группой XFP MSA (Multi Source Agreement). Скорость работы начинается от 10G и может использоваться с оптоволоконным кабелем для высокоскоростной сети.
Рабочая длина волны: 850нм, 1310нм или 1550нм, при этом трансиверы XFP не зависят от протокола и полностью поддерживают конвергентность для стандартов:
- 10 Gigabit Ethernet;
- 10G Fibre Channel;
- синхронная оптическая сеть (SONET) на скорости OC 192;
- синхронная оптическая сеть STM 64;
- оптическая транспортная сеть 10G (OTN) OTU 2;
- параллельная оптическая связь.
Примечание. При плотном трафике модули SFP+ были замечены за непристойным занятием — они нагревались до достаточно высокой температуры. Виной тому малые размеры и высокая плотность портов — в принципе, то, зачем SFP и создавался. Разумеется, повышение температуры оборудования создаёт риск при длительной работе. Это факт вынуждает в некоторых случаях использовать другой стандарт для подключения трансиверов (также небольших, хоть и не таких миниатюрных как SFP+) — XFP.
Можно ли соединять устройство с портом XFP и другое устройство с SFP+
Теоретически такое соединение возможно, необходимо использовать оптические кабели, подходящие для обоих трансиверов.
Например, XFP‑10G-SR и SFP‑10G-SR — это многомодовые модули на основе LC разъёмов, поэтому применение многорежимного оптического кабеля LC по идее позволит получить работающее соединение.
На практике лучше заглянуть в соответствующие спецификации и при любом сомнении — уточнить у представителей вендора (дилера, системного интегратора и т. д.) соответствующие детали.
Заключение
Унифицированный подход и стандартизация упрощают нашу жизнь.
Разумеется, не существует единого идеального решения. В любом стандарте, в любой технологии есть плюсы и минусы. И не всегда они касаются технических аспектов.
Немаловажную роль при выборе той или иной технологии играет цена вопроса, внешние ограничения (например, расстояние), а также особенности эксплуатации.
Если при регистрации в Сообществе Вы укажете адрес электронный почты, который используете на данном форуме, то Ваши данные будут перенесены на форум Сообщества автоматически.
Также, если на форуме Сообщества Ваш никнейм будет занят, то Вам предложат сменить его или оставить, но с приставкой "_RU".
Убедительная просьба не дублировать темы на старом/новом форуме.
Повышенный нагрев роутера
Повышенный нагрев роутера
Название темы : Повышенный нагрев роутераАппаратная версия устройства : v1.0
Провайдер : Билайн
Тип подключения : Dynamic IP
Описание проблемы : Сегодня купил и установил данный роутер. Нагрузки никакой не давал, торренты не качаю, в LAN только 2 порта задействовано, один из которых IPTV и то выключена приставка. Но нагрев просто страшный, особенно с нижней части роутера. Рука еле терпит. Завтра возьму термометр инфракрасный и напишу точные данные.
Что это, брак девайса или "особенность модели"?
Замеры произведены инфракрасным термометром. Роутер стоит на подоконнике у окна.
Температура подоконника: 25 гр.
Температура окна (пластика): 19 гр. (роутер прислонен к окну передней частью)
Температура роутера на верхней крышке: max 40 гр.
Температура роутера на нижней крышке: max 57 гр.
Мои замеры на данный момент показали следующие максимальные результаты:
Температура роутера на верхней крышке: max 47 гр.
Температура роутера на нижней крышке: max 68 гр.
И это за 1 час использования.
Работу СЦ я знаю. "Работает? Тогда чего вы хотите?" - это их стандартный ответ.
Очень хочется услышать мнение производителя. Они то уж точно производили замеры. Причем я уверен, что ответ у них должен быть подготовлен, так как жалоб на нагрев на том же Яндекс.Маркете очень много.
Устройство в любом случае будет нагреваться, а данная модель сильнее это делает, но на производительности этого аппарата это никак не сказывается. хоть я и не производитель, но хочу ответить и автору топика, и всем аналогично вопрошающим.Вы НА ЧТО жалуетесь? Какие проблемы испытываете? И ЧЕГО хотите? Какое вам видится идеальное решение?
Микросхемы греются. Более производительные греются сильнее. В принципе абсолютно вся электроэнергия (12В 1А, или больше под нагрузкой) трансформируется в тепло. И. Варианты? Микросхемы греются. Более производительные греются сильнее. В принципе абсолютно вся электроэнергия (12В 1А, или больше под нагрузкой) трансформируется в тепло. И. Варианты?
Ну тут многое зависит как от самой микросхемы так и её качества , обвязки, преобразователя напряжения.
У меня был когда то в прошлом роутер тплинк для адсл подключения TD-VG3631, не самое бюджетное решение на тот момент времени. И он грелся как печка , в жаркую погоду это даже влияло на стабильность соединения, а иногда он просто зависал. И началось это не во время гарантийного периода, а сразу после его окончания. Пришлось колхозить охлаждение , радиаторы клеить , ставить куллер от нетбука в верхнюю часть корпуса внутри , для выдувания горячего воздуха за пределы через боковую решетку. А так , да , работал.
В целом, роутер этот, более чем уверен, гораздо слабее современных одноплатников в чистой производительности, многие из которых способны работать вообще без какого либо охлаждения. И при всем этом нагреве данный роутер не предлагает всего заложенного в его чип функционала. Вон люди ковырявшие прошивку говорят там есть функция принтсервера , но он просто отключена, а поддержка говорит что ну что вы , зачем она вам , там её никогда не будет и невозможно реализовать. WPA3 тоже где то потерялся.
Тоска у меня сложилась от гуманитарного подхода к технике.
А у моей бабушки когд-ато была швейная машинка подольского завода, которая крутилась рукой за ручку. И представьте себе, работала гораздо лучше современных электрических! Чем именно лучше была? Да, всем. Не стоит даже обсуждать элементарное.
. И чтобы развеять эту гуманитарную тоску, я достал, достал со шкапа тестер (ценой 100 долл, не срынка), подключил калиброванную К-термопару и наклеил спай изолентой в центр верхней крышки АХ50 работающего не выключаясь. 36 град Цельсия показал тестер. Но рука то чувствует, чувствует нагрев! А значит - возможны сбои и отказы
Тоска у меня сложилась от гуманитарного подхода к технике.
А у моей бабушки когд-ато была швейная машинка подольского завода, которая крутилась рукой за ручку. И представьте себе, работала гораздо лучше современных электрических! Чем именно лучше была? Да, всем. Не стоит даже обсуждать элементарное.
. И чтобы развеять эту гуманитарную тоску, я достал, достал со шкапа тестер (ценой 100 долл, не срынка), подключил калиброванную К-термопару и наклеил спай изолентой в центр верхней крышки АХ50 работающего не выключаясь. 36 град Цельсия показал тестер. Но рука то чувствует, чувствует нагрев! А значит - возможны сбои и отказы
Читайте также: