Что такое графический ускоритель на компьютер
Привет, дорогой читатель. Сегодня начнем обсуждать ту железку, благодаря которой мы можем видеть изображение на экране нашего компьютера.
Графические ускорители и их типы
Если начинать подробно разбираться в том, какие видеокарты представлены на рынке, то можно достаточно быстро обнаружить, что их огромное множество. Начнем разбираться с того, что рассмотрим разницу между непосредственно видеокартой, отдельной платой, устанавливаемой в компьютер, и видеоядром, интегрированным непосредственно в процессор. Два этих типа графических ускорителей называются соответственно: дискретными и интегрированными.
Дискретная видеокарта - это отдельное устройство, единственной задачей которого является работа с расчетами, связанными с выводом изображения во всех его проявлениях. Видеокарта такого класса может без особого труда быть заменена на другую, тем самым отражая уровень необходимой вам в данный момент производительности. При этом дискретная видеокарта обладает полным комплектом необходимой для ее работы обвязки: выделенная видеопамять, регуляторы питания, охлаждение и т.д.
Дискретная видеокарта Radeon RX 5700 XT с классическим турбинным кулером (об этом ниже). Дискретная видеокарта Radeon RX 5700 XT с классическим турбинным кулером (об этом ниже).Интегрированный ускоритель - это зачастую отдельный кристалл или иногда ядро, находящееся на общей с процессором подложке. Достаточно давно видеоядра итегрировались в материнскую плату, но с переходом большей части контроллеров на кристалл процессора, видеоядро также перекочевало туда. Такая компоновка графического ускорителя вносит значительные ограничения в его работу: под видеопамять выделяется участок оперативной памяти, которая значительно медленнее выделенной, подсистема питания должна быть расположена на материнской плате и обычно представляет одну-две фазы, охлаждение общее с процессором. Из всего этого можно сделать простой вывод: интегрированная видеокарта маломощная. И действительно, мы только сейчас подбираемся к тому, чтобы видеоядра в процессорах могли поддерживать не самые требовательные игры в FullHD 60 кадров в секунду. Кроме того, видеоядро нельзя заменить - оно часть процессора, однако всегда можно купить дискретную видеокарту, которая расширит возможности ПК.
Выглядит приблизительно так, но вариаций так называемой "упаковки" много. Один кристалл процессор, второй - видеокарта. Бывают выполнены единым кристаллом. Выглядит приблизительно так, но вариаций так называемой "упаковки" много. Один кристалл процессор, второй - видеокарта. Бывают выполнены единым кристаллом.Какой вывод из всего вышесказанного? Если вы планируете активно играть или работать с графикой\видео на профессиональном уровне, то вам необходима видеокарта, если же вы хотите посидеть в браузере и иногда посмотреть кино - вам хватит и встроенного видеоядра.
Видеокарты и их типы
Раз мы теперь знаем, что графические ускорители бывают интегрированные и дискретные, мы можем сделать вывод, что видеокартой можно назвать только дискретный ускоритель, так как интегрированный по сути не является картой.
Видеокарты также различаются по целому спектру характеристик: по частоте графического процессора, объему и частоте видеопамяти, качеству системы охлаждения. И в этом можно было бы легко запутаться, если бы не различные названия. Поэтому говоря о типах, я бы отметил референсные и нереференсные видеокарты, а вопросы названий оставил на потом.
Референсная видеокарта - видеокарта изготовленная по эталонному дизайну компании-производителя видеочипа. Таких компаний две Nvidia и AMD, но в последнее время к ним очень хочет присоединиться и Intel. Эти компании предлагают эталонную плату со всеми элементами и системой охлаждения. Скажем так, это видение компании о том, как должна выглядеть их видеокарта как коммерческий продукт. Помимо этого, AMD и Nvidia могут продавать партнерам (вендорам) непосредственно видеопроцессоры, а уже сами партнеры решают, на какую плату их установить. Такие видеокарты от партнеров называются нереференсными .
Схематичное представление референсного дизайна видеокарты RTX 2080Ti (реальная карта лишилась одного чипа памяти и некоторых элементов обвязки). Схематичное представление референсного дизайна видеокарты RTX 2080Ti (реальная карта лишилась одного чипа памяти и некоторых элементов обвязки).Нереференсная видеокарта - видеокарта, изготовленная не по эталонному дизайну. Может кардинально отличаться от референсной видеокарты, быть значительно меньше для маленьких корпусов или же наоборот больше, если целью были качество охлаждения, тишина или, например, разгонный потенциал. Многие нереференсные карты с завода идут с разгоном, так как производитель может позволить себе отбирать лучшие из поставленных ему чипов и устанавливать их в более дорогие карты.
А вот такой бутерброд предложит нам Asus. Та же RTX 2080Ti, но, как видите, и плата, и кулер другие А вот такой бутерброд предложит нам Asus. Та же RTX 2080Ti, но, как видите, и плата, и кулер другиеОбратите внимание, что производитель может установить нереференсный кулер на референсную плату! Охлаждение определенно улучшится, но примочек кастомного дизайна платы вы не получите.
Если разница между референсным и нереференсным дизайном кулера выражается преимущественно в качестве охлаждения и шуме при работе, то разница между эталонным и не эталонным дизайном платы заключается в разгонном потенциале, а также различных примочках, которыми решил оснастить свою плату производитель.
Надеюсь, что эта информация поможет вам выбрать правильный тип видеокарты. В следующей статье я расскажу вам непосредственно про модели видеокарт, которые можно встретить на рынке.
Графические процессоры (graphics processing unit, GPU) — яркий пример того, как технология, спроектированная для задач графической обработки, распространилась на несвязанную область высокопроизводительных вычислений. Современные GPU являются сердцем множества сложнейших проектов в сфере машинного обучения и анализа данных. В нашей обзорной статье мы расскажем, как клиенты Selectel используют оборудование с GPU, и подумаем о будущем науки о данных и вычислительных устройств вместе с преподавателями Школы анализа данных Яндекс.
Графические процессоры за последние десять лет сильно изменились. Помимо колоссального прироста производительности, произошло разделение устройств по типу использования. Так, в отдельное направление выделяются видеокарты для домашних игровых систем и установок виртуальной реальности. Появляются мощные узкоспециализированные устройства: для серверных систем одним из ведущих ускорителей является NVIDIA Tesla P100, разработанный именно для промышленного использования в дата-центрах. Помимо GPU активно ведутся исследования в сфере создания нового типа процессоров, имитирующих работу головного мозга. Примером может служить однокристальная платформа Kirin 970 с собственным нейроморфным процессором для задач, связанных с нейронными сетями и распознаванием образов.
Подобная ситуация заставляет задуматься над следующими вопросами:
- Почему сфера анализа данных и машинного обучения стала такой популярной?
- Как графические процессоры стали доминировать на рынке оборудования для интенсивной работы с данными?
- Какие исследования в области анализа данных будут наиболее перспективными в ближайшем будущем?
Эпоха GPU
Для начала вспомним, что же такое GPU. Graphics Processing Unit — это графический процессор широко используемый в настольных и серверных системах. Отличительной особенностью этого устройства является ориентированность на массовые параллельные вычисления. В отличие от графических процессоров архитектура другого вычислительного модуля CPU (Central Processor Unit) предназначена для последовательной обработки данных. Если количество ядер в обычном CPU измеряется десятками, то в GPU их счет идет на тысячи, что накладывает ограничения на типы выполняемых команд, однако обеспечивает высокую вычислительную производительность в задачах, включающих параллелизм.
Первые шаги
Развитие видеопроцессоров на ранних этапах было тесно связано с нарастающей потребностью в отдельном вычислительном устройстве для обработки двух и трехмерной графики. До появления отдельных схем видеоконтроллеров в 70-х годах вывод изображения осуществлялся через использование дискретной логики, что сказывалось на увеличенном энергопотреблении и больших размерах печатных плат. Специализированные микросхемы позволили выделить разработку устройств, предназначенных для работы с графикой, в отдельное направление.
Следующим революционным событием стало появление нового класса более сложных и многофункциональных устройств — видеопроцессоров. В 1996 году компания 3dfx Interactive выпустила чипсет Voodoo Graphics, который быстро занял 85% рынка специализированных видеоустройств и стал лидером в области 3D графики того времени. После серии неудачных решений менеджмента компании, среди которых была покупка производителя видеокарт STB, 3dfx уступила первенство NVIDIA и ATI (позднее AMD), а в 2002 объявила о своем банкротстве.
Общие вычисления на GPU
В 2006 году NVIDIA объявила о выпуске линейки продуктов GeForce 8 series, которая положила начало новому классу устройств, предназначенных для общих вычислений на графических процессорах (GPGPU). В ходе разработки NVIDIA пришла к пониманию, что большее число ядер, работающих на меньшей частоте, более эффективны для параллельных нагрузок, чем малое число более производительных ядер. Видеопроцессоры нового поколения обеспечили поддержку параллельных вычислений не только для обработки видеопотоков, но также для проблем, связанных с машинным обучением, линейной алгеброй, статистикой и другими научными или коммерческими задачами.
Признанный лидер
Различия в изначальной постановке задач перед CPU и GPU привели к значительным расхождениям в архитектуре устройств — высокая частота против многоядерности. Для графических процессоров это заложило вычислительный потенциал, который в полной мере реализуется в настоящее время. Видеопроцессоры с внушительным количеством более слабых вычислительных ядер отлично справляются с параллельными вычислениями. Центральный же процессор, исторически спроектированный для работы с последовательными задачами, остается лучшим в своей области.
Для примера сравним значения в производительности центрального и графического процессора на выполнении распространенной задачи в нейронных сетях — перемножении матриц высокого порядка. Выберем следующие устройства для тестирования:
- CPU. Intel Xeon E5-2680 v4 — 28 потоков с HyperThreading, 2.4 GHZ;
- GPU. NVIDIA GTX 1080 — 2560 CUDA Cores, 1607 Mhz, 8GB GDDR5X.
В коде выше мы измеряем время, которое потребовалось на вычисление матриц одинакового порядка на центральном или графическом процессоре («Время выполнения»). Данные можно представить в виде графика, на котором горизонтальная ось отображает порядок перемножаемых матриц, а вертикальная — Время выполнения в секундах:
Линия графика, выделенная оранжевым, показывает время, которое требуется для создания данных в обычном ОЗУ, передачу их в память GPU и последующие вычисления. Зеленая линия показывает время, которое требуется на вычисление данных, которые были сгенерированы уже в памяти видеокарты (без передачи из ОЗУ). Синяя отображает время подсчета на центральном процессоре. Матрицы порядка менее 1000 элементов перемножаются на GPU и CPU почти за одинаковое время. Разница в производительности хорошо проявляется с матрицами размерами более 2000 на 2000, когда время вычислений на CPU подскакивает до 1 секунды, а GPU остается близким к нулю.
Более сложные и практические задачи эффективнее решаются на устройстве с графическими процессорами, чем без них. Поскольку проблемы, которые решают наши клиенты на оборудовании с GPU, очень разнообразны, мы решили выяснить, какие самые популярные сценарии использования существуют.
Кому в Selectel жить хорошо с GPU?
Первый вариант, который сразу приходит на ум и оказывается правильной догадкой — это майнинг, однако любопытно отметить, что некоторые применяют его как вспомогательный способ загрузить оборудование на «максимум». В случае аренды выделенного сервера с видеокартами, время свободное от рабочих нагрузок используется для добычи криптовалют, не требующих специализированных установок (ферм) для своего получения.
Ставшие уже в какой-то степени классическими, задачи, связанные с графической обработкой и рендерингом, неизменно находят свое место на серверах Selectel с графическими ускорителями. Использование высокопроизводительного оборудования для таких задач позволяет получить более эффективное решение, чем организация выделенных рабочих мест с видеокартами.
В ходе разговора с нашими клиентами мы также познакомились с представителями Школы анализа данных Яндекс, которая использует мощности Selectel для организации тестовых учебных сред. Мы решили узнать побольше о том, чем занимаются студенты и преподаватели, какие направления машинного обучения сейчас популярны и какое будущее ожидает индустрию, после того как молодые специалисты пополнят ряды сотрудников ведущих организаций или запустят свои стартапы.
Наука о данных
Пожалуй, среди наших читателей не найдется тех, кто не слышал бы словосочетания «нейронные сети» или «машинное обучение». Отбросив маркетинговые вариации на тему этих слов, получается сухой остаток в виде зарождающейся и перспективной науки о данных.
Современный подход к работе с данными включает в себя несколько основных направлений:
- Большие данные (Big Data). Основная проблема в данной сфере — колоссальный объем информации, который не может быть обработан на единственном сервере. С точки зрения инфраструктурного обеспечения, требуется решать задачи создания кластерных систем, масштабируемости, отказоустойчивости, и распределенного хранения данных;
- Ресурсоемкие задачи (Машинное обучение, глубокое обучение и другие). В этом случае поднимается вопрос использования высокопроизводительных вычислений, требующих большого количества ОЗУ и процессорных ресурсов. В таких задачах активно используются системы с графическими ускорителями.
Граница между данными направления постепенно стирается: основные инструменты для работы с большими данным (Hadoop, Spark) внедряют поддержку вычислений на GPU, а задачи машинного обучения охватывают новые сферы и требуют бо́льших объемов данных. Разобраться подробнее нам помогут преподаватели и студенты Школы анализа данных.
Трудно переоценить важность грамотной работы с данными и уместного внедрения продвинутых аналитических инструментов. Речь идёт даже не о больших данных, их «озерах» или «реках», а именно об интеллектуальном взаимодействии с информацией. Происходящее сейчас представляет собой уникальную ситуацию: мы можем собирать самую разнообразную информацию и использовать продвинутые инструменты и сервисы для глубокого анализа. Бизнес внедряет подобные технологии не только для получения продвинутой аналитики, но и для создания уникального продукта в любой отрасли. Именно последний пункт во многом формирует и стимулирует рост индустрии анализа данных.
Новое направление
Повсюду нас окружает информация: от логов интернет-компаний и банковских операций до показаний в экспериментах на Большом адронном коллайдере. Умение работать с этими данными может принести миллионные прибыли и дать ответы на фундаментальные вопросы о строении Вселенной. Поэтому анализ данных стал отдельным направлением исследований среди бизнес и научного сообщества.
Школа анализа данных готовит лучших профильных специалистов и ученых, которые в будущем станут основным источником научных и индустриальных разработок в данной сфере. Развитие отрасли сказывается и на нас как на инфраструктурном провайдере — все больше клиентов запрашивают конфигурации серверов для задач анализа данных.
От специфики задач, стоящих перед нашими клиентами, зависит то, какое оборудование мы должны предлагать заказчикам и в каком направлении следует развивать нашу продуктовую линейку. Совместно со Станиславом Федотовым и Олегом Ивченко мы опросили студентов и преподавателей Школы анализа данных и выяснили, какие технологии они используют для решения практических задач.
Технологии анализа данных
За время обучения слушатели от основ (базовой высшей математики, алгоритмов и программирования) доходят до самых передовых областей машинного обучения. Мы собирали информацию по тем, в которых используются серверы с GPU:
- Глубинное обучение;
- Обучение с подкреплением;
- Компьютерное зрение;
- Автоматическая обработка текстов.
Представленные инструменты обладают разной поддержкой от создателей, но тем не менее, продолжают активно использоваться в учебных и рабочих целях. Многие из них требуют производительного оборудования для обработки задач в адекватные сроки.
Дальнейшее развитие и проекты
Как и любая наука, направление анализа данных будет изменяться. Опыт, который получают студенты сегодня, несомненно войдет в основу будущих разработок. Поэтому отдельно стоит отметить высокую практическую направленность программы — некоторые студенты во время учебы или после начинают стажироваться в Яндексе и применять свои знания уже на реальных сервисах и службах (поиск, компьютерное зрение, распознавание речи и другие).
О будущем анализа данных мы поговорили с преподавателями Школы анализа данных, которые поделились с нами своим видением развития науки о данных.
По мнению Влада Шахуро, преподавателя курса «Анализ изображений и видео», самые интересные задачи в компьютерном зрении — обеспечение безопасности в местах массового скопления людей, управление беспилотным автомобилем и создание приложение с использованием дополненной реальности. Для решения этих задач необходимо уметь качественно анализировать видеоданные и развивать в первую очередь алгоритмы детектирования и слежения за объектами, распознавания человека по лицу и трехмерной реконструкции наблюдаемой сцены. Преподаватель Виктор Лемпицкий, ведущий курс «Глубинное обучение», отдельно выделяет в своем направлении автокодировщики, а также генеративные и состязательные сети.
Один из наставников Школы анализа данных делится своим мнением касательно распространения и начала массового использования машинного обучения:
«Машинное обучение из удела немногих одержимых исследователей превращается в ещё один инструмент рядового разработчика. Раньше (например в 2012) люди писали низкоуровневый код для обучения сверточных сетей на паре видеокарт. Сейчас, кто угодно может за считанные часы:
- скачать веса уже обученной нейросети (например, в keras);
- сделать с ее помощью решение для своей задачи (fine-tuning, zero-shot learning);
- встроить её в свой веб-сайт или мобильное приложение (tensorflow / caffe 2).
По мнению Ивченко Олега, администратора серверной инфраструктуры ШАД, для стандартных задач глубокого обучения на стандартных наборах данных (например, CIFAR, MNIST) требуются такие ресурсы:
- 6 ядер CPU;
- 16 Gb оперативной памяти;
- 1 GPU-карточка с 6-8 Gb видеопамяти. Это соответствует таким видеокартам, как PNY NVIDIA GeForce GTX 1060 или MSI GeForce GTX 1070.
Возможности для новичков
Изучение анализа данных ограничивается высокими требованиями к обучающимся: обширные познания в области математики и алгоритмики, умение программировать. По-настоящему серьезные задачи машинного обучения требуют уже наличия специализированного оборудования. А для желающих побольше узнать о теоретической составляющей науки о данных Школой анализа данных совместно с Высшей Школой Экономики был запущен онлайн курс «Введение в машинное обучение».
Вместо заключения
Рост рынка графических процессоров обеспечивается возрастающим интересом к возможностям таких устройств. GPU применяется в домашних игровых системах, задачах рендеринга и видеообработки, а также там, где требуются общие высокопроизводительные вычисления. Практическое применение задач интеллектуального анализа данных будет проникать все глубже в нашу повседневную жизнь. И выполнение подобных программ наиболее эффективно осуществляется именно с помощью GPU.
Мы благодарим наших клиентов, а также преподавателей и студентов Школы анализа данных за совместную подготовку материала, и приглашаем наших читателей познакомиться с ними поближе.
А опытным и искушенным в сфере машинного обучения, анализа данных и не только мы предлагаем посмотреть предложения от Selectel по аренде серверного оборудования с графическми ускорителями: от простых GTX 1080 до Tesla P100 и K80 для самых требовательных задач.
Сегодня мы продолжаем начатый немногим ранее цикл статей, посвящённых компонентам компьютера. В предыдущий раз мы подробно разобрали такую тему, как «Что такое процессор и почему его можно считать сердцем любого современного устройства». Сегодня мы хотим затронуть не менее интересную и важную тему: «Что такое видеокарта или графический процессор (GPU)». Как всегда, наш экскурс начнётся с базовых принципов, терминологии и небольшой предыстории появления графических процессоров.
Что такое видеокарта (GPU)?
Видеокарта (видеоадаптер, графический адаптер, графическая плата, графическая карта, графический ускоритель или на английском: video card, graphics card) - это устройство, преобразующее графический образ или код, хранящийся как содержимое в памяти компьютера (или самого графического адаптера), в форму, пригодную для дальнейшего вывода на экран монитора.
Проще говоря, видеокарта в совокупности с другими компонентами компьютера позволяет преобразовать протекающий машинный код (последовательность команд) внутри вашего компьютера в удобочитаемое изображение для человеческого глаза.
В первую очередь, под видеокартой подразумевается устройство с графическим процессором, который занимается формированием самого графического образа. Все современные видеокарты не ограничиваются простым выводом изображения, они имеют встроенный графический процессор, который может производить дополнительную обработку команд и кода, снимая данную часть задачи с центрального процессора компьютера.
Также современные видеокарты от Nvidia и AMD на аппаратном уровне осуществляют рендеринг графического конвейера для построения и отображения двумерной и трёхмерной компьютерной графики на спецификациях OpenGL, DirectX и Vulkan.
Зачастую видеокарта выполнена в виде отдельной печатной платы и используется в отдельном слоте расширения (AGP, PCI Express) материнской платы. Однако широко распространены и встроенные (интегрированные) в системную плату или процессор видеокарты. Ниже мы посвятим отдельный блок в ключе сравнения интегрированных и внешних (дискретных) видеокарт.
История появления графических процессоров
Пожалуй, это был один из самых сложных и тернистых путей компьютерного прогресса, и начинался он, как могли подумать многие, не с вывода примитивной 2D или 3D графики, а с вывода самого простого текста на монохромный экран монитора.
Стоит обозначить, что мы не будет разбирать всю хронологию графических адаптеров, а обозначим только самые значимые и переломные моменты истории.Итак, давайте начнём по порядку.
Самым первым графическим адаптером стал MDA (Monochrome Display Adapter), разработанный в 1981 году. MDA был основан на чипе Motorola 6845 и оснащен 4 КБ видеопамяти. Он работал только в текстовом режиме с разрешением 80×25 символов и поддерживал пять атрибутов текста: обычный, яркий, инверсный, подчёркнутый и мигающий. Никакой цветовой или графической информации он передавать не мог, и то, какого цвета будут буквы, определялось моделью используемого монитора.
Однако настоящим прародителем современных видеокарт принято считать CGA (Color Graphics Adapter), выпущенный компанией IBM в 1981 году. CGA мог работать как в текстовом режиме с разрешениями 80×25, так и в графическом с разрешениями до 640×200 точек и с возможностью отрисовки 16 цветов.
С момента появления первого цветного графического адаптера CGA в 1981 и вплоть до 1991 никаких революционных инноваций не происходило от слова «совсем». В основном разработчики и конструкторы аппаратных плат представляли небольшое увеличение разрешения, цветности изображения и т. д.
И только в 1991 году появилось такое понятие, как SVGA (Super VGA) — расширение VGA с добавлением новых режимов и дополнительного сервиса, например, возможности поставить произвольную частоту кадров. Число одновременно отображаемых цветов увеличивается до 65 536 (High Color, 16 бит) и 16 777 216 (True Color, 24 бита), появляются дополнительные как текстовые, так и визуальные режимы отображения информации. SVGA является фактическим стандартом видеоадаптеров где-то с середины 1992 года, после принятия ассоциацией VESA стандарта VBE (VESA BIOS Extention — расширение BIOS стандарта VESA) версии 1.0. До того момента практически все видеоадаптеры SVGA были несовместимы между собой.
Ну что, не устали еще? Если нет, предлагаю продолжить и перейти к разбору того, что из себя представляют интегрированные и дискретные видеокарты.
Интегрированная или внешняя (дискретная) видеокарта
Интегрированная (встроенная) видеокарта
Интегрированная видеокарта — это видеокарта, которая уже встроена в ваш процессор или материнскую плату. В большинстве современных процессоров от AMD и Intel под защитной крышкой процессора располагается не только кристалл центрального процессора, но и интегрированное в кристалл процессора графическое ядро для вывода графической информации.
Решение со встроенными графическими процессорами (видеокартами) довольно популярно в ноутбуках и другой портативной электронике, где из-за компактных размеров устройства невозможно использовать отдельное внешнее графическое решение для вывода информации.
В дополнение хотелось бы отметить, что все интегрированные графические карты не имеют своей собственной видеопамяти. В качестве видеопамяти интегрированные решения резервируют настраиваемый участок из оперативной памяти для своих нужд и последующей работы.
Стоит обозначить, что не все процессоры и материнские платы обладают встроенными графическими процессорами. Если вы рассматриваете интегрированную видеокарту как временное решение, пожалуйста, уточните наличие данного функционала перед покупкой.Внешняя (дискретная) видеокарта
Внешняя или дискретная видеокарта — это устройство (независимое видеоядро), которая располагается на отдельной плате и устанавливается в отдельный AGP (от англ. Accelerated Graphics Port - ускоренный графический порт) или PCI (англ. Peripheral component interconnect - взаимосвязь периферийных компонентов) слот материнской платы компьютера.
Дискретные видеокарты являются самым производительным графическим решением, так как на отдельной плате видеокарты располагается независимый графический процессор и набор отдельной независимой видеопамяти, что позволяет не задействовать в процессе работы графического процессора (видеокарты) вашу основную оперативную память и встроенное в процессор графическое ядро.
Из-за резкой разницы в производительности, по сравнению с интегрированными графическими решениями, прямо пропорционально повышается и рабочая температура видеокарты. Поэтому на все производительные дискретные решения устанавливаются массивные радиаторы для отвода тепла, а количество кулеров используемых для охлаждения может достигать 3-4 штук.
Дискретный вариант видеокарт может быть заменён в будущем, когда производительности текущей видеокарты не будет хватать для запуска новых требовательных игр или работы в графических приложениях.
Характеристики видеокарт
Ну что, достаточно «лирики», давайте пройдёмся по основным характеристикам видеокарт. Ниже мы перечислим только основные характеристики видеокарт, на которые стоит обратить внимание при выборе видеокарты, без углубления в такие параметры, как техпроцесс, количество CUDA блоков или число блоков растеризации.
Производитель
Так сложилось, что рынок видеокарт разделён между двумя игроками - «красными и зелёными». Под «красными» следует понимать графические решения от AMD – Radeon, а под «зелёными» - Nvidia – Geforce.
По данной ссылке вы сможете ознакомиться с нашей отдельной статьей в ключе выбора видеокарты: «Как выбрать видеокарту для компьютера? Какая видеокарта лучше: AMD или Nvidia?»
Тактовая частота ядра и памяти
Здесь можно провести прямую аналогию с тактовой частотой центрального процессора с единственным отличием, что в видеокартах частотой обладает как видеопамять, так и само графическое ядро.
Следовательно, чем выше показатель тактовой частоты графического процессора и памяти, тем выше производительность видеокарты.
Стоит добавить, что большинство видеокарт позволяет поднять показатели тактовой частоты через специальные программы для «разгона» или оверклокинга. В некоторых случаях прирост производительности может достигать от 5% до 20%. Но не стоит забывать об обратной стороне медали — возможности появления артефактов или графических ошибок в различных приложениях и потенциальном ускоренном износе видеокарты или перегреве.
Прочитать про разгон (оверклокинг) видеокарты вы можете в нашей отдельной статье - «Разгон видеокарты».
Тип и объем видеопамяти
Под видеопамятью следует понимать отдельную независимую память, распаянную на плате видеокарты под нужды самой видеокарты при работе с графическими задачами.
На современном рынке представлены видеокарты с видеопамятью следующих типов - GDDR3, GDDR4, GDDR5, GDDR6 и GDDR6X. Тип видеопамяти и её количество определяет основной параметр – пропускную способность памяти. Но не всегда объем видеопамяти говорит о производительности видеокарты, поэтому нужно обращать внимание и на другие важные характеристики, такие как используемой тип памяти и разрядность шины.
Следовательно, чем новее тип используемой памяти и больше её количество, тем быстрее видеокарта сможет отрисовывать/прогружать новые текстуры в играх или, как вариант, сможет задействовать текстуры более высокого качества и разрешения.
Разрядность шины памяти
Разрядность шины памяти отвечает за то, насколько быстро графический процессор видеокарты обменивается обрабатываемой информацией с памятью видеокарты. Чем выше разрядность, тем быстрее происходит обмен данной информацией, что весьма важно в требовательных играх или задачах обработки графики.
Система охлаждения
Тут тоже все весьма просто — чем производительней видеокарта, тем больше тепла она выделает. Поэтому все современные графические решения используют от двух и более кулеров (вентиляторов) для охлаждения видеопроцессора и памяти видеокарты.
В некоторых моделях видеокарт система охлаждения может работать тише, чем в других моделях, поэтому, если для вас важен такой параметр, как издаваемый шум при нагрузке, советуем ознакомиться с отзывами пользователей перед приобретением конкретной модели видеокарты.
Интерфейсы или разъемы подключения
Интерфейс подключения определяет то, посредством чего ваш монитор или телевизор будет подключен к видеокарте для вывода изображения. На данный момент в мониторах и телевизорах используется четыре разъема подключения, это — DVI-I, DVI-D, VGA, HDMI и DisplayPort.
DVI-I, DVI-D и VGA относятся к морально устаревшим стандартам подключения и зачастую используются в старых моделях мониторов и телевизоров, где разрешение редко превышает 1920×1080, а частота обновления 75 Гц. Поэтому, если вы хотите использовать разрешение выше, чем FullHD (1920×1080), вам следует обратить внимание на варианты с HDMI и DisplayPort разъемами подключения.
Стоит добавить, что HDMI и DisplayPort, помимо вывода изображения, могут передавать и звуковой сигнал с устройства, что очень удобно в случае подключения и вывода изображения на телевизор или монитор со встроенными динамиками.
Разъемы питания
C ростом производительности видеокарты прямо пропорционально увеличивается её потребляемая мощность, следовательно, чем лучше и производительней видеокарта, тем больше линий дополнительного питания ей потребуется для работы.
300 Вт, в то время как графические решения начального уровня по типу GeForce GT 1030 вполне способны работать без наличия дополнительного питания и обходятся питанием с линии PCI-Express.
И возможно, что смена видеокарты в вашем компьютере на новую повлечёт за собой еще одну трату - покупку нового более мощного блока питания. Зачастую производители любезно указывают рекомендуемый по мощности блок питания, в случае с примером выше (GeForce RTX 3070) производитель рекомендует использовать блок питания не менее 650 Вт.
Заключение
Надеемся, что после прочтения данной статьи вы смогли разложить все по своим местам и поняли, что видеокарта - не менее сложный и функциональный компонент большинства современных компьютеров, чем процессор. А если у вас остались вопросы, не стесняйтесь и задавайте их в комментариях к данной статье, мы с радостью ответим на них!
Для проведения вычислительных операций в каждом современном компьютере предусмотрен не только центральный, но ещё и графический процессор (GPU). Последний преимущественно используется для отрисовки графики.
В этой статье разберёмся, какие бывают графические процессоры, чем они отличаются GPU от видеокарт, а также как узнать, какой именно GPU установлен в ПК или ноутбуке.
Что такое GPU
В технических спецификациях компьютера или ноутбука пользователь обязательно встретит аббревиатуру GPU. Как правило, рядом с ней указывается производитель графического процессора, модель, а также объём установленной в видеокарте оперативной памяти.
Что такое GPU в компьютере и для чего он используется
GPU это вспомогательный микрочип, который берёт часть вычислительных операций на себя вместо процессора. И за счёт специализированной архитектуры, GPU лучше подходит для проведения расчётов с плавающей точкой, тогда как CPU больше ориентирован на работу в многопоточном режиме.
То есть видеокарта GPU способна быстро проводить расчёты, где используется одна или схожая формула (например, вычисление точки затенения графики при попадании тени на текстуру). Центральный процессор же ориентирован на проведение расчётов сразу в несколько потоков, когда пользователь работает одновременно с большим количеством приложений.
В 95% случаев графический процессор используется для обработки графики. Он же отвечает за вывод изображения, отрисовку интерфейса операционной системы и каждой из запущенных программ.
Графический процессор и видеокарта одно и то же
Многие считают, что графический процессор (GPU) и видеокарта — это синонимы. Но это — ошибочное мнение. Графический процессор (GPU) — это микрочип, который представляет собой кремниевый кристалл. Визуально схож на CPU. Но архитектура GPU кардинально отличается от той, что используется в обычном центральном процессоре. В видео это объясняется простым языком
Видеокарта — это плата, которая включает в себя графический процессор, оперативную память, линию питания, шлюз для обмена информации (по линии PCI Express), а также набор видеовыходов для подключения мониторов.
То есть GPU — это часть видеокарты. С технической стороны, видеоадаптер — это мини-компьютер. Ведь у него есть собственный процессор (графический), ОЗУ, шина данных.
Единственное его отличие: он адаптирован для работы с графическими данными, в частности, с векторной, растровой графикой.
Что такое интегрированный графический процессор
Видеокарты вплоть до 2005 года выпускались в форме отдельной платы, подключаемой к материнской плате компьютера или ноутбука. Но затем графические процессоры (GPU) начали интегрировать в CPU, такие кристаллы принято обозначать как iGPU.
У них нет собственной оперативной памяти или кэша. Соответственно, при отрисовке графики они резервируют часть имеющейся в компьютере ОЗУ.
Также интегрированные GPU менее производительные. И за счет этого — потребляют в десятки раз меньше электроэнергии. Именно поэтому их чаще всего и используют в производстве недорогих ноутбуков, портативной техники.
Что такое графический процессор(GPU), интегрированный в CPU с технической точки зрения? Это отдельный кремниевый микрочип, который находится на одной плате («подложке») с центральным процессором. То есть он работает отдельно, хоть и использует ту же самую линию питания, что и CPU.
Как узнать какой GPU в компьютере
Узнать, какой графический чип установлен в ПК, дискретный или интегрированный можно двумя способами:
- Посмотреть, как именно подключается монитор.Если кабель соединятся с материнской платой, то используется iGPU. Если к видеокарте, то дискретный GPU.
- Второй способ:
- Открыть «Панель управления»
- Далее — «Диспетчер устройств».
- В разделе «Видеоадаптеры» можно узнать точную модель установленной видеокарты. А далее останется только зайти на официальный сайт производителя и узнать технические характеристики GPU. Там же обязательно указывается, какая она: дискретная или интегрированная.
Есть нюанс: во многих современных ноутбуках устанавливается одновременно и интегрированная, и дискретная видеокарта. По умолчанию используется iGPU. А дискретный GPU задействуется в тех ситуациях, когда производительности iGPU недостаточно (например, при запуске видеоигры, приложения для видеомонтажа).
Именно за счёт этого «игровые» ноутбуки хорошо справляются с играми, а вместе с этим обеспечивают автономность устройства на уровне 6 – 10 часов (в режиме «чтения» или веб-браузинга).
Графический процессор GPU при выполнении расчётов довольно сильно нагревается. Это специфика кремниевых кристаллов.
Какая температура для видеокарты GPU считается нормальной? Для каждой модели — она индивидуальная. В среднем же можно ориентироваться на следующие значения:
Температура свыше 100 градусов существенно ускоряет деградацию кремниевого кристалла. И именно перегрев — одна из самых распространённых причин выхода из строя видеокарт.
Как можно узнать текущую температуру? Можно воспользоваться специальными приложениями, например, AIDA64.
А для тестирования можно воспользоваться бесплатной утилитой Furmark.
Что делать, если температура в нагрузке CPU слишком высокая? Подробно описано здесь
Что такое дискретный графический процессор
Дискретный графический процессор — это тот, который устанавливается отдельно от CPU. Поставляется в форме платы, чаще всего — с портом PCI Express для подключения к материнской плате.
Такие GPU обеспечивает на порядок выше производительность, нежели iGPU. Но и потребляют примерно в 10 раз больше электроэнергии.
Дискретные видеокарты сегодня используются не только в видеоиграх. На их основе создают суперкомпьютеры. А ещё их задействуют в майнинге криптовалют.
Недостатки встроенного GPU в компьютере
Ключевые недостатки интегрированных графических процессоров (iGPU):
- Малая производительность. Их достаточно для отрисовки интерфейса операционной системы, программ, для воспроизведения видео, для самых простых игр (преимущественно 2D).В процессорах последних поколений iGPU позволяют комфортно играть и в современные 3D-игры, но только с низким разрешением и настройками графики.
- Не имеют собственной оперативной памяти, поэтому резервируют общую ОЗУ, подключённую к материнской плате. И в зависимости от запущенного приложения, могут «забирать» для своих нужд до 2 гигабайт ОЗУ.
- Не поддерживают многих протоколов. Именно поэтому некоторые компьютерные игры при использовании iGPU либо вовсе не запускаются, либо работают некорректно.
Но есть у iGPU и весомое преимущество. Это малое энергопотребление.
Для сравнения, видеокарта GPU Nvidia Geforce последнего поколения потребляет порядка 300 Вт в нагрузке. Интегрированный графический процессор — порядка 3 – 10 Вт (в зависимости от модели видеокарты). Также следует упомянуть, что в игровых приставках последних поколений (XBOX, PlayStation), а также в портативной игровой консоли Steam Deck используются именно iGPU.
Аналитики вообще считают, что в ближайшие 10 – 20 лет дискретные видеокарты вообще станут невостребованными и их производство вовсе прекратят.
Итого, в каждом ПК или ноутбуке устанавливается два процессора, один из которых — графический( GPU). Интегрированные iGPU отлично подходят для «офисных» ПК, тогда как с дискретными GPU — для игровых компьютеров или так называемых «графических станций». А какая видеокарта установлена в вашем ПК или ноутбуке? Расскажите об этом в комментариях.
Читайте также: