Схема телевизора panasonic tc 21l3r
Телевизоры выполнены на шасси МХ-ЗСи рассчитаны на обработку сигналов стандартов PAL-B/G, SECAM-D/K, NTSC-4.43.
Основные технические характеристики
Интервал синтеза напряжения автопоиска, каналов. 60
Напряжение питающей сети, В . .110. 220
Частота питающей сети. Гц. 50/60
Потребляемая от сети мощность в рабочем режиме, Вт, не более. 95
Потребляемая мощность в дежурном режиме, Вт, не более . 10
Рис. 1. Структурная схема телевизора PANASONIC TC-2150R
Структурная схема телевизоров показана на рис. 1. Базовое шасси МХ-ЗС содержит основную плату А, на которой расположено большинство устройств телевизора, плату коммутации сигналов MS, плату кинескопа L, динамические головки, кинескоп.
Радиосигнал вещательного телевидения поступает на антенный вход всеволнового тюнера, размещенного на плате А. В нем он преобразуется в сигнал ПЧ. Переключение диапазонов тюнера обеспечивает микросхема 1С 1103. которая управляется командами с микропроцессора управления 1С 1101. На тюнер воздействует также сигнал с микросхемы 1С 102, переключающий режимы АПЧ.
Рис. 2. Принципиальная схема телевизора PANASONIC TC-2150R (Щелкнуть по схеме для увеличения)
Принципиальная схема основной платы показана на рис. 2. Следует иметь в виду, что обозначения ряда элементов на схемах здесь и дальше не соответствуют принятым в нашем журнале.
Основой системы управления (см. рис. 2) шасси, как уже было упомянуто, служит микропроцессор управления 1С 1101. Назначение его выводов указано в табл. 1. Он включает и выключает телевизор, а также переводит его из режима TV в режим AV, и наоборот, формирует регулировочные напряжения для видеопроцессора IC601, сигналы R, G, В для отображения информации на экране (OSD) и напряжения для переключения диапазонов тюнера и его настройки, взаимодействует с устройством телетекста (при его наличии в телевизоре).
Таблица 1
Управление микросхемой IC601, а также связь с микросхемой памяти 1С 1104 (рис. 2) и устройством телетекста обеспечивается микропроцессором по цифровой двупроводной шине I 2 С.
Микросхема памяти 1С1104 принимает поступившую с микропроцессора цифровую информацию по шине I 2 С (входы/выходы SCL и SDA, рис. 2) и выводит ее, когда это необходимо. В дальнейшем даже при выключенном питании запоминаемые сведения сохраняются в памяти постоянно.
При кратковременном падении напряжения питания микропроцессора управления может нарушиться его работа. Чтобы это предотвратить, применена микросхема сброса IC1102 (см. рис. 2), которая активизируется в то время, когда питание включено и напряжение на ее выводе 2 меньше 4,5 В. Она также работает при выключении питания, когда напряжение падает ниже 4,3 В, и при любом кратковременном падении напряжения питания ниже этого уровня.
Во всех случаях микросхема обнуляет напряжение на своем выводе 1 и, следовательно, на выводе 7 микропроцессора управления. В результате после появления номинального напряжения питания потери информации не происходит.
В систему управления входят также фотоприемник IC1051 и кнопки S1107— S1112. Сигналы управления с фотоприемника поступают на вывод 34 микропроцессора управления, с кнопки S1107 (FUNCTION) — на вывод 19, а с остальных кнопок — на вывод 20.
Как уже указано, тюнер TNR001 преобразует телевизионный радиосигнал передатчика (VHF — очень высокой частоты и UHF — ультравысокой) в сигнал ПЧ. Сигнал, принятый антенной, проходит в тюнере усилитель сигналов РЧ и поступает на смеситель. Туда же подан сигнал с гетеродина. Полученный в смесителе сигнал ПЧ (VIF) усиливается транзистором Q101 и через фильтр на ПАВ Х101 приходит на микросхему IC601 для обработки и выделения видеосигналов.
Получаемое в микросхеме IC601 напряжение АПЧ (конденсатор С122 подключен к выводу 30 выхода узла АПЧ) подано на переключатель АПЧ (вывод 4 микросхемы IС 102) и через буферный транзистор Q120 на вывод 21 микропроцессора управления IC1101.
Напряжение настройки тюнера, формируемое ЦАП в микропроцессоре управления IС 1101. через его вывод 17, инвертор на транзисторе Q1180 и НЧ фильтр проходит на вывод ВТ тюнера. В нем оно подано на варикапы гетеродина: при увеличении напряжения настройки емкость варикапов падает, а частота настройки увеличивается.
На усилитель сигналов РЧ тюнера воздействует напряжение АРУ (AGC), получаемое в микросхеме IC601, так что сигнал на выходе видеодетектора остается постоянным, несмотря на изменения уровня входного сигнала.
Напряжение АПЧ (AFC) подано на тюнер с микросхемы IC601 через переключатель на микросхеме, который выключает это напряжение при переключении каналов и настройке на них.
Прохождение сигналов ПЧ изображения (VIF) и звука (SIF) и узлы обработки в микросхеме AN5192K-A (IC601) показаны на структурной схеме, представленной на рис. 2.
Усиленный и прошедший фильтр на ПАВ сигнал ПЧ поступает через выводы 24 и 25 и усилитель на видеодетектор. В нем использована синхронная система подстройки с двумя петлями ФАПЧ. В систему входит ГУН ("опорный"), работающий на частоте 38 МГц, определяемой кварцевым резонатором L151, подключенным к выводу 41. Когда сигнал ПЧ подан на вход, система ФАПЧ 1 сравнивает немодулированную часть этого сигнала с частотой и фазой сигнала генератора и корректирует их до соответствия с необходимыми значениями. К выводу 40 микросхемы подключена RC-цепь, задающая постоянную времени петли ФАПЧ 1. Чем эта постоянная меньше, тем быстрее срабатывание (отклик) системы ФАПЧ, но тем менее она стабильна.
Вторая петля подстройки фазы (ФАПЧ 2) формирует постоянное напряжение в случае фазового различия между сигналом ПЧ и сдвинутым по фазе на 90° сигналом генератора. Это напряжение подано на синхронный видеодетектор.
В микросхеме IC601 имеется узел АПЧ, который необходим для подстройки гетеродинатюнера в случае ухода его частоты, например, из-за изменения температуры окружающей среды, старения элементов или колебаний напряжения питания. Через вывод 30 микросхемы напряжение АПЧ после фильтрации конденсатором С122 проходит через микросхему IC102 на контакт AFC тюнера.
Система АРУ изменяет усиление сигналов ПЧ так, чтобы на видеодетектор они приходили с практически постоянным уровнем, несмотря на изменения сигнала, принятого антенной. Регулировка достигается сдвигом рабочей точки усилителя. Усиление слабых сигналов увеличивается подачей напряжения АРУ ВЧ на усилитель РЧ тюнера. При этом отношение сигнал/ шум остается большим даже при приеме дальних станций.
Видеосигнал после видеодетектора и регулятора уровня через вывод 39 микросхемы и эмиттерный повторитель на транзисторе Q151 подан на контакт 8 разъема А1.
Рис. 3. Принципиальная схема платы узла MS
К разъему подключена плата узла MS, принципиальная схема которого показана на рис. 3. На плате расположены четыре режекторных фильтра, каждый из которых настроен на одну из ПЧ звука: 4,5; 5,5; 6 и 6,5 МГц. Подключение фильтров обеспечивает коммутатор видеосигналов, находящийся в микросхеме IC203 платы. Работой коммутатора управляет декодер команд, на который через выводы 12 и 14 микросхемы поданы уровни (SIF1 и SIF2) с микропроцессора управления С1101, а через вывод 4 — с тюнера (контакта В SW). Следовательно, при приемесигналатого или иного стандарта всегда функционирует только один режекторный фильтр. В табл. 2 показано соответствие частоты настройки подключаемого фильтра и уровней напряжения, подаваемых на выводы 12 и 14 микросхемы IC203.
Таблица 2.
ПЧ звука (SIF), МГц | выводы IC203 | Сигнал на выходе 12 (SIF2) | Сигнал на выходе 14 (SIF1) | Стандарт принимаемого сигнала |
4.5 | 5 | Низкий | Низкий | NTSC 3.58 |
5.5 | 1 | Низкий | Высокий | PAL |
6 | 2 | Высокий | Низкий | PAL |
6.5 | 3 | Высокий | Высокий | PAL или SЕСАМ |
В узле MS происходит также выделение сигналов второй ПЧ звука из видеосигнала полосовыми фильтрами Х208— Х210 (или без них) и их обработка в микросхеме IC203.
Сигнал ПЧ звука частотой 4,5 МГц поступает на вывод 17 микросхемы, которая эту частоту удваивает, и смешивается в смесителе 1 с сигналом частотой 3 МГц. Последняя получается смешением в смесителе 3 сигнала генератора 1 МГц в микросхеме и сигнала удвоенной частоты 2 МГц. На выходе микросхемы включен фильтр Х211, выделяющий разностную частоту 6 МГц.
Сигнал звука частотой 5,5 МГц проходит на вывод 13 микросхемы и смешивается с сигналом частотой 0,5 МГц, полученным после деления на два частоты сигнала генератора. Суммарная частота б МГц после смесителя 2 вновь выделяется фильтром Х211. То же происходит и при подаче на вывод 11 микросхемы сигнала частотой 6,5 МГц, только в смесителе 2 выделяется разность частот 6,5 и 0,5 МГц. Сигнал частотой 6 МГц проходит через вывод 15 на выход микросхемы без смешения.
Декодер команд (как уже было сказано) управляет коммутацией смесителей и переключателей в зависимости от уровней напряжения на выводах 12 и 14 микросхемы.
Видеосигнал приходит на систему фильтров через усилитель на транзисторе Q115 и эмиттерный повторитель на транзисторе Q117. Сигнал ПЧ звука, выделенный фильтром Х211, попадает на контакт 6 разьема А1 через эмиттерный повторитель на транзисторе Q235.
Далее сигнал второй ПЧ звука через вывод 34 поступает опять в микросхему IC601. Там он ограничивается и детектируется частотным детектором. Для лучшего воспроизведения детектор охвачен обратной связью с использованием ГУН.
После прохождения цепей деемфа-зиса (НЧ коррекции) и предварительного усиления сигнал 34 попадает на коммутатор сигналов звука. Через вывод 33 микросхемы на него может быть подан и внешний звуковой сигнал AV с гнезд JK001.
С выхода коммутатора (вывод 28 микросхемы) сигнал 34 через конденсатор С216 (см. рис. 3), резистор R2303 и конденсатор С2303 проходит на вход (вывод 2) усилителя мощности 34 микросхемы IC2301. Кроме него в микросхему входят предварительный усилитель и регуляторы громкости и тембра, управляемые микропроцессором IC1101. К выходу микросхемы (вывод 8) через разделительный конденсатор С2306 и контакты 1 и 3 разьема А22 (см. рис. 5) подключены динамические головки.
Вернемся к микросхеме IC601 (см. рис. 4). В ней имеется коммутатор видеосигналов, на один из входов которого (вывод 31) может быть подан видеосигнал AV с гнезд JK001. На другой вход коммутатора (вывод 38) приходит видеосигнал с платы узла MS.
После коммутатора видеосигнал с вывода 36 микросхемы IC601 через буферный каскад на транзисторе Q150 вновь поступает на микросхему, в которой попадает в каналы яркости (вывод 43) и цветности (вывод 48), в синхропроцессоры строчной (вывод 46) и кадровой (вывод45) разверток, а также на вывод 16 микросхемы IC603 — декодера сигналов цветности системы SECAM.
В случае приема сигналов цветности системы PAL или NTSC демодулированные цветоразностные ("красный" и "синий") сигналы R-Y и B-Y появляются на выводах 61 и 60 микросхемы IC601 , а при приеме сигналов SEC AM — на выводах 9 и 10 микросхемы IC603 соответственно. В обоих случаях сигналы приходят на микросхему линии задержки IC602 (выводы 16 и 14), а с нее (выводы 11 и 12) — опять на микросхему IC601 (выводы 64 и 63). В ней формируется "зеленый" цветоразностный сигнал G-Y из двух других и матрицирование сигналов основных цветов R, G, В. Последние проходят из микросхемы через выводы 15—17 соответственно и контакты разьема А32 на плату кинескопа.
Синхропроцессоры строчной (Н) и кадровой (V) разверток, находящиеся в микросхеме IC601, формируют засин-хронизированные импульсы запуска выходных каскадов строчной (на выводе 56) и кадровой (на выводе 58) разверток.
Структура каналов яркости, цветности, видеопроцессора и синхропроцес-соров разверток микросхемы IC601 представлена на рис. 4.
В канале яркости полный видеосигнал через вывод 43 проходит на усилитель с фиксацией уровня "черного", а затем на фильтр, подавляющий сигналы цветности, и далее на регуляторы четкости и контрастности. После фиксации уровня сигнал яркости Y поступает на выходные каскады видеопроцессора для матрицирования сигналов основных цветов R, G и В.
Сигнал цветности через вывод 48 микросхемы приходит непосредственно на переключатель систем в режиме приема сигналов PAL или через усилитель в режиме приема сигналов системы NTSC. После прохождения полосового фильтра сигналы попадают в систему АРУ цветности (АРЦ), состоящую из пикового детектора и усилителя.
Сигналы с усилителя АРЦ поданы на фазовый детектор системы ФАПЧ с устройством опознавания "вспышки" и демодуляторы цветоразностных сигналов.
Генератор поднесущих с ФАПЧ, который подстраивается в момент прохождения цветовой"вспышки", состоит из фазового детектора "вспышки", входящего в систему ФАПЧ, внешнего фильтра, подключенного к выводу 6, и управляемого генератора. Последний синхронизируется по частоте и фазе во время прихода импульсов цветовой синхронизации ("вспышек"). Выходной сигнал фазового детектора, пропорциональный фазовой ошибке, интегрируется внешним фильтром C606C607R601R603 (см. рис. 3) и воздействует на управляемый генератор. Частота генератора задается одним из кварцевых резонаторов Х601 (4,43 МГц — PAL) или Х602 (3,58 МГц — NTSC), подключенных к выводам 7 и 8 микросхемы соответственно. Система ФАПЧ компенсирует любой уход фазы в кварцевом резонаторе. На выходах генератора имеются синусоидальные сигналы с нулевой фазой и 90°.
Вырабатываемый генератором сигнал с нулевой фазой через вывод 59 (см. рис. 5) микросхемы проходит на вывод 1 микросхемы IC603 декодера SECAM.
Сигналы с обеими фазами поступают на демодуляторы (см. рис. 4) цветоразностных сигналов. Сигнал с фазой 90° подан на демодулятор сигнала R-Y через фазовращатель полустрочной частоты, который в режиме PAL изменяет фазусигналаотстроки к строке на 180°. Фазовращатель управляется симметричным триггером, на который, в свою очередь, воздействует системный переключатель.
Демодулированные цветоразностные сигналы R-Y и B-Y через переключатель PAL, NTSC/SECAM приходят на выводы 60 и 61 микросхемы и далее через конденсаторы С661, С662 на линию задержки IC602, как уже было указано.
В режиме приема сигналов системы SECAM, когда с узла опознавания систем на переключатель поступает низкий уровень, закрывая его, на линию задержки приходят цветоразностные сигналы с микросхемы IC603 декодера SECAM.
Микросхема IС603 — полный декодер сигналов системы SECAM с интегрированным фильтром "клеш" и ЧМ-демодулятором с ФАПЧ. Микросхема не требует настроечных элементов и использует минимальное число внешних компонентов. Для ее работы, кроме напряжения питания, необходимы образцовый сигнал частотой 4,43 МГц, видеосигнал и стробирующие импульсы SC.
Полный видеосигнал подан через вывод 16 микросхемы на узел АРУ и фильтр коррекции ВЧ предыскажений ("клеш"), выполненный на гираторах. Фильтр подстраивается во время обратного хода кадровой развертки по образцовому сигналу, подаваемому через вывод 1 микросхемы на под-строечные узлы. Напряжение настройки во время прямого хода кадровой развертки запоминает конденсатор С672, подключенный к выводу 7 микросхемы. При изменении напряжения на нем от 2,5 до 4,5 В частота настройки фильтра изменяется от 4,266 до 4,306 МГц (номинальное значение — 4,286 МГц).
После фильтра "клеш" сигнал цветности поступает на ЧМ-демодулятор с ФАПЧ. Образцовым для него служит тот же сигнал, что и для фильтра "клеш". Узел подстройки демодулятора использует конденсатор С673 (подключенный к выводу 8 микросхемы IC603), который запоминает напряжение, пропорциональное частоте настройки.
Демодулированные цветоразностные сигналы через фильтр НЧ коррекции и выходные каскады выходят из микросхемы через выводы 9 и 10 в виде чередующихся через строку цветоразностных сигналов R-Y и B-Y и, как уже было указано, проходят на линию задержки IC602.
Узел опознавания системы SECAM вырабатывает постоянное напряжение, подаваемое на выходные каскады микросхемы IC603. При напряжении, превышающем 3,3 В, выходные каскады активизированы, а переключатель PAL, NTSC/SECAM микросхемы IC601 дополнительно блокирован через вывод 1 микросхемы IC603 и вывод 59 микросхемы IC601. При отсутствии приема сигналов системы SECAM напряжение на выходе узла опознавания становится меньшим 1,5 В и выходные каскады микросхемы закрываются, а переключатель микросхемы IC601 открывается. Узел опознавания каждый раз опознает сигнал SECAM построчно в течение четырех периодов кадровой частоты. Синхронизируется декодер цветности SECAM узлом управления по стробирующим импульсам SC, подаваемым на вывод 15 микросхемы.
Цветоразностные сигналы, как уже было указано, с микросхемы IC601 (PAL, NTSC) или IC603 (SECAM) проходят на узлы фиксации уровня черного в микросхеме IC602, а затем на предусилители и первые входы сумматоров. С предусилителей сигналы поступают на линии задержки, выполненные на коммутируемых конденсаторах, на узлы выборки и хранения и после ФНЧ — на вторые входы сумматоров. С выходов сумматоров через буферные каскады задержанные цветоразностные сигналы выходят из микросхемы (выводы 11 и 12).
Для управления линиями задержки использован внутренний образцовый генератор, синхронизируемый сигналами с фазового детектора. Последний сравнивает фазу продетектированного сигнала SC, поступающего на вывод 5 микросхемы, с фазой деленного на 384 сигнала образцового генератора.
Задержанные цветоразностные сигналы через конденсаторы С659, С660 возвращаются в микросхему IC601. В ней они претерпевают регулировку насыщенности и контрастности. Здесь же, как было упомянуто, из двух цветоразностных сигналов формируется "зеленый" цветоразностный сигнал G-Y Затем все три этих сигнала проходят каскады фиксации уровня, с которыми связан регулятор яркости. В выходных каскадах происходит матрицирование сигналов основных цветов R, G и В в результате сложения цветоразностных сигналов с сигналом яркости.
ФОРУМ
Статьи, Блоги
Файлообменник
Прошивки
Продажа
Приборы (реклама)
LCD DVD&TV
Power IC AC-DC
Power IC DC-DC
DVD SPI Flash
TUNER TV (фото)
Uконтр.точки T-CON
Искать на Мониторе
Искать на Elektrotanya
Искать на Eserviceinfo
Искать на Elektroda
Искать по всему сайту
Искать на Alldatasheet
На Datasheetarchive
Service Manual Телевизор.Схема Panasonic TX-32PM11D, TX-32PM11F
TX-32PM11P, TX-28PM11D
TX-28PM11F, TX-28PM11P
(GP2 Chassis)
Service Manual CRT TV PANASONIC TC-21AD2F Chassis EURO-2
Состав TDA4601. MSP3410BPPF7. TDA9814TV3. CCU30001-05
Схема TV PANASONIC TC-21S85RQ (шасси: MX-5Z)
Состав: TDA9381PS\N2\2\0619 , STR W6654 , AN5539 , LA4289N
Service Manual ТВ PANASONIC TC-2918R, TC-2518R Chassis MX-6
Состав - MN1873284TS1, TB1237AN, LA7833S, STRF6654, TDA2616
CT-32D11E EP341
CT-32D11CE EP341
CT-32D11UE EP341
CT-32D31E GP341
CT-32D31CE GP341
CT-32D31UE GP341
CT-3274SE GP341
CT-3274SCE GP341
CT-3274SUE GP341
CT-36D11E GP342
CT-36D11CE GP342
CT-36D11UE GP342
CT-36D31E FP342
CT-36D31CE FP342
CT-36D31UE FP342
Models Chassis
CT-32D20UB__ AP341
CT-32D30B___ BP341
CT-32D30CB__ BP341
CT-32D30UB__ BP341
Телевизоры выполнены на шасси МХ-ЗСи рассчитаны на обработку сигналов стандартов PAL-B/G, SECAM-D/K, NTSC-4.43.
Основные технические характеристики
Интервал синтеза напряжения автопоиска, каналов. 60
Напряжение питающей сети, В . .110. 220
Частота питающей сети. Гц. 50/60
Потребляемая от сети мощность в рабочем режиме, Вт, не более. 95
Потребляемая мощность в дежурном режиме, Вт, не более . 10
Рис. 1. Структурная схема телевизора PANASONIC TC-2150R
Структурная схема телевизоров показана на рис. 1. Базовое шасси МХ-ЗС содержит основную плату А, на которой расположено большинство устройств телевизора, плату коммутации сигналов MS, плату кинескопа L, динамические головки, кинескоп.
Радиосигнал вещательного телевидения поступает на антенный вход всеволнового тюнера, размещенного на плате А. В нем он преобразуется в сигнал ПЧ. Переключение диапазонов тюнера обеспечивает микросхема 1С 1103. которая управляется командами с микропроцессора управления 1С 1101. На тюнер воздействует также сигнал с микросхемы 1С 102, переключающий режимы АПЧ.
Рис. 2. Принципиальная схема телевизора PANASONIC TC-2150R (Щелкнуть по схеме для увеличения)
Принципиальная схема основной платы показана на рис. 2. Следует иметь в виду, что обозначения ряда элементов на схемах здесь и дальше не соответствуют принятым в нашем журнале.
Основой системы управления (см. рис. 2) шасси, как уже было упомянуто, служит микропроцессор управления 1С 1101. Назначение его выводов указано в табл. 1. Он включает и выключает телевизор, а также переводит его из режима TV в режим AV, и наоборот, формирует регулировочные напряжения для видеопроцессора IC601, сигналы R, G, В для отображения информации на экране (OSD) и напряжения для переключения диапазонов тюнера и его настройки, взаимодействует с устройством телетекста (при его наличии в телевизоре).
Таблица 1
Управление микросхемой IC601, а также связь с микросхемой памяти 1С 1104 (рис. 2) и устройством телетекста обеспечивается микропроцессором по цифровой двупроводной шине I 2 С.
Микросхема памяти 1С1104 принимает поступившую с микропроцессора цифровую информацию по шине I 2 С (входы/выходы SCL и SDA, рис. 2) и выводит ее, когда это необходимо. В дальнейшем даже при выключенном питании запоминаемые сведения сохраняются в памяти постоянно.
При кратковременном падении напряжения питания микропроцессора управления может нарушиться его работа. Чтобы это предотвратить, применена микросхема сброса IC1102 (см. рис. 2), которая активизируется в то время, когда питание включено и напряжение на ее выводе 2 меньше 4,5 В. Она также работает при выключении питания, когда напряжение падает ниже 4,3 В, и при любом кратковременном падении напряжения питания ниже этого уровня.
Во всех случаях микросхема обнуляет напряжение на своем выводе 1 и, следовательно, на выводе 7 микропроцессора управления. В результате после появления номинального напряжения питания потери информации не происходит.
В систему управления входят также фотоприемник IC1051 и кнопки S1107— S1112. Сигналы управления с фотоприемника поступают на вывод 34 микропроцессора управления, с кнопки S1107 (FUNCTION) — на вывод 19, а с остальных кнопок — на вывод 20.
Как уже указано, тюнер TNR001 преобразует телевизионный радиосигнал передатчика (VHF — очень высокой частоты и UHF — ультравысокой) в сигнал ПЧ. Сигнал, принятый антенной, проходит в тюнере усилитель сигналов РЧ и поступает на смеситель. Туда же подан сигнал с гетеродина. Полученный в смесителе сигнал ПЧ (VIF) усиливается транзистором Q101 и через фильтр на ПАВ Х101 приходит на микросхему IC601 для обработки и выделения видеосигналов.
Получаемое в микросхеме IC601 напряжение АПЧ (конденсатор С122 подключен к выводу 30 выхода узла АПЧ) подано на переключатель АПЧ (вывод 4 микросхемы IС 102) и через буферный транзистор Q120 на вывод 21 микропроцессора управления IC1101.
Напряжение настройки тюнера, формируемое ЦАП в микропроцессоре управления IС 1101. через его вывод 17, инвертор на транзисторе Q1180 и НЧ фильтр проходит на вывод ВТ тюнера. В нем оно подано на варикапы гетеродина: при увеличении напряжения настройки емкость варикапов падает, а частота настройки увеличивается.
На усилитель сигналов РЧ тюнера воздействует напряжение АРУ (AGC), получаемое в микросхеме IC601, так что сигнал на выходе видеодетектора остается постоянным, несмотря на изменения уровня входного сигнала.
Напряжение АПЧ (AFC) подано на тюнер с микросхемы IC601 через переключатель на микросхеме, который выключает это напряжение при переключении каналов и настройке на них.
Прохождение сигналов ПЧ изображения (VIF) и звука (SIF) и узлы обработки в микросхеме AN5192K-A (IC601) показаны на структурной схеме, представленной на рис. 2.
Усиленный и прошедший фильтр на ПАВ сигнал ПЧ поступает через выводы 24 и 25 и усилитель на видеодетектор. В нем использована синхронная система подстройки с двумя петлями ФАПЧ. В систему входит ГУН ("опорный"), работающий на частоте 38 МГц, определяемой кварцевым резонатором L151, подключенным к выводу 41. Когда сигнал ПЧ подан на вход, система ФАПЧ 1 сравнивает немодулированную часть этого сигнала с частотой и фазой сигнала генератора и корректирует их до соответствия с необходимыми значениями. К выводу 40 микросхемы подключена RC-цепь, задающая постоянную времени петли ФАПЧ 1. Чем эта постоянная меньше, тем быстрее срабатывание (отклик) системы ФАПЧ, но тем менее она стабильна.
Вторая петля подстройки фазы (ФАПЧ 2) формирует постоянное напряжение в случае фазового различия между сигналом ПЧ и сдвинутым по фазе на 90° сигналом генератора. Это напряжение подано на синхронный видеодетектор.
В микросхеме IC601 имеется узел АПЧ, который необходим для подстройки гетеродинатюнера в случае ухода его частоты, например, из-за изменения температуры окружающей среды, старения элементов или колебаний напряжения питания. Через вывод 30 микросхемы напряжение АПЧ после фильтрации конденсатором С122 проходит через микросхему IC102 на контакт AFC тюнера.
Система АРУ изменяет усиление сигналов ПЧ так, чтобы на видеодетектор они приходили с практически постоянным уровнем, несмотря на изменения сигнала, принятого антенной. Регулировка достигается сдвигом рабочей точки усилителя. Усиление слабых сигналов увеличивается подачей напряжения АРУ ВЧ на усилитель РЧ тюнера. При этом отношение сигнал/ шум остается большим даже при приеме дальних станций.
Видеосигнал после видеодетектора и регулятора уровня через вывод 39 микросхемы и эмиттерный повторитель на транзисторе Q151 подан на контакт 8 разъема А1.
Рис. 3. Принципиальная схема платы узла MS
К разъему подключена плата узла MS, принципиальная схема которого показана на рис. 3. На плате расположены четыре режекторных фильтра, каждый из которых настроен на одну из ПЧ звука: 4,5; 5,5; 6 и 6,5 МГц. Подключение фильтров обеспечивает коммутатор видеосигналов, находящийся в микросхеме IC203 платы. Работой коммутатора управляет декодер команд, на который через выводы 12 и 14 микросхемы поданы уровни (SIF1 и SIF2) с микропроцессора управления С1101, а через вывод 4 — с тюнера (контакта В SW). Следовательно, при приемесигналатого или иного стандарта всегда функционирует только один режекторный фильтр. В табл. 2 показано соответствие частоты настройки подключаемого фильтра и уровней напряжения, подаваемых на выводы 12 и 14 микросхемы IC203.
Таблица 2.
ПЧ звука (SIF), МГц | выводы IC203 | Сигнал на выходе 12 (SIF2) | Сигнал на выходе 14 (SIF1) | Стандарт принимаемого сигнала |
4.5 | 5 | Низкий | Низкий | NTSC 3.58 |
5.5 | 1 | Низкий | Высокий | PAL |
6 | 2 | Высокий | Низкий | PAL |
6.5 | 3 | Высокий | Высокий | PAL или SЕСАМ |
В узле MS происходит также выделение сигналов второй ПЧ звука из видеосигнала полосовыми фильтрами Х208— Х210 (или без них) и их обработка в микросхеме IC203.
Сигнал ПЧ звука частотой 4,5 МГц поступает на вывод 17 микросхемы, которая эту частоту удваивает, и смешивается в смесителе 1 с сигналом частотой 3 МГц. Последняя получается смешением в смесителе 3 сигнала генератора 1 МГц в микросхеме и сигнала удвоенной частоты 2 МГц. На выходе микросхемы включен фильтр Х211, выделяющий разностную частоту 6 МГц.
Сигнал звука частотой 5,5 МГц проходит на вывод 13 микросхемы и смешивается с сигналом частотой 0,5 МГц, полученным после деления на два частоты сигнала генератора. Суммарная частота б МГц после смесителя 2 вновь выделяется фильтром Х211. То же происходит и при подаче на вывод 11 микросхемы сигнала частотой 6,5 МГц, только в смесителе 2 выделяется разность частот 6,5 и 0,5 МГц. Сигнал частотой 6 МГц проходит через вывод 15 на выход микросхемы без смешения.
Декодер команд (как уже было сказано) управляет коммутацией смесителей и переключателей в зависимости от уровней напряжения на выводах 12 и 14 микросхемы.
Видеосигнал приходит на систему фильтров через усилитель на транзисторе Q115 и эмиттерный повторитель на транзисторе Q117. Сигнал ПЧ звука, выделенный фильтром Х211, попадает на контакт 6 разьема А1 через эмиттерный повторитель на транзисторе Q235.
Далее сигнал второй ПЧ звука через вывод 34 поступает опять в микросхему IC601. Там он ограничивается и детектируется частотным детектором. Для лучшего воспроизведения детектор охвачен обратной связью с использованием ГУН.
После прохождения цепей деемфа-зиса (НЧ коррекции) и предварительного усиления сигнал 34 попадает на коммутатор сигналов звука. Через вывод 33 микросхемы на него может быть подан и внешний звуковой сигнал AV с гнезд JK001.
С выхода коммутатора (вывод 28 микросхемы) сигнал 34 через конденсатор С216 (см. рис. 3), резистор R2303 и конденсатор С2303 проходит на вход (вывод 2) усилителя мощности 34 микросхемы IC2301. Кроме него в микросхему входят предварительный усилитель и регуляторы громкости и тембра, управляемые микропроцессором IC1101. К выходу микросхемы (вывод 8) через разделительный конденсатор С2306 и контакты 1 и 3 разьема А22 (см. рис. 5) подключены динамические головки.
Вернемся к микросхеме IC601 (см. рис. 4). В ней имеется коммутатор видеосигналов, на один из входов которого (вывод 31) может быть подан видеосигнал AV с гнезд JK001. На другой вход коммутатора (вывод 38) приходит видеосигнал с платы узла MS.
После коммутатора видеосигнал с вывода 36 микросхемы IC601 через буферный каскад на транзисторе Q150 вновь поступает на микросхему, в которой попадает в каналы яркости (вывод 43) и цветности (вывод 48), в синхропроцессоры строчной (вывод 46) и кадровой (вывод45) разверток, а также на вывод 16 микросхемы IC603 — декодера сигналов цветности системы SECAM.
В случае приема сигналов цветности системы PAL или NTSC демодулированные цветоразностные ("красный" и "синий") сигналы R-Y и B-Y появляются на выводах 61 и 60 микросхемы IC601 , а при приеме сигналов SEC AM — на выводах 9 и 10 микросхемы IC603 соответственно. В обоих случаях сигналы приходят на микросхему линии задержки IC602 (выводы 16 и 14), а с нее (выводы 11 и 12) — опять на микросхему IC601 (выводы 64 и 63). В ней формируется "зеленый" цветоразностный сигнал G-Y из двух других и матрицирование сигналов основных цветов R, G, В. Последние проходят из микросхемы через выводы 15—17 соответственно и контакты разьема А32 на плату кинескопа.
Синхропроцессоры строчной (Н) и кадровой (V) разверток, находящиеся в микросхеме IC601, формируют засин-хронизированные импульсы запуска выходных каскадов строчной (на выводе 56) и кадровой (на выводе 58) разверток.
Структура каналов яркости, цветности, видеопроцессора и синхропроцес-соров разверток микросхемы IC601 представлена на рис. 4.
В канале яркости полный видеосигнал через вывод 43 проходит на усилитель с фиксацией уровня "черного", а затем на фильтр, подавляющий сигналы цветности, и далее на регуляторы четкости и контрастности. После фиксации уровня сигнал яркости Y поступает на выходные каскады видеопроцессора для матрицирования сигналов основных цветов R, G и В.
Сигнал цветности через вывод 48 микросхемы приходит непосредственно на переключатель систем в режиме приема сигналов PAL или через усилитель в режиме приема сигналов системы NTSC. После прохождения полосового фильтра сигналы попадают в систему АРУ цветности (АРЦ), состоящую из пикового детектора и усилителя.
Сигналы с усилителя АРЦ поданы на фазовый детектор системы ФАПЧ с устройством опознавания "вспышки" и демодуляторы цветоразностных сигналов.
Генератор поднесущих с ФАПЧ, который подстраивается в момент прохождения цветовой"вспышки", состоит из фазового детектора "вспышки", входящего в систему ФАПЧ, внешнего фильтра, подключенного к выводу 6, и управляемого генератора. Последний синхронизируется по частоте и фазе во время прихода импульсов цветовой синхронизации ("вспышек"). Выходной сигнал фазового детектора, пропорциональный фазовой ошибке, интегрируется внешним фильтром C606C607R601R603 (см. рис. 3) и воздействует на управляемый генератор. Частота генератора задается одним из кварцевых резонаторов Х601 (4,43 МГц — PAL) или Х602 (3,58 МГц — NTSC), подключенных к выводам 7 и 8 микросхемы соответственно. Система ФАПЧ компенсирует любой уход фазы в кварцевом резонаторе. На выходах генератора имеются синусоидальные сигналы с нулевой фазой и 90°.
Вырабатываемый генератором сигнал с нулевой фазой через вывод 59 (см. рис. 5) микросхемы проходит на вывод 1 микросхемы IC603 декодера SECAM.
Сигналы с обеими фазами поступают на демодуляторы (см. рис. 4) цветоразностных сигналов. Сигнал с фазой 90° подан на демодулятор сигнала R-Y через фазовращатель полустрочной частоты, который в режиме PAL изменяет фазусигналаотстроки к строке на 180°. Фазовращатель управляется симметричным триггером, на который, в свою очередь, воздействует системный переключатель.
Демодулированные цветоразностные сигналы R-Y и B-Y через переключатель PAL, NTSC/SECAM приходят на выводы 60 и 61 микросхемы и далее через конденсаторы С661, С662 на линию задержки IC602, как уже было указано.
В режиме приема сигналов системы SECAM, когда с узла опознавания систем на переключатель поступает низкий уровень, закрывая его, на линию задержки приходят цветоразностные сигналы с микросхемы IC603 декодера SECAM.
Микросхема IС603 — полный декодер сигналов системы SECAM с интегрированным фильтром "клеш" и ЧМ-демодулятором с ФАПЧ. Микросхема не требует настроечных элементов и использует минимальное число внешних компонентов. Для ее работы, кроме напряжения питания, необходимы образцовый сигнал частотой 4,43 МГц, видеосигнал и стробирующие импульсы SC.
Полный видеосигнал подан через вывод 16 микросхемы на узел АРУ и фильтр коррекции ВЧ предыскажений ("клеш"), выполненный на гираторах. Фильтр подстраивается во время обратного хода кадровой развертки по образцовому сигналу, подаваемому через вывод 1 микросхемы на под-строечные узлы. Напряжение настройки во время прямого хода кадровой развертки запоминает конденсатор С672, подключенный к выводу 7 микросхемы. При изменении напряжения на нем от 2,5 до 4,5 В частота настройки фильтра изменяется от 4,266 до 4,306 МГц (номинальное значение — 4,286 МГц).
После фильтра "клеш" сигнал цветности поступает на ЧМ-демодулятор с ФАПЧ. Образцовым для него служит тот же сигнал, что и для фильтра "клеш". Узел подстройки демодулятора использует конденсатор С673 (подключенный к выводу 8 микросхемы IC603), который запоминает напряжение, пропорциональное частоте настройки.
Демодулированные цветоразностные сигналы через фильтр НЧ коррекции и выходные каскады выходят из микросхемы через выводы 9 и 10 в виде чередующихся через строку цветоразностных сигналов R-Y и B-Y и, как уже было указано, проходят на линию задержки IC602.
Узел опознавания системы SECAM вырабатывает постоянное напряжение, подаваемое на выходные каскады микросхемы IC603. При напряжении, превышающем 3,3 В, выходные каскады активизированы, а переключатель PAL, NTSC/SECAM микросхемы IC601 дополнительно блокирован через вывод 1 микросхемы IC603 и вывод 59 микросхемы IC601. При отсутствии приема сигналов системы SECAM напряжение на выходе узла опознавания становится меньшим 1,5 В и выходные каскады микросхемы закрываются, а переключатель микросхемы IC601 открывается. Узел опознавания каждый раз опознает сигнал SECAM построчно в течение четырех периодов кадровой частоты. Синхронизируется декодер цветности SECAM узлом управления по стробирующим импульсам SC, подаваемым на вывод 15 микросхемы.
Цветоразностные сигналы, как уже было указано, с микросхемы IC601 (PAL, NTSC) или IC603 (SECAM) проходят на узлы фиксации уровня черного в микросхеме IC602, а затем на предусилители и первые входы сумматоров. С предусилителей сигналы поступают на линии задержки, выполненные на коммутируемых конденсаторах, на узлы выборки и хранения и после ФНЧ — на вторые входы сумматоров. С выходов сумматоров через буферные каскады задержанные цветоразностные сигналы выходят из микросхемы (выводы 11 и 12).
Для управления линиями задержки использован внутренний образцовый генератор, синхронизируемый сигналами с фазового детектора. Последний сравнивает фазу продетектированного сигнала SC, поступающего на вывод 5 микросхемы, с фазой деленного на 384 сигнала образцового генератора.
Задержанные цветоразностные сигналы через конденсаторы С659, С660 возвращаются в микросхему IC601. В ней они претерпевают регулировку насыщенности и контрастности. Здесь же, как было упомянуто, из двух цветоразностных сигналов формируется "зеленый" цветоразностный сигнал G-Y Затем все три этих сигнала проходят каскады фиксации уровня, с которыми связан регулятор яркости. В выходных каскадах происходит матрицирование сигналов основных цветов R, G и В в результате сложения цветоразностных сигналов с сигналом яркости.
Микросхема "AN5192K-B"- причина многих проблем аппаратов Panasonic , в которых она установлена. Пример :- Отсутствует цвет при просмотре PAL- видеопрограмм, SECAM -в цвете .В трех случаях из трех, она родная! Не забудь правильно выбрать систему цветности на TV.
Постоянный выход из строя выходного транзистора СР через неравные промежутки времени (но быстро) Конденсаторы КЭ исправны, электролиты задающего каскада тоже. Причина крылась в ПРАКТИЧЕСКИ НЕВИДИМЫХ кольцевых трещинах обоих выводов вторичной обмотки трансформатора задающего каскада. Рассмотрел только в мощную оптику!
Нет растра, занижено U +90 v греется R 816, заменил Q 802-A1512 все стало ОК
Нет запуска, пробит стабилитрон МА-56 по цепи 47v. При замере было 100v. Обрыв R826-22 ом.
Нет звука через тюнер, с AV входа все нормально. Неисправна мк/сх AN5192K-B. После замены все OK.
интересный дефект: в ДР верещит блок питания. На вторичных цетях питания строчной развертки вместо 30 в от 80 до 130в, в рабочем режиме все в порядке -140в, ТВ может работать без проблем долго. " холодный " конец светодиода оптопары прижимается к земле через генератор тока на D862 R859 Q854 ключом Q853, проверка этой цепи ничего не выявила, но зашунтировав эту цепь резистором 8,2 ком от " холодного" конца опторары к земле получили требуемые 30вольт дежурного режима, предположив что на малых токах "дуркует" оптопара заменили ее, все стало ОК!
При включении телевизор работает устойчиво, через разные промежутки времени появляются полосы и подергивания, изображение пропадает. Может не работать совсем, черный экран. Совет - выбросить переключатель на смесителе(в коробочке куда втыкается антенна)и поставить перемычку в нижнем положении. Далее вынуть обе платы радиоканала(стоят рядом с тюнерами) выпаять экран и заменить конденсатор 470мф-6.3в желательно на большее напряжение. Конденсатор дает протечку - вследствие этого сгнивают под ним два межслойных соединения. Пробить отверсти, вставить проволочку залуженную и пропаять с обеих сторон.
Не включается. Визуальный осмотр источника питания показал: лопнувшие - 2SA1512 (Q805), 2SC3940 (Q802). Кроме того, естественно, ключевой транзистор C5253, а в его эмиттерной цепи вздутие R на 0,47 Ома. Далее проверка показала: обрыв стабилитрона XA4068L (по схеме D806) на 6,8 вольт а также обрывы R834-220 Ом, R826-22 Ома, R823-1,2 к. Вместо ключевого С5253 (1500в.и 18А! ) был успешно применен более дешевый BU508AF.
Дефект - большая "сечка". Мал размер по горизонтали, зависит от яркости и сюжета изображения. Фона сети - 100 Гц на изображении не отмечается. Устранение - заменить сетевой фильтр блока питания 270 мкФ на 400 В (потеря емкости)
Дефект: не выходит в рабочий режим. Цикает в дежурном и рабочем режиме. Похоже на перегрузку в нагрузке. Если в шину питания + 123 В добавить лампочку 60 Вт, то телевизор включается и работает нормально, но в дежурном режиме все равно цикает. Напряжение питания строчной развертки +123 В не сбрасывалось до +1 В, а оставалось +123 В. Устранение: заменить R812 - 33 Ом 1 Вт - оборван.
Дефект: Телевизор не включается, сдох ночью, находясь в дежурке. Устранение: Заменить сторожок шины +50в D835-MA2580 - пробит (это следствие). Истинная причина - высох C805 (47 мкф 35в) в блоке питания.
Поступил на ремонт с неисправным блоком питания. Заменил неисправные детали (2SС5249, 2SС3940, 2SА1512, FD312, RM25), проверил все детали, включаю, нормально работает. Но при переключении телевизора в дежурный режим все сгорела опять. Причина оказалось в двух резисторах по 220 Ом. Позиции точно не помню, а в схеме неразборчиво напечатано. Одна из них подключена между базой и эмиттером 2SА1512, а другая одним выводом к базе 2SС3940 . При измерении могут показать 220 Ом, но все равно их надо менять, иначе все повторится.
Летит строчный транзистор надо пропаять задающий трансф и в БП куча холодных паек.
Горит строчный транзистор обычный дефект в Panas - непропай трансформатора драйвера, ну и конечно убедится в исправности кондера на 1500 вольт подключенного к коллектору выходного тран-тора строчки.
Не горит индикатор деж режима, телевизор не включается, на выходе блока питания 58v. Обрыв резистора R833 22ом, в ключе ON/ST.BY. После замены 140,8v/34,5v. За неделю два аппарата.
Громкость регулируется в небольших пределах (0 - 5), не работает кнопка "FUNCTION" , каналы переключаются. Замена процессора результата не дала. После вхождения в сервисный режим (нажать кнопки "RECALL" на ПДУ и "VOL -" на передней панели ТВ ) дефект исчез.
При включении ТВ на 1-2с появляется изображение, но без одного из основных цветов (в моём случае не было синего), а затем экран полностью гаснет. При проверке режима кинескопа выясняется, что последний наглухо заперт видеопроцессором: TDA 4780. Работает проц совместно с микрухами видеоусилителей типа: TDA6111Q. Пропаиваю видеоусилитель синего. Всё пошло, но не надолго. Ровно через месяц, та же самое. Приезжаю, открываю, меряю и обнаруживаю обрыв ЛЗЯ во входной цепи ВУ. ЛЗЯ типа SDL-5000. Звоню коллегам по поводу это SDL-ки. Отвечают- дефицит, нету, попробуй выкрутиться без неё. Пробую. Сначала просто перемычкой. Изображение есть, но по синему наблюдаются опережающие повторы. Особенно заметно на титрах видео, телетексте, меню.. Ставлю аналогичные перемычки в аналогичных цепях красного и зелёного, типа попытаться их выровнять. На экране полная катавасия. Все три цвета разъехались так, будто кольца сведения крутил. Возвращаю всё в исходное, беру ЛЗЯ-0,33 от старенького Телефункена (она значительно компактней нашей) отгрызаю бокорезами от неё кусочек (сколько не помню, где-то 1/4 часть т.к время задержки SDL-5000 значительно меньше ЛЗЯ-0,33). Припаиваю третью ногу, заливаю быстросохнущим клеем, впаиваю и ура, работает уже около года без проблем.
при включении есть растр с шумами, шум в динамике на полную мощность, и не на что не реагирует. Отсутствует питание 5v процессора. Оборван резистор 100 Ом 2Вт по питанию импульсного стабилизатора питания процессора, у транзистора Q881 2SC4004 между коллектором и эмиттером в уголь выгорела пластмасса корпуса. После зачистки выгоревшего участка транзистор оказался исправным. Установив на место родной транзистор и поменяв 100 Ом, импульсный Б питания процессора заработал.
Новый с магазина, через месяц работы пропал SECAM. В PAL всё нормально. Перерыл всю цветность (M52778SP-A, TDA8395P), там всё в порядке. Подозрение пало на прошивку EEPROM (24C02). На эту модель прошивки не нашёл, использовал прошивку с TX-21K1T (по схеме копия TX-21JT1P). После перешивки EEPROM SECAM появился, только пришлось слегка подстроить размеры из сервисного меню.
Заниженное выходное напряжение с Б.П. Собран на STRS6307. Способ устранения заключается в замене стабилитрона D816 MA4108J. Проверка стабилитрона прибором не указала на его неисправность.
Процессор TDA9363 PS/N2/4/0839 (CB3467 - TDA9363N096T). При включении - признаков жизни нет. БП собран на STRF6653 и SE140. Так как при включении перегорания предохранителя не происходило и после моста все ОК, то внимание было направлено на цепи запуска и не напрасно. Был отловлен SMD резистор R811 (ну очень маленький - 0,5 на 1,5 мм ) на 1 ногу STRF6653, который был в обрыве. Номинал - 680 Ом (заменен на обычный МЛТ-0,125). После его замены ТВ ожил.
Не включается - уходит в защиту. Пробит стабилитрон (канал 113в) - замена. Далее при включении - питание строчной пытается вырасти и сразу же падает до 0в. Отключил БП ,нагрузил канал 113в - БП запустился, а когда нагрузил канал 25в БП перестал запускаться. Причина - сгорел Rизм = 1.5ом(R841)
Имеющие в своём составе ИМС AN5601, AN5606. Периодически выключается, не выходит из деж. режима, нет строчной синхронизации, периодически выходит из строя строчный транзистор, часто этому предшествует громкий свист, скрежет и подобные звуки. Но ни конденсатор К-Э, ни FBT ни при чём. Виноват в этом кварц 503 kHz в обвязке видеопроцессора. Вообще, дефект характерен и для других моделей, где в цепи задающего генератора стоит этот кварц.
Нет кадровой развертки. Пробой С461 0,1=100вольт, стоит параллельно кадровым катушкам.
Читайте также:
- Для чего нужна подсветка в телевизоре
- При опросе населения выяснилось что из 100 семей у 78 есть телевизор у 85 холодильник
- Дегтярев договорился со знакомым мастером телеателье об установке в его телевизор блока дмв
- Пульт для телевизора филипс инструкция по применению
- Как обновить сервисы гугл плей на телевизоре киви