Фотоприемник своими руками
SERVODROID - Центр робототехники для начинающих -->Открытый образовательный проект по робототехнике своими руками -->
Современная радиоэлектроника шагнула далеко вперёд, но в редких случаях иногда, появляется необходимость изготовить фототранзистор. На первый взгляд это сделать не сложно, но для начинающих или тех кто этого никогда не делал, процесс изготовления может окончиться неудачей. В интернете и популярных книгах можно найти ссылку на самодельные фототранзисторы, но процесс изготовления или описан в общих чертах или вообще никак не отражён.
1.Общие принципы и устройство фототранзистора.
Фототранзистор -это полупроводниковый прибор, который преобразует оптическое излучение (видимое или невидимое) в электрический сигнал с одновременным усилением. У фототранзистора коллекторный ток изменяется в зависимости от интенсивности падающего излучения. Чем сильнее облучается фототранзистор (базовая зона), тем больше коллекторный ток.
Фототранзистор может работать в двух режимах: в режиме фотодиода с плавающей базой и в транзисторном режиме с источником смещения в базовой цепи. В режиме с плавающей базой используют только два вывода фототранзистора: вывод эмиттера и вывод коллектора. При подключении фототранзистора в режиме с источником смещения используются все выводы и дополнительный резистор подключенный непосредственно к базовому выводу.
Разобравшись с определениями можно продвигаться дальше. Далее будет приведена технология изготовления фототранзистора из биполярных транзисторов серии МП14-МП42.
На фото.2. Конструктивно биполярный транзистор состоит из: цельнометаллического корпуса, выводов (коллектор, эмиттер, база), изоляторов.
На фото.3. Внутри корпуса, в центре закреплён кристаллодержатель(1), который представляет собой прямоугольник значительных размеров. На кристаллодержателе закреплён полупроводниковый материал(2) (полупроводниковый кристалл), с двух сторон с ним контактируют проволочки(3) (подводящие проводники) идущие от выводов эмиттера(4) и коллектора(4). Вывод базы припаян непосредственно к корпусу транзистора. А выводы эмиттера и коллектора подведены через стеклянные изоляторы (5).
Чтобы не воспроизводить ошибки при изготовлении фототранзистора запомните простые правила, как не нужно делать фототранзистор!
1. Не допустимо спиливать крышку у транзистора сверху! Это приведёт к неминуемому сдвигу кристаллодержателя и порче кристалла или обрыву подводящих проводников. Вероятность порчи изготавливаемого фототранзистора достигает почти 100 процентов! При удачном исходе (спиливания крышки сверху) фототранзистор практически ничего не "видит", потому что свет не попадает на базовую зону кристалла!
2. Ни когда не отрезайте базовый вывод после изготовления фототранзистора, так как есть схемы которые используют именно этот вывод.
3. Не заливайте пропиленное окно фототранзистора прозрачным пластиком или чем то иным, для обеспечения герметизации. Это приведёт к термической порче кристалла полупроводника.
На фото.4. Транзистор типа МП42 имеет три вывода: эмиттер(1), коллектор(2), база (3). Базовый вывод припаян к корпусу(4), а выводы коллектора и эмиттера проходят внутрь корпуса через стеклянные изоляторы(5).
фото.4.нажимайте фото для просмотра в полном размере
На фото.5. Чтобы определить выводы транзистора из серий МП13-МП42, его нужно перевернуть вверх выводами. При этом отогнуть вывод базы на себя, тогда по левую сторону окажется коллектор, а по правую сторону будет эмиттер.
фото.5.нажимайте фото для просмотра в полном размере
Биполярные германиевые транзисторы серии МП, могут иметь как прямую проводимость (p-n-p), так и обратную проводимость (n-p-n). В зависимости от проводимости будет отличаться и схема подключения к источнику напряжения. Из серии МП прямой проводимостью обладают следующие транзисторы: МП13,МП14,МП16,МП26,МП38,МП39,МП40,МП41,МП42. Транзисторы с обратной проводимостью: МП35,МП36,МП37,МП38.
НЕ ЗАБУДЬТЕ, ЧТО ИЗГОТОВЛЕННЫЙ ФОТОТРАНЗИСТОР НАСЛЕДУЕТ ВСЕ СВОЙСТВА БИПОЛЯРНОГО ТРАНЗИСТОРА И ДОЛЖЕН ПОДКЛЮЧАТЬСЯ С УЧЁТОМ ПРОВОДИМОСТИ!
На фото.6. Удерживайте монтажными плоскогубцами транзистор за область(3). Проведите спиливание с помощью напильника боковой поверхности корпуса (1) в месте над выводом эмиттера(2). Спиливание необходимо проводить умеренно, чтобы легче определить глубину спиливания приводится дополнительное фото.6. Красной стрелкой помечена глубина спиливания.
На фото.7. И так, спиливание корпуса выполняют сбоку, это значительно уменьшает вероятность задеть полупроводниковый кристалл и самое главное, свет от источника будет попадать в ту зону (базовую) в которой накапливаются парные носители зарядов. Иначе говоря эффективность фототранзистора по преобразованию оптического излучения в ток будет максимальным.
На фото.8. Удерживайте корпус фототранзистора с помощью монтажных плоскогубцев. В верхнем углу пропила (показан красной стрелкой) аккуратно проделайте шилом отверстие. Затем используйте шило как консервный нож опираясь о бортик выполните разрезание тонкого металлического покрытия оставшегося после спиливания.
На фото.9. Продолжайте удерживать корпус фототранзистора. Проведите аналогичные действия слева для получения аналогичного выреза. На выполненные вырезы указывают красные стрелки.
На фото.10. Теперь нужно поддеть шилом сверху и осторожно извлечь металлическую пластину (часть корпуса) закрывающую окно фототранзистора. Изготовление фототранзистора закончено!
По данной методике автором статьи за короткий промежуток времени было изготовлено семь фототранзисторов из биполярных транзисторов серии МП42. При этом ни один из них не был испорчен во время изготовления. А проверка цифровым тестером показала их приемлемую работоспособность в режиме с плавающей базой. При освещении от настольной лампы из-за увеличивающегося тока коллектора было надёжно зафиксировано снижение сопротивления перехода эмиттер-коллектор. Фототранзистор также способен работать в режиме генератора тока. Изготовленный по выше приведённой методике фототранзистор освещаемый настольной лампой выдавал до 0,1 вольта между выводом базы и коллектором.
Не забудьте, для всех фототранзисторов прямой проводимости (МП14-МП42) эмиттер необходимо подключать к плюсу источника питания. А для фототранзисторов обратной проводимости (МП35,МП36,МП37,МП38) эмиттер необходимо подключать к минусу источника питания.
Табл.1
ПЛЮСЫ ФОТОТРАНЗИСТОРА | очень высокая чувствительность к свету от ламп накаливания, свету от фонарика. |
МИНУСЫ ФОТОТРАНЗИСТОРА | низкая чувствительность к инфракрасному излучению и излучению от ярких светодиодов. |
- Подытоживая выше сказанное, применить самодельный фототранзистор можно, но не для всех схем, конструкций!
Привет! Желаешь собрать не сложного в сборке робота? Ты пришел по адресу! =) Именно у нас на сайте ты сможешь найти подробные статьи по сборке шаг-за-шагом своего первого робота, а так же многих других роботов, и даже для соревнований.
Мы очень рады, что наши статьи помогут тебе - начинающему робототехнику, освоить эту интереснейшую сферу и прокачать свой скилл в этом направлении. Также хотим отметить, что по данным статьям мы - разработчики сайта SERVODROID проводим занятия в бесплатных кружках робототехники, и нам очень нравится учить и рассказывать что такое BEAM-робототехника всем желающих.
Помоги нашему проекту! Зарегистрируйся на нашем сайте и приходи в наш Online-чат или форум и делись своими поделками и своим прогрессом - ведь именно твоя активность привлекает к робототехнике все больше и больше внимания начинающих - они смотрят на твой успех и хотят стать такими же крутыми, а нам очень приятно видеть что у вас все получается. А если что-то не получается - мы поможем ;)
Предлагаемая схема фотореле, автоматически включающая освещение при наступлении темноты или, напротив, при рассвете, не содержит дефицитных деталей, а фотодатчик (обычно с его поиском у радиолюбителей и возникают проблемы) использован из старой компьютерной мышки.
Схема прибора достаточно проста и не требует особых пояснений. При освещении фотодатчика ФД1 транзисторы VT1, VT2 открываются, реле К1 срабатывает, включая или отключая нагрузку своими переключающими контактами (1,2 включают, 2,3 выключают). Резистором R1 устанавливается порог срабатывания схемы, светодиод HL1 служит для визуального контроля состояния реле.
Поскольку в качестве силового транзистора использован маломощный транзистор КТ3107, электромагнитное реле должно быть маломощным. К примеру, РЭС-55. Напряжение питания можно изменять в пределах от 9 до 18 В в зависимости от напряжения срабатывания выбранного реле.
Схема такой микросборки предельно проста и выглядит следующим образом.
Использовать можно любой из фототранзисторов – они совершенно идентичны. Для увеличения чувствительности схемы вы можете их даже запарралелить, соединив выводы 1 и 3.
ИК фотоприемники устанавливаются в различную аппаратуру для приема команд с пультов дистанционного управления, которые передаются в ИК диапазоне. Состоит он из фотодиода и микросхемы, выполняющей функции автоматического регулирования уровня сигнала, принимаемого фотодиодом. Для защиты от внешних помех все помещено в корпус из темной пластмассы, выполняющей роль светофильтра, который хорошо только пропускает ИК излучение.
Примером такого фотоприемника может служить TSOP1738.
TSOP1738
TSOP1738 распиновка
Из него можно сделать устройство для проверки работоспособности пультов ДУ, их кнопок и даже расстояния на которое проходит сигнал пульта.
устройство для проверки пультов
Схема очень простая. Собирается легко навесным монтажом. Для защиты от переполюсовки добавил диод.
В качестве источника питания можно использовать 3 ААА батарейки, Li-ion аккумулятор или зарядное от мобильного телефона.
А именно, интегральный таймер 555, ИК светодиод LD271, интегральный фотоприемник TSOP4838, счетчик К561ИЕ9 и плюс еще по-мелочи.
Внешний ик приемник своими руками
Прием заказов с 10:00 до 19:00 Доставка с 9:00 до 20:00 Установка с 9:00 до 19:00 Без обеда и выходных!
Давайте разберемся, как устроен и из чего состоит выносной приемник Триколор ТВ (LF-DX8).
Разобрав корпус прибора мы увидим печатную плату прибора:
Приведем полученную схему к удобочитаемому виду:
Если наличие светодиода для Вас не принципиально то его можно легко отбросить, при этом получится следующая схема:
Изготавливать печатную плату, для выносного ИК-приемника, Вам не придется, схема настолько проста, что все элементы можно подпаять прямо к ножкам фотоприемника vs1838.
В завершении вышесказанного приведем внешний вид всех элементов, которые потребуются Вам для самостоятельного изготовления устройства:
Желаем Вам удачных экспериментов!
Если после прочтения данной статьи у Вас остались вопросы, мы с удовольствием постараемся на них ответить Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра.
Для чего нужен диод 1N4148?
Устройство и характеристики ИК-приёмника
В бытовой радиоэлектронной аппаратуре получили широкое применение интегральные приёмники инфракрасного излучения. По-другому их ещё называют ИК-модулями.
Их можно обнаружить в любом электронном приборе, управлять которым можно с помощью пульта дистанционного управления.
Вот, например, ИК-приёмник на печатной плате телевизора.
ИК-приёмник на печатной плате телевизора
В отличие от обычного инфракрасного фотодиода, ИК-приёмник может принимать и обрабатывать инфракрасный сигнал, представляющий собой ИК-импульсы фиксированной частоты и определённой длительности – пачки импульсов. Это технологическое решение избавляет от случайных срабатываний, которые могут быть вызваны фоновым излучением и помехами со стороны других приборов, излучающих в инфракрасном диапазоне.
Например, сильные помехи для приёмника ИК-сигналов могут создавать люминесцентные осветительные лампы с электронным балластом. Понятно, что использовать ИК-приёмник взамен обычного ИК-фотодиода не получиться, ведь ИК-модуль является специализированной микросхемой, заточенной под определённые нужды.
Для чего нужен дополнительный резистор?
В свою очередь, резистор R1 (10 кОм) обеспечивает постоянный ток через выпрямительный диод, так что напряжение, подаваемое на приемник, не зависит в значительной степени от тока, потребляемого схемой. Ток, потребляемый этой схемой, сильно различается. Если светодиод не горит, TSOP31236 потребляет менее 1 мА. При включенном светодиоде потребление увеличивается на ~ 4 мА (немного, но все равно в 4 раза больше).
Без этого резистора схема тоже должна работать, но это более безопасное решение! |
Принцип работы TSOP31236
Как ранее и обещали, мы возвращаемся к блок-схеме нашего интегрированного ИК-приемника, то есть к микросхеме TSOP31236 — на этот раз мы сосредоточимся на каждом элементе.
Слева: принимающий элемент — это так называемый PIN-фотодиод, т.е. полупроводниковый диод соответствующей конструкции с открытой структурой. Получается поляризованный барьер, поэтому ток через него не течет. Падающий свет (фотоны) попадает в его структуру и генерирует носители электрического тока, позволяя току течь лишь на мгновение.
Эти крошечные импульсы тока, с фотодиода, улавливаются предусилителем. На его выходе усиливается электрический сигнал, пропорциональный интенсивности принимаемого света.
Блок-схема TSOP31236
Читать также: Загрузчики — первые шаги на примере Arduino
Предварительно усиленный сигнал поступает в блок АРУ (автоматическая регулировка усиления), то есть на усилитель с автоматически регулируемым усилением. Затем сигнал поступает на фильтр, который вырезает из него только частоту, для которой построена схема. В данном случае это 36 кГц. Этот фильтр называется полосовым фильтром.
Две цифры, в конце обозначения номера ИК-приемника, чаще всего определяют частоту (в кГц), с которой работает схема (например, TSOP312 36 означает 36 кГц ). |
Модуляция инфракрасной волны известной частоты позволяет приемнику отличать ее от помех или других источников света, например, от мигающих люминесцентных ламп. |
Далее, амплитуда сигнала, поступающего из фильтра сигналов, сообщает регулируемому усилителю, какой коэффициент усиления следует установить. Это макет с так называемой отрицательной обратной связью — при слишком сильном выходном сигнале коэффициент усиления уменьшается; если он слабый, усиление увеличивается. Это позволяет приемнику работать как со светящимся прямо на него излучающим диодом, так и со светом, отраженным, например, от стены.
На выходе работает биполярный транзистор, который переходит в насыщение при обнаружении волны. Это означает, что получение сигнала происходит с логическим низким состоянием на выходе. В состоянии покоя выход высокий, что обеспечивается резистором 30 кОм. Поэтому светодиод подключается к выходу схемы с катодом — светодиод горит, когда TSOP получает сигнал, а его выход низкий (логический ноль, земля).
Через коллектор этого транзистора может протекать ток 5-10 мА. Таким образом, прямое управление, например, через реле невозможно (кроме как через дополнительный транзистор). |
Основные параметры ресивера:
- полученная длина волны: 950 нм,
- центральная частота фильтра: 36 кГц,
- напряжение питания: 2,5-5,5 В,
- потребление тока: 0,3–0,45 мА,
- максимальный ток, протекающий через выход: 5 мА.
К сожалению или к счастью, ни один элемент не идеален. Каждый интегрированный приемник будет реагировать на разную длину волны света и разную частоту, но его чувствительность будет ниже. Это представлено в таблицах, взятых из примечания к каталогу.
Например: когда мы помещаем передающий диод в передатчик, который излучает длину волны 850 нм, чувствительность будет только 30% от той, которая была бы получена при использовании аналогичного диода на 950 нм. То же самое относится и к частоте импульсов, управляющих диодом: если она упадет с номинальных 36 кГц до, например, 34,2 кГц, то есть на 5% , чувствительность упадет до 70% от номинального значения.
Большинство встроенных приемников требуют фильтрации питающего напряжения. Следующую диаграмму можно найти в примечании к каталогу. Некоторые убеждены, что если применить хорошую стабилизацию и фильтрацию напряжения, питающего всю схему, об этих дополнительных элементах можно смело забыть.
Это серьезная ошибка! Отсутствие этих элементов вызовет полное отсутствие реакции приемника или очень хаотичную работу схемы. |
Типовая схема применения интегрированного инфракрасного приемника
Также стоит помнить, что производители предлагают два типа интегрированных приемников. Один из таких, как TSOP31236, обсуждаемый здесь, то есть схема, которая сигнализирует на своем выходе о факте приема волны с заданной частотой, пока она длится. Второй тип способен излучать импульс длительностью несколько миллисекунд, даже если передающий диод работает во много раз дольше. Следующий импульс произойдет после выключения и повторного включения передачи.
Самостоятельно собранная схема подобного электронного устройства с датчиком движения, безусловно найдет свое применение в различных электронных устройствах.
Но при этом, уже перед началом реализации нужно четко представлять все стороны реализации данного проекта.
Положительные:
- Собранный самостоятельно датчик движения является во многом результатом труда, проб и ошибок, при этом, независимо первая ли это самоделка радиолюбителя или почти промышленное производство, самостоятельная сборка данного устройства принесет удовлетворение.
- Не нуждается в дополнительном обслуживании и приглашении специалистов для настройки.
- Прибор рассчитывается и устанавливается конкретно под местные условия, а соответственно при установке его как компонента охранной сигнализации, секретность будет многократно выше (разве что об этом не узнает сосед).
- Правильная сборка позволит многократно сократить расходы.
- Следующие приборы будут собираться легче и проще, в том числе и в модернизированных версиях.
Теперь об отрицательных сторонах:
- Однократное, удачное включение прибора, не является гарантией его работоспособности.
- Несмотря на успехи, не нужно забывать и о надежности – тонны припоя, потраченные на соединение элементов схемы, не способны её сделать надежной в случае конструкторской ошибки еще на стадии проектирования.
- Подбор нужных элементов займет куда большее время, чем поход в ближайший магазин или фирму по установке сигнализации.
- Размерность и компактность подобного датчика, не говоря о таких свойствах, как эстетичность корпуса и возможность его работы в разных условиях, например, под дождем или в снегу, требуют дополнительного времени, для того, чтобы окончательно убедиться в работоспособности схемы.
Необходимые инструменты и материалы
Для изготовления понадобится всего два инструмента:
Элементы и материалы нужны такие:
- фототранзистор (на схеме обозначен VT1);
- конденсатор (С1);
- операционный усилитель с обратной связью (DA1);
- резистор с обратной связью на операционный усилитель (R2);
- обычный резистор (R1);
- блок питания;
- реле РЭС 55А;
- лазерная указка (при небольшом расстоянии между источником света и фотоприемником вместо лазера можно использовать фотодиод);
- провод;
- прокладка водопроводная;
- шуруп.
Фототранзистор можно изготовить самостоятельно из транзистора П417А или любого другого, имеющего вид шляпы с полями на 3-х ножках. Крышку корпуса демонтируют, открывая полупроводниковую начинку либо в ней формируют отверстие, срезая верхнюю часть. При освещении открытого кристалла прибор будет действовать, как фототранзистор, только с меньшей чувствительностью.
Номинал R2 выбирают с учетом того, что с его увеличением возрастает коэффициент усиления, а это приводит к снижению устойчивости усилителя. Оптимальное сопротивление — 100 кОм.
Составные элементы для сборки
Датчик вовсе не обязательно приобретать в магазине. Такие детекторы легко изготавливаются. Многие мастерят эти приборы самостоятельно или же делают ремонт датчика движения своими руками. Для работы понадобится:
- блок питания (например, используемый для зарядки батарей – у него подходящее напряжение на выходе, 5 вольт);
- фотоэлемент (подходит любой);
- транзистор (в котором должен быть переход p-n-p);
- реле;
- подстроечное сопротивление.
Этапы сборки прибора
Датчик движения собирается в несколько приемов:
- от блока питания отрезается разъем. Далее мультиметром определяется жила с плюсовым зарядом;
- из перечисленных выше компонентов делают фотоприемник, соединяя их в схему.
Схема фотоприемника
Затем подключают лазерную указку к блоку питания:
- припаивают к блоку два дополнительных провода;
- протыкают шурупом водопроводную прокладку и помещают данную конструкцию в лазерную указку шляпкой вперед, так чтобы та уперлась в пружинный контакт.
Один из дополнительных проводов подсоединяют к шурупу, второй — помещают в щель между прокладкой и корпусом указки.
Принцип работы
Вне зависимости от того, какие датчики устанавливаются, все датчики движения управляющие освещением, работают в соответствии с заложенным принципом работы – замыкании контактов и включении освещения после изменения положения предметов в зоне действия сенсоров устройства.
Различные электронные компоненты имеют различные принципы построения, но у всех их имеется общее сходство замыкание контактов и включение освещения осуществляется после начала движения.
В период пребывания в зоне работы сенсора, осуществляется срабатывание электроники, после, устройство продолжает работать еще некоторое время и уже после того, как предмет, человек или животное вышли из зоны действия датчика. Но такое дополнение технически решается отдельно от основной схемы сенсора.
Как подключить датчик движения: схема
Самодельный световой датчик движения желательно устанавливать в дверном проеме — тогда входящий в комнату человек гарантированно пересечет линию между источником света и фотоприемником.
Изделие будет смотреться изящнее, если схему фотоприемника поместить в пластмассовую коробку с отверстием напротив фототранзистора.
Примерная установка датчика движения на улице
Чтобы исключить влияние других источников света, фотодатчик затемняют и закрывают темным светопропускающим материалом.
Высота установки — 1 м от пола. При таком размещении сенсор не замечает домашних животных и при этом полностью исключается попадание лазера в глаза человеку (оказывает негативное воздействие на сетчатку). Для подачи питания на светильник, к датчику подключается реле РЭС 55А.
Схема подключения следующая:
- обмотка соединяется со входом;
- на один контакт подается напряжение 12 В;
- второй контакт подключается к заземлению;
- третий подводится к светильнику.
Работает устройство следующим образом:
- под воздействием света в фоторезисторе формируется рабочее напряжение, вызывающее его открытие;
- на конденсатор С1 подается питание, вследствие чего он заряжается;
- при появлении светонепроницаемой преграды между источником света и фотоприемником (в комнату вошел человек), фототранзистор закрывается и конденсатор С1 разряжается;
- это приводит к снижению напряжения в точке А и, соответственно, на выходе до нулевого значения. Этому способствует операционный усилитель DA1;
- при падении напряжения, источник питания посредством реле замыкается на светильнике.
Датчик можно сделать незаметным, применив вместо источника видимого света инфракрасный диод.
Кратко о датчиках
Один из самых простых видов датчиков — концевой выключатель или самовозвратная кнопка (без фиксации).
Она устанавливается у двери и реагирует на ее открытие и закрытие. С помощью нехитрой схемы данный аппарат включает свет в холодильнике. Ей можно оснастить кладовку или тамбур прихожей, дверь в подъезде, дежурную светодиодную подсветку, использовать данный выключатель как сигнализацию, которая оповестит об открытии или закрытии двери. Недостатками конструкции могут являться сложности в установке, и порой непрезентабельный внешний вид.
Аппараты, на основе геркона и магнита, можно заметить на дверях и окнах охраняемых объектов. Их принцип работы очень похож на работу кнопки. Геркон может размыкать или соединять контакты при поднесении к нему обычного магнита. Таким образом, сам геркон устанавливается на дверной проем, а магнит вешается на дверь. Такая конструкция аккуратно выглядит и используется чаще, чем обычная кнопка. Недостаток устройств в узко специализированном применении. Для контроля открытых территорий, площадей, проходов они не годны.
Для открытых проходов существуют устройства, реагирующие на изменения в окружающей среде. К ним относятся фотореле, емкостные (датчики поля), тепловые (PIR), звуковые реле. Для фиксации пересечения определенного участка, контроля препятствия, наличия движения какого-либо объекта в зоне перекрытия, используют фото или звуковые эхо устройства.
Принцип работы таких датчиков основан на формировании импульса и его фиксации после отражения от объекта. При попадании в такую зону предмета, изменяется характеристика отраженного сигнала, и детектор формирует сигнал управления на выходе.
Для наглядности представлена принципиальная схема работы фотореле и звукового реле:
В качестве передающего устройства в оптических датчиках используются инфракрасные светодиоды, а в качестве приемника – фототранзисторы. Звуковые датчики работают в ультразвуковом диапазоне, поэтому их работа для нашего уха кажется бесшумной, однако каждый из них содержит маленький излучатель и улавливатель.
К примеру, замечательно снабдить детектором движения зеркало с подсветкой. Включение освещения будет происходить только в тот момент, когда человек будет находиться непосредственно возле него. Не желаете сделать такую подсветку зеркала самостоятельно?
Изготовление микроволнового датчика
Этот сенсор собирается по схеме ниже. Здесь транзистор VT1 попутно играет роль высокочастотного генератора радиоприемника. Напряжение, задаваемое смещением на базе транзистора VT2, выпрямляется детекторным диодом.
Обмотки трансформатора Т1 настроены на разные частоты. В нормальном состоянии (отсутствуют движущиеся объекты) амплитуды сигналов компенсируют друг друга и на детекторе VD1 напряжение не подается.
Схема принципиальная микроволнового датчика движения
При появлении движущихся объектов, затеняющих антенну и искажающих идущие к ней радиоволны, амплитуды сигналов суммируются и детектируются на диоде. Это вызывает открытие VT2.
Разные советы
Любой из вышеперечисленных вариантов может быть подстроен под индивидуальные нужды.
Если Вам нужно провести ремонт, то все индикаторы, разбираются очень быстро и в основном проблема заключается в контактах, просто зачистите их.
Когда просто нет времени сделать датчики движения своими руками, то их можно купить в любом магазине электротехники, хорошие отзывы про модели ГрандВей и Сименс. Средняя цена прибора – 500 рублей.
Стандартная схема подключения
Стандартная схема подключения модели предполагает использование модуляционного фотоэлемента. При этом транзисторы применяются чаще всего диодного типа. Лампочка в данном случае должна располагаться возле усилителя. Ширина пропускания зависит от типа конденсатора. Усилители, как правило, устанавливаются импульсного типа. Однако интегрированные модификации также можно найти в наше время. Точность слежения устройства в конечном счете зависит от многих факторов. В первую очередь это касается типа фильтра, который предназначен для подавления помех. Дополнительно в датчиках устанавливается модулятор, который по параметрам может варьироваться.
Модификации с мембранным усилителем
Указанные датчики движения для включения света (схема подключения показана ниже) на сегодняшний день являются очень востребованными. Если верить отзывам людей, то устанавливаются они довольно просто. В первую очередь следует зачистить внешние контакты. С этой целью необходимо снять крышку диффузора. После этого подбирается первый контакт и соединяется с выходным кабелем. Далее нужно подключить заземление. Если говорить про датчик, то мембранный усилитель в устройстве значительно повышает параметр пороговой частоты. Фотоэлементы для него подходят практически всех типов. Однако конденсаторы многие специалисты советуют устанавливать интегральные. В данном случае прослужить они способны довольно много.
Отдельного внимания заслуживают резисторы. Некоторые при сборке устройства их используют модульные. Однако в этом случае параметр отрицательного сопротивления в датчике будет составлять примерно 6 Ом. На фотоэлемент эта нагрузка считается довольно большая. Чтобы решить указанную проблему, следует обратить внимание на двухрядные резисторы. Всего их для прибора понадобится два. Первый должен устанавливаться возле фотоэлемента. При этом второй часто располагают для лучшей проводимости за усилителем.
Подключение прибора и настройка чувствительности
Для примера можно использовать алгоритм действий при выборе типового пироэлектрического модуля HC-SR501. Первым переменным резистором настраивают чувствительность. Кроме дистанции (до 7 м), этим параметром можно ограничить размер детектируемых объектов. Вторым регулятором устанавливают необходимое время для задержки управляющего выходного импульса. Положением перемычки устанавливают режим:
- H (по умолчанию) – отсчет времени начинается от момента обнаружения движения;
- L – определение движения обнуляет таймер.
Элементы настройки
Читайте также: