Введение сварка дуговая сварка
Электрическая дуговая сварка была изобретена в России. Н.Н. Бенардос 6 июля 1885 г. подал заявку и получил привилегию Департамента торговли и мануфактур № 11982 (1886 г.) на способ «соединения и разъединения металлов непосредственным действием электрического тока» (рис. 7.11). Изобретение было запатентовано в Англии, Германии и некоторых других странах, причем эти патенты получены Н.Н. Бенардосом совместно с петербургским купцом С.А. Ольшевским, который финансировал зарубежное патентование.
Работы были начаты в 1881 г., а в 1885 г. в Петербурге на набережной р. Большой Невки, д. 41, была открыта показательная мастерская, в которой проводились сварочные работы по этому способу. Н.Н. Бенардос разрабатывал также автоматизацию сварки, применение инертных газов при сварке, сварку на переменном токе, подводную сварку и др. К середине 90-х годов XIX в. сварка по способу Н.Н. Бенардоса применялась более чем 100 заводами Западной Европы.
Рис. 7.11. Электрическая дуговая сварка по методу Н.Н. Бенардоса
1 — угольный электрод; 2 — присадочный материал; 3 — свариваемые детали
Н.Г. Славянов (1888 г.) предложил дуговую сварку с использованием расплавляемого электрода (рис. 7. 12). Этот метод впервые был использован в 1888 г. на Пермских казенных заводах при сварке вала паровой машины. В 1889 г. дуговая сварка по методу Славянова была использована на Пермских казенных заводах при строительстве парохода «Редедя князь Коссогский». В 1891 г. Н.Г. Славянов получил в Департаменте торговли и мануфактур привилегии № 8747 и 8748 на изобретения «электрической отливки металлов» и «электрического упрочнения металлов», а затем и патенты США и других стран. Им разрабатывались методы автоматического регулирования длины дуги, применения сварки под шлаком (использовалось дробленое стекло), использования предварительного подогрева свариваемых деталей, применения присадок ферросплавов для регулирования химического состава ванны и сварного шва.
Рис. 7.12. Электрическая дуговая сварка по методу Н.Г. Славянова
1 — металлический электрод; 2 — свариваемые детали
В 1905 г. В.Ф. Миткевич предложил использовать трехфазную дугу для сварки металлов.
Одна из проблем электрической сварки — защита расплавленного металла от окисления и повышение устойчивости горения дуги, особенно при использовании плавящегося электрода. О. Кьельберг (Швеция, 1907 г.) предложил специальные покрытия для сварочных электродов, И. Ленгмюр (США, 1911 г.) разработал процесс дуговой сварки в атмосфере водорода, а позднее и с использованием других газов.
Параллельно с электрической сваркой развивалась и газовая сварка. Уже в 1902 г. А. Ле Шателье (Франция) применял кислородно-ацетиленовую сварку при ремонте паровых котлов. В 1903 г. Э. Фуше (Франция) получил патент на газовую сварочную горелку. Этот способ вскоре получил широкое распространение, что затормозило развитие электрической сварки. С 1908 г. на заводах Форда (США) стали применять газовую сварку. Во всем мире, в том числе и в России, газовая сварка стала применяться в различных отраслях промышленности.
Однако в 20-е годы развитие электрической сварки вновь продолжилось.
В 1919 г. фирма «Дженерал электрик» изготовила первую автоматическую дуговую сварочную головку. Подача электродной проволоки осуществлялась электродвигателем постоянного тока, а ток к электроду подводился через ролик. Длина дуги контролировалась по напряжению. В СССР автоматическую подачу электрода разработал в 1924 г. Д.А. Дульчевский. Он же применял угольный порошок при сварке меди для защиты от окисления.
Завод «Электрик» (г. Ленинград) внес значительный вклад в развитие электросварки в нашей стране: под руководством В.П. Никитина в 1924 г. были созданы первая электросварочная машина постоянного тока типа СМ-1 и сварочный трансформатор со встроенным регулятором (тип СТН). В 1926 г. начался выпуск машин для контактной сварки. В 1932–1933 гг. началось производство оборудования для автоматической дуговой и аргоноводородной сварки, был осуществлен выпуск первой в мире сварочной автоматической установки на переменном токе. В 1934 г. выпущен передвижной электросварочный агрегат типа САК-2, состоящий из бензинового двигателя Горьковского автозавода и сварочного генератора, смонтированных на общей раме. В 1947 г. начался серийный выпуск универсальных сварочных автоматов тракторного типа АДС-1000–1.
Первые применения сварки:
— в 1929 г. Николаевский судостроительный завод применяет дуговую сварку днищевых балок танкеров, а позднее и судовых трубопроводов; с 1931 г. в г. Магнитогорске при строительстве домны началось использование электрической сварки вместо клепки; (разрешение на сварку дал И.П. Бардин вопреки мнению американских специалистов, консультировавших строительство); при строительстве завода «Уралмаш» с помощью электрической сварки изготовили подкрановые балки пролетом 10 м; в том же 1931 г. началось внедрение дуговой сварки в мостостроение (Г.А. Николаев); на Западной железной дороге было установлено первое сварное пролетное строение длиной 19,8, а несколько позднее, в 1934 г.; на заводе «Стальмост» в г. Днепропетровске — цельносварное пролетное строение длиной 45 м; в те же годы изготовлены сварной мост (42 м) через водопад Челоне в США и однопролетный сварной мост решетчато-ферменного типа длиной 49,2 и шириной 8,25 м в г. Пльзень (Чехословакия).
В начале 30-х годов Е.О. Патон создал лабораторию электросварки, которая с 1934 г. реорганизована в Институт электросварки (с 1953 г. ИЭС им. Е.О. Патона), который занял ведущее положение в развитии сварочной техники и технологии. К числу важнейших разработок ИЭС относятся:
— высокопроизводительный способ автоматической дуговой электросварки под слоем флюса (1941 г.);
— конструкция сварочной головки с постоянной скоростью подачи электрода (1942 г.);
— новый способ полуавтоматической шланговой сварки (1944 г.);
— мощный трансформатор СТ-1000 с дистанционным управлением для автоматической сварки под флюсом (1947 г.);
— метод двухдуговой электросварки на больших скоростях (1949–1950 гг.);
— полуавтомат для подводной сварки (70-е годы).
Интересные результаты были получены и в других организациях:
— сварка меди под флюсом разрабатывалась Д.А. Дульчевским в начале 20-х годов;
К. К. Хренов разработал процесс ручной сварки под водой (1932 г.) и предложил сварочный трансформатор с поворотным верхним ярмом типа СТХ (1934 г.);
— сварочная лаборатория МВТУ им. Н.Э. Баумана разработала способ автоматической дуговой сварки с подачей в дугу гранулированного флюса (1934 г.);
— в 1946 г. В.П. Никитин создал новый трансформатор типа СТАН компактной конструкции и небольшой массы с тремя ступенями регулирования сварочного тока, предназначенный для монтажных работ;
— в 1949 г. Подольский завод им. С. Орджоникидзе разработал и освоил процесс сварки нефтеаппаратуры из нержавеющей стали;
— сотрудниками ЦНИИТмаш создана усовершенствованная аппаратура для автоматизации дуговой электросварки (1951 г.) и совместно с ИЭС разработана и внедрена серия флюсов для автоматической сварки (1952 г.);
— в начале 50-х годов во ВНИИавтоген проводились работы по дуговой сварке меди и ее сплавов на постоянном токе прямой полярности в атмосферах аргона и азота;
— технология сварки в атмосфере углекислого газа разработана в ЦНИИТмаше в 50-е годы под руководством К.В. Любавского.
Данный текст является ознакомительным фрагментом.
Продолжение на ЛитРес
Электрическая часть
Электрическая часть Вопрос. В соответствии с какими требованиями производится выбор оборудования для аккумуляторных батарей?Ответ. Выбор электронагревательных устройств, светильников, электродвигателей вентиляции и электропроводок для основных и вспомогательных
Электрическая «капсула»
Электрическая «капсула» Автор еще раз убеждается во всесилии электричества, равно как и в том, что от воплощения своей мечты он пока еще очень далек… Как накопить электроны? Да, тепловые накопители если и не завели меня в дебри, то уж точно направили по ложному пути.
3.1.1. Электрическая схема электронных часов на ЖКИ
3.1.1. Электрическая схема электронных часов на ЖКИ Жидкокристаллический индикатор представляет собой две плоские пластинки из стекла, склеенные по периметру таким образом, чтобы между стеклами оставался промежуток, его заполняют специальными жидкими кристаллами.На
4.4.2. Электрическая схема таймера
4.4.2. Электрическая схема таймера При подключении ЭМТ к сети 220 В через ограничительный резистор R1 напряжение поступает на катушку К1 (имеющую сопротивление 3,9 кОм). С помощью системы шестеренок и приложенного к этой катушке напряжения (с помощью электромагнитной индукции)
2.1.1. Умная управляемая электрическая Wi-Fi-модель HL0107
2.1.1. Умная управляемая электрическая Wi-Fi-модель HL0107 Беспроводная управляемая электрическая розетка HL0107 предназначена для удаленного включения и отключения бытовых электроприборов с напряжением 220 В и мощностью до 2,5 кВт. Пользователь может управлять всеми
Электрическая часть На рис. 11.17 приведена схема управления сервомоторами с помощью PIC-микроконтроллера. Питание сервомоторов и микроконтроллера осуществляется от батареи 6 В. Батарейный отсек 6 В содержит 4 элемента АА. Схема микроконтроллера собрана на небольшой
Электрическая схема
Электрическая схема Электрическая схема представляет собой электронный ключ, управляемый интенсивностью светового потока. Когда уровень средней окружающей освещенности мал (возможна подстройка порогового значения), то схема отключает питание двигателя редуктора.
Электрическая чистка
Электрическая чистка С точки зрения химической технологии мытье посуды представляет собой чересчур неэкономичный процесс: чтобы смыть немного грязи, расходуется огромное количество воды. Еще более вопиющие примеры расточительности дают нам стирка и баня, а многие
§ 10.ЭЛЕКТРИЧЕСКАЯ И ДРУГИЕ ПЕРЕДАЧИ.
§ 10.ЭЛЕКТРИЧЕСКАЯ И ДРУГИЕ ПЕРЕДАЧИ. 4) БЕНЗИНО-ЭЛЕКТРИЧЕСКИЙ ТАНК ДАЙМЛЕРА (черт.20) Бензиновый мотор Даймлер (1) с алюминиевыми поршнями и облегченным маховиком (2) при нормальной скорости — 1400 оборотов в минуту дает 125 HP. Спаренная с ним динамо (3) питает энергией два
5.2. ЭЛЕКТРИЧЕСКАЯ ЧАСТЬ ЭЛЕКТРОСТАНЦИЙ
5.2. ЭЛЕКТРИЧЕСКАЯ ЧАСТЬ ЭЛЕКТРОСТАНЦИЙ Концентрация производства электроэнергии. Первые электростанции (блок-станции) появились как установки для питания электроосветительной сети в конце 70-х годов XIX столетия.Блок-станции вырабатывали исключительно постоянный ток и
7.2. ЭЛЕКТРИЧЕСКАЯ СВАРКА
7.2. ЭЛЕКТРИЧЕСКАЯ СВАРКА 7.2.1. ЭЛЕКТРИЧЕСКАЯ ДУГОВАЯ СВАРКА Электрическая дуговая сварка была изобретена в России. Н.Н. Бенардос 6 июля 1885 г. подал заявку и получил привилегию Департамента торговли и мануфактур № 11982 (1886 г.) на способ «соединения и разъединения металлов
7.2.1. ЭЛЕКТРИЧЕСКАЯ ДУГОВАЯ СВАРКА
7.2.1. ЭЛЕКТРИЧЕСКАЯ ДУГОВАЯ СВАРКА Электрическая дуговая сварка была изобретена в России. Н.Н. Бенардос 6 июля 1885 г. подал заявку и получил привилегию Департамента торговли и мануфактур № 11982 (1886 г.) на способ «соединения и разъединения металлов непосредственным действием
5.6.1. Ручная дуговая сварка
5.6.1. Ручная дуговая сварка Широкое применение на строительстве ВЛ получила ручная дуговая сварка.Технические параметры аппаратов для ручной сварки приведены в табл. 5.52.Таблица 5.52Мобильные сварочные аппараты Примечание. МРМЗ – Михневский ремонтно-механический завод,
Введение
Сварка – это технологический процесс получения неразъемных соединений посредством установления межатомных связей между свариваемыми частями при их нагревании или пластическом деформировании, или совместном действии того и другого.
Благодаря своей относительной простоте применения, быстроте соединения различных материалов сварка находит широкое применение.
Сварка является экономически выгодным, высокопроизводительным технологическим процессом, что обеспечивает ее использование во всех областях машиностроения, строительства, науки и техники. Например, при замене клепаных конструкций на сварные соединения экономия металлов составляет 15–20 %, а при замене литых деталей сварными – около 50 %. Сварка является необходимым технологическим процессом обработки металлов. В настоящее время сваркой соединяют разнородные и однородные материалы: металлы и неметаллы – от нескольких микрон в микросхемах до нескольких метров – в тяжелом машиностроении. Трудно назвать отрасль промышленности, которая обходилась бы без применения сварки. Сваркой соединяют детали космических кораблей, лопасти турбин, корпуса подводных лодок и самолетов, корпуса приборов и выводы микросхем. Детали, соединенные сваркой, имеют прочность, равную прочности основного металла.
Различают два вида (способа) сварки по типу энергетического воздействия:
• сварка плавлением (с применением тепловой энергии);
• сварка давлением (с применением механической энергии).
В первом случае материал в месте соединения расплавляют, а во втором процесс выполняют с приложением давления и местным нагревом или без него.
Энергия в зону сварки вводится в виде теплоты, упругопластической деформации, электронного, ионного, электромагнитного и других видов воздействия.
В зависимости от формы энергии, используемой для образования сварного соединения, все виды сварки разделяют на три класса:
• К термическому классу (Т) относятся виды сварки, осуществляемой плавлением с использованием тепловой энергии. Основными источниками теплоты являются сварочная дуга, плазма, лучевые источники энергии (лазерное, электронное, фотонное излучение), теплота, выделяемая при химических реакциях (газовая, термитная).
• К механическому классу (М) относятся виды сварки, осуществляемые с использованием механической энергии и давления (ультразвуковая, взрывом, трением).
• К термомеханическому классу (ТМ) относятся виды сварки с использованием тепловой энергии и давления (диффузная сварка, контактная и др.).
Наибольший объем среди всего разнообразия видов сварки занимает дуговая сварка, в частности ручная дуговая электросварка. Источником теплоты при этом является электрическая дуга, которая горит между электродом и заготовкой.
Впервые мысль о возможности практического использования «электрических искр» для плавления металлов высказал в 1753 г. академик Российской Академии наук Г. Р. Рихман, исследовавший атмосферное электричество.
В 1802 г. профессор Санкт-Петербургской военно-хирургической академии Василий Владимирович Петров открыл явление электрической дуги. Петров исследовал возможности использования электричества для освещения. Им был собран «Вольтов столб» из 2 400 пар медно-цинковых кружков, с проложенной между ними бумагой, смоченных раствором нашатыря. Это была одна из самых мощных электрических батарей того времени.
В. В. Петров в своих трудах первым описал явление электрической дуги и показал возможность использования теплоты, выделяемой дугой, для плавления металлов.
Этим открытием, одним из самых значительных в XIX веке, В. В. Петров положил начало развитию новых технических знаний и науки, получивших дальнейшее практическое применение в электродуговом освещении, электрическом нагреве, плавке и сварке металлов.
Однако в то время это открытие не нашло практического применения. Спустя почти 80 лет наш русский изобретатель Н. Н. Бенардос в 1892 г. начал разработку практического применения электрической дуги для сварки металлов. Н. Н. Бенардос в 1885–1887 гг. запатентовал свой способ сварки «Электрогефест», или «Способ соединения и разъединения металлов непосредственным действием электрического тока», в 13 странах, в том числе и в Америке, хотя американский ученый И. Томпсон в 1867 г. одним из первых в мире пытался сварить два куска металла электросваркой.
В 1892 г. на электротехнической выставке, проходившей в Петербурге, Н. Н. Бенардос представил описание своего изобретения: «Электропайка, электросварка, электроотливка, электронаслоение, электросверление, электроразрезывание всех металлов». Он присоединял один полюс динамо-машины к листу металла, а другой к угольному электроду. В пламя дуги вводили металлический стержень.
Но Бенардос не догадался о том, что можно не вводить посторонний металл при плавящемся электроде. Это сделал русский ученый Н. Г. Славянов. Его «Способ электрической отливки металлов» увидел весь мир. На выставке в 1893 г. Славянов получил золотую медаль «За дуговую электросварку». Он представил двенадцатигранную призму из никеля, томпака, стали, чугуна, нейзильбера, бронзы обычной и колокольной, где все грани были соединены сваркой. После этого Америка уже не сомневалась в возможностях сварки цветных металлов по способу Н. Г. Славянова.
С именами Н. Г. Славянова и Н. Н. Бенардоса связано развитие металлургических основ электрической дуговой сварки, контактной сварки, создание первого автоматического регулятора длины дуги и первого сварочного генератора. Н. Г. Славяновым были предложены флюсы для получения высококачественного металла сварных швов. В Московском политехническом музее демонстрируется подлинный сварочный генератор Н. Г. Славянова и образцы сварных соединений.
В начале 1930-х годов в связи с потребностью в более прогрессивных способах соединения металлов стала развиваться сварочная техника. В 1929 г. советский инженер-изобретатель Д. А. Дульчевский разработал способ автоматической дуговой сварки под флюсом. Под руководством академика В. П. Вологдина в 1924–1935 гг. с использованием электрической дуговой сварки были изготовлены первые отечественные котлы и корпуса судов. Сварку применяли ручную дуговую, электродами с тонкими ионизирующими покрытиями.
В 1935–1939 гг. стали применять легированные электроды с толстым покрытием. Их применение позволило использовать сварку в изготовлении промышленного оборудования и строительных конструкций.
Огромный вклад в развитие сварочных технологий внес киевский институт им. Е. О. Патона.
Здесь была разработана электрошлаковая сварка, изготовлены высокоскоростные сварочные машины для сварки под флюсом. Применение электрошлаковой сварки позволило заменить литые и кованые крупногабаритные изделия сварными, более технологичными.
В период Великой Отечественной войны сварка получила широкое применение в военной технике, были разработаны уникальные способы сварки броневых сталей. В послевоенное время при восстановлении народного хозяйства сварка как прогрессивный способ соединения металлов значительно вытеснила клепку.
С 1948 г. промышленное применение получили новые способы сварки: сварка в среде защитных газов, ручная, механизированная и автоматическая сварка плавящимся и неплавящимся электродом.
В 1950–1952 гг. в ЦНИИТмаше при участии МВТУ им. Н. Э. Баумана и ИЭС им. Е. О. Патона под руководством профессора К. Ф. Любавского была разработана сварка низколегированных и низкоуглеродистых сталей в среде углекислого газа. Сейчас этот способ сварки составляет 30 % объема всех сварочных работ.
В конце 1950-х годов французскими учеными был разработан новый вид сварки плавлением – электронно-лучевой, получивший широкое применение в производстве микроэлектронной техники и выплавке особо чистых сплавов.
Впервые в мире советские космонавты В. Кубасов и Г. Шонин в 1969 г. осуществили автоматическую сварку и резку металлов в открытом космосе. В 1984 г. космонавты С. Савицкая и В. Джанибеков провели ручную сварку, резку и пайку различных металлов в космосе. В настоящее время сварку и резку металлов проводят в космосе, под водой, в вакууме и на открытом воздухе.
Открытая и разработанная Н. Н. Бенардосом в 1887 г. контактная и шовная сварка широко применяется в настоящее время. Кузов современного автомобиля, состоящий из тонколистовых штампованных деталей, сварен более чем в 10 тысячах точек. Самолет насчитывает уже несколько миллионов сварных точек или «электрозаклепок».
Наряду с дуговой электросваркой, к сварке плавлением относят газовую сварку. Для плавления металлов используют тепло пламени смеси газов, сжигаемых с помощью горелки. Газовая сварка классифицируется по виду применяемого горючего газа: ацетиленокислородная, керосино-кислородная, бензино-кислородная, пропанобутано-кислородная, водород-кислородная и др.
Способ газовой сварки был разработан в конце XIX столетия, когда началось промышленное производство кислорода, водорода и ацетилена. В этот период газовая сварка являлась основным способом сварки металлов и обеспечивала получение наиболее прочных соединений. Наибольшее развитие газовая сварка с применением ацетилена получила в период развития сети железных дорог и вагоностроения. Необходимо было производить большой объем работ по сборке вагонов, паровозов. В настоящее время газовая сварка применяется во многих отраслях промышленности: при изготовлении и ремонте изделий из тонколистовой стали, сварке цветных металлов и их сплавов, а также при наплавочных работах. Разновидностью газопламенной обработки является газотермическая резка, широко применяемая на этапе заготовительных операций при раскрое металлов и резке металлолома.
Несмотря на многочисленные способы применения механизированных и автоматизированных видов сварки, масштабы применения ручной дуговой электросварки увеличиваются. Это связано с созданием новых материалов и оборудования для производственных процессов. На эти позиции ручную сварку выдвинули высокая скорость соединений металлов и технологичность процесса.
Начальной и конечной операцией создания современных конструкций часто является ручная дуговая сварка.
Введение
Введение Все дилетанты, но в разных областях [6]. Занимаешься всегда не тем, чем собирался. Предлагаем любителям нетривиальных путешествий словарь-путеводитель по экзотической части американского английского. Такой язык мало доступен тем, кто не принадлежит к местной
Введение Пистолеты и револьверы — наиболее массовое в мире оружие. За ним закреплен приоритет «личного оружия нападения и защиты, предназначенного для поражения живой силы противника на коротких расстояниях (до 50 м) и в рукопашной «схватке». Если в армиях почти всюду на
Введение Для качественного оказания медицинской помощи необходимо обеспечить непрерывность лечебно-диагностического процесса на всех этапах лечения. Здесь приобретает значение четкое разделение функций на каждом этапе оказания медицинской помощи. Фельдшер является
Введение Биология и медицина признают, что организм человека является так называемой открытой системой по восприятию и излучению энергии. Он воспринимает доходящую до Земли энергию Космоса – прану, эфир – и преобразует ее для своей жизнедеятельности (либо излучает
Введение Невозможно представить себе грамотного человека, который ни разу в жизни не пролистывал свою медицинскую карточку и не вчитывался в результаты исследований. Собственное здоровье и здоровье детей нас тревожит, и мы хотим знать о нем как можно больше. К
ВВЕДЕНИЕ Даже кратковременное отсутствие воды в квартире доставляет ее обитателям массу неудобств. Чтобы оградить себя от подобных хлопот и аварийных ремонтов, необходимо тщательно соблюдать рекомендации по обслуживанию и использованию бытовой
Введение Псевдонимы (от греч. слова «pseudonymos» – носящий вымышленное имя) заслуживают изучения как один из важных факторов творческой жизни всех времен и народов. Наука о псевдонимах, которую по аналогии с ономастикой (наукой об именах) можно назвать псевдономастикой, или
Введение «Salus aegroti suprema lex» («Благо больного – высший закон») – это основной принцип, которым должны руководствоваться врачи в своей деятельности. Правда, вся сложность в том, что именно врач, а не больной может определять, что для больного благо. В дальнейшем мы увидим, что
Введение Если вы открыли эту книгу, значит, была на то причина. Скорее всего, вы просто однажды поняли, что хотите как можно больше знать о своем здоровье. Зачем? Да чтобы сохранить его и прожить долгую и полноценную жизнь без боли, недомоганий, слабости, больниц и лекарств.
Введение КлассификацияЧасовые приборы можно классифицировать по-разному: по принципу действия, по устройству колебательной системы, наконец, по назначению.По принципу действия часовые механизмы могут быть механическими, электронно-механическими или электронными.
7.2.1. ЭЛЕКТРИЧЕСКАЯ ДУГОВАЯ СВАРКА
Технология ручной дуговой сварки
Сущность процесса ручной дуговой сварки. Рассмотрение особенностей оборудования сварочного поста. Подготовка металлических деталей под сварку. Этапы проведения сварочных работ. Выбор режима ручной дуговой сварки. Современные техники выполнения швов.
Рубрика | Производство и технологии |
Вид | реферат |
Язык | русский |
Дата добавления | 14.12.2017 |
Размер файла | 5,0 M |
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Технология ручной дуговой сварки
1. Технологический процесс
1.1 Сущность процесса ручной дуговой сварки
1.2 Оборудование сварочного поста
1.3 Подготовка деталей под сварку
1.4 Выбор режима ручной дуговой сварки
1.5 Техника выполнения швов
2. Техника безопасности
Сварка является одним из ведущих технологических процессов в машиностроении и в строительстве. Трудно назвать отрасль хозяйства, где бы не применялась сварка.
Сварка позволила внести коренные изменения в технологию производства, создать принципиально новые конструкции машин. Например, применение сварных конструкций вместо клепаных в строительстве позволило экономить около 20% металла, снизить на 5-30% трудоемкость изготовления конструкций.
Сварка универсальна: этим способом могут соединяться металлы в изделиях различных размеров при толщине соединяемого металла от сотых долей миллиметра до метров, при массе изделия от долей грамма до сотен и тысяч тонн. Размеры сварных изделий могут быть от долей миллиметра (приборы электроники) до гигантских размеров (пролетные конструкции железнодорожных и шоссейных мостов, корпуса океанских лайнеров, трубопроводы длиною в тысячи километров).
Сваркой можно соединять не только металлы, но и некоторые другие материалы (стекло, керамику, пластмассы). Возможна сварка разнородных металлов, например, стали с медью или алюминием. Можно сваривать и совершенно разнородные материалы, например металлы со стеклом.
В условиях непрерывного усложнения конструкций, неуклонного роста объема сварочных работ большую роль играет правильное проведение технологической подготовки производства, в значительной степени определяющей его трудоемкость и сроки освоения, экономические показатели, использование средств механизации и автоматизации.
Наибольший эффект технологической подготовки достигается при комплексном решении вопросов технологической обработки самих конструкций, разработки технологических процессов и их оснащения на всех этапах производства. дуговой сварка шов металлический
Поскольку разнообразны применение и характер изготовляемых изделий, освоение сварки требует знаний по металлургии и металловедению, машиностроению, электротехнике, физике, химии, прочности материалов и их свойств при различных температурах, прочности сварных конструкций, автоматизации производственных процессов, начиная с простейших автоматов и полуавтоматов и кончая работами, имитирующими рабочие приемы человека.
Наибольший объем среди других видов сварки занимает ручная дуговая сварка - сварка плавлением штучными электродами, при которой подача электрода и перемещение дуги вдоль свариваемых кромок производятся вручную.
Среди всех способов наиболее распространена ручная дуговая сварка штучными электродами, как наиболее универсальная. Способ позволяет без замены сварочного инструмента и оборудования (при правильно выбранном сварочном режиме) выполнять швы различных типов и назначения, а так же вести сварку в любом пространственном положении и труднодоступных местах.
Схема процесса показана на рисунке 1.
Дуга горит между стержнем электрода 1 и основным металлом 7. Под действием теплоты дуги электрод и основной металл плавятся, образуя металлическую сварочную ванну 4. Капли жидкого металла 8 с расплавляемого электродного стержня переносятся в ванну через дуговой промежуток. Вместе со стержнем плавится покрытие электрода 2, образуя газовую защиту 3 вокруг дуги и жидкую шлаковую ванну на поверхности расплавленного металла.
Рис. 1 Ручная дуговая сварка металлическим электродом с покрытием (стрелкой указано направление сварки)
Металлическая и шлаковая ванны вместе образуют сварочную ванну. По мере движения дуги металл сварочной ванны затвердевает и образуется сварной шов 6. Жидкий шлак по мере остывания образует на поверхности шва твердую шлаковую корку 5, которая удаляется после остывания шва. Для обеспечения заданного состава и свойств шва, сварку выполняют покрытыми электродами, к которым предъявляют специальные требования.
1.2 Оборудование сварочного поста, инструменты
Сварочный пост для ручной дуговой сварки оснащается источником питания, токоподводом, необходимыми инструментами, принадлежностями и приспособлениями.
Сварочные посты могут быть стационарными и передвижными.
К стационарным постам относятся посты, расположенные в цехе, преимущественно в отдельных сварочных кабинах, в которых сваривают изделия небольших размеров.
Передвижные сварочные посты, как правило, применяют при монтаже крупногабаритных изделий (трубопроводы, металлоконструкции, сосуды) и ремонтных работах. При этом часто используют переносные источники питания. В зависимости от свариваемых материалов и применяемых электродов для ручной дуговой сварки применяют источники переменного или постоянного тока с крутопадающей характеристикой.
Основным инструментом сварщика является электрододержатель. С его помощью осуществляются основные манипуляции в процессе сварки. От этого во многом зависит качество сварного шва.
Рис.2 Конструктивные схемы электрододержателей для ручной дуговой сварки: а - пластинчатый, винтовой, вилочный; б- пружинный; в- зажимной
Электродержатель должен выдерживать 8000 зажимов электрода, затрачивая на каждую замену не более 4 секунд. Он должен допускать возможность захвата электрода не менее чем в двух положениях: перпендикулярно и под углом не менее 1150 к оси электрододержателя. Токоведущие части электрододержателя должны быть надёжно изолированы от случайного соприкосновения со свариваемым изделием или руками сварщика. Изоляция рукоятки должна выдерживать без перебоя в течение 1мин. испытательное напряжение 1500 В при частоте 50 Гц. Превышение температуры наружной поверхности рукоятки при номинальном режиме работы не должно быть более 550С. Поперечное сечение рукоятки на длине, охватываемой ладонью сварщика, должно вписываться в круг диаметром не более 40мм. Электрододержатели должны обладать достаточной механической прочностью.
По силе сварочного тока можно определить наименьшее сечение сварочного кабеля. Кабель должен надёжно контактировать с электродо-держателем.
Щитки и маски применяются для предохранения глаз и кожи лица сварщиков от вредного влияния электрических лучей и брызг расплавленного металла. Их изготовляют по ГОСТ 1361-69 из лёгкого токонепроводящего материала (фибра, спецфанера). Масса щитка или маски не должна превышать 0,6кг. В щиток или маску вставляют специальный светофильтр, удерживаемый рамкой. Нельзя пользоваться случайными цветными стёклами, так как они не могут надёжно защитить глаза от невидимого излучения сварочной дуги, вызывающего заболевание глаз.
Светофильтры имеют различную плотность. Наиболее тёмное стекло имеет марку ЭС-500 и применяется при сварке током до 500 А; среднее - ЭС-300, для сварки током до 300 А; более светлое стекло ЭС-100 для сварки током 100 А и менее. Снаружи светофильтр защищают от брызг расплавленного металла обычным прозрачным стеклом, которое нужно 2-3 раза в месяц заменять новым. Применяют также светофильтры с изменяющейся оптической плотностью, которая позволяет не поднимая щитка вести сборочные и сварочные работы. Без дуги фильтр прозрачен, а при её зажигании за время менее 0,01 с оптическая плотность его автоматически возрастает до номинальной.
Для работы в особо вредных условиях маска сварщика может комплектоваться системой принудительной подачи очищенного воздуха. Она состоит из микровентилятора, фильтрующего элемента, аккумуляторного блока, соединительных шлангов. Система крепится на поясе сварщика со стороны спины. Воздух захватывается в чистой области и подаётся сварщику для дыхания под щиток.
При выполнении сварочных работ обязательно применение спецодежды. Она должна быть изготовлена из плотного брезента или сукна. Не должна иметь открытых карманов. Обувь должна иметь глухой верх. Рукавицы из кожи, плотного брезента или асбестовой ткани.
К дополнительному инструменту сварщика относятся:
- зажимы типа струбцин, присоединённые к обратному кабелю трансформатора. Они должны обеспечивать плотный контакт со свариваемым изделием;
- проволочные щетки для зачистки швов и удаления шлака;
- набор слесарного инструмента (клейма, зубила, молотки) для вырубки дефектных мест, клеймения швов, удаления брызг и шлака;
- сумки для хранения электродов непосредственно на рабочем месте;
- измерительный инструмент - шаблоны, угломеры;
- механические зажимные устройства: сборочные струбцины, скобы, фиксаторы, винтовые распорки и магнитные захваты;
Для прокалки электродов необходимо наличие сушильного шкафа или печи.
При подготовке деталей под сварку поступающий металл подвергается правке, разметке, наметке, резке, подготовке кромок под сварку, холодной или горячей гибке.
Основной металл и присадочный материал перед сваркой должны быть тщательно очищены от ржавчины, масла, влаги, окалины и различного рода неметаллических загрязнений. Наличие указанных загрязнений приводит к образованию в сварных швах пор, трещин, шлаковых включений, что приводит к снижению прочности и плотности сварного соединения.
Подготовка кромок под сварку
К элементам геометрической формы подготовки кромок под сварку (рис.3) относятся угол разделки кромок б, притупление кромок S, длина скоса листа L при наличии разности толщин металла, смещение кромок относительно друг друга б, зазор между стыкуемыми кромками а.
Рис.3 Элементы геометрической формы подготовки кромок под сварку (а) и шва (б): в - ширина шва, h - высота шва, К - катет шва
Для выполнения сварного шва прежде всего определяют режим сварки, обеспечивающий хорошее качество сварного соединения, установленные размеры и форму при минимальных затратах материалов, электроэнергии и труда.
Режимом сварки называется совокупность параметров, определяющих процесс сварки: вид тока, диаметр электрода, напряжение и значение сварочного тока, скорость перемещения электрода вдоль шва и др.
Основными параметрами режима ручной дуговой сварки являются диаметр электрода и сварочный ток.
Остальные параметры выбирают в зависимости от марки электрода, положения свариваемого шва в пространстве, вида оборудования и др. Диаметр электрода устанавливают в зависимости от толщины свариваемых кромок, вида сварного соединения и размеров шва.
Для стыковых соединений приняты практические рекомендации по выбору диаметра электрода d в зависимости от толщины свариваемых кромок s:
При выполнении угловых и тавровых соединений принимают во внимание размер катета шва.
При катете шва 3. 5 мм сварку производят электродом диаметром 3. 4 мм; при катете 6. 8 мм применяют электроды диаметром 4. 5 мм.
При многопроходной сварке швов стыковых соединений первый проход выполняют электродом диаметром не более 4 мм. Это необходимо для хорошего провара корня шва в глубине разделки.
По выбранному диаметру электрода устанавливают значение сварочного тока. Обычно для каждой марки электродов значение тока указано на заводской этикетке, но можно также определить по следующим формулам:
I = (40. 50)dэ , при dэ = 4. 6 мм;
I = (20 + 6dэ)dэ, при dэ6 мм,
где I - значение сварочного тока, А;
dэ, - диаметр электрода, мм.
Полученное значение сварочного тока корректируют, учитывая толщину металла и положение свариваемого шва.
При толщине кромок менее (1,3. 1,6) dэ расчетное значение сварочного тока уменьшают на 10. 15 %, при толщине кромок > 3dэ - увеличивают на 10. 15 %.
Сварку вертикальных и потолочных швов выполняют сварочным током, на 10. 15 % уменьшенным против расчетного.
Сварочную дугу возбуждают двумя приемами. Можно коснуться свариваемого изделия торцом электрода и затем отвести электрод от поверхности изделия на 3. 4 мм, поддерживая горение образовавшейся дуги. Можно также быстрым боковым движением коснуться свариваемого изделия и затем отвести электрод от поверхности изделия на такое же расстояние (по методу зажигания спички).
Прикосновение электрода к изделию должно быть кратковременным, так как иначе он приваривается к изделию, т.е. «примерзает». Отрывать «примерзший» электрод следует резким поворачиванием его вправо и влево. Длина дуги значительно влияет на качество сварки. Короткая дуга горит устойчиво и спокойно. Она обеспечивает получение шва высокого качества, так как расплавленный металл электрода быстро проходит дуговой промежуток и меньше подвергается окислению и азотированию. Но слишком короткая дуга вызывает «примерзание» электрода, дуга прерывается, нарушается процесс сварки. Длинная дуга горит неустойчиво с характерным шипением.
Глубина проплавления недостаточная, расплавленный металл электрода разбрызгивается и больше окисляется и азотируется. Шов получается бесформенным, а металл шва содержит большое количество окислов.
Для электродов с толстым покрытием длина дуги указывается в паспортах.
В процессе сварки электроду сообщаются движения, показанные на рисунке 3:
1 - по направлению оси электрода в зону дуги. Скорость движения должна соответствовать скорости плавления электрода, чтобы сохранить постоянство длины дуги;
2 - вдоль линии свариваемого шва. Скорость перемещения не должна большой, так как металл электрода не успевает сплавиться с основным металлом (непровар). При малой скорости перемещения возможны перегрев и пережог металла; шов получается широкий, толстый, производительность сварки низкая;
3 - поперечные колебательные движения применяют для получения уширенного валика шириной равной (3. 4)dэ. Поперечные движения замедляют остывание наплавляемого металла, облегчают выход газов и шлаков и способствуют наилучшему сплавлению основного и электродного металла и получению высококачественного шва. Образующийся в конце наплавки валика кратер необходимо тщательно заварить.
Рис. 4 Движение электрода в процессе сварки: 1 - поступательное (вдоль оси электрода); 2 - прямолинейное (вдоль оси шва); 3 - колебательные (поперек оси шва)
1.4 Техника выполнения швов
Техника выполнения сварных швов зависит от вида и пространственного положения шва.
Нижние швы наиболее удобны для выполнения, так как расплавленный металл электрода под действием силы тяжести стекает в кратер и не вытекает из сварочной ванны, а газы и шлак выходят на поверхность металла. Поэтому по возможности следует вести сварку в нижнем положении.
Стыковые швы без скоса кромок выполняют наплавкой вдоль шва валика с небольшим уширением. Необходимо хорошее проплавление свариваемых кромок. Шов делают с усилением (выпуклость шва до 2 мм). После проварки шва с одной стороны изделие переворачивают и, тщательно очистив от подтеков и шлака, заваривают шов с другой стороны.
Сварку стыковых швов с V-образной разделкой при толщине кромок до 8 мм производят в один слой, а при большей толщине - в два слоя и более. Первый слой наплавляют высотой 3. 5 мм электродом, диаметр которого 3. 4 мм. Последующие слои выполняют электродом диаметром 4. 5 мм.
Перед наплавкой очередного слоя необходимо тщательно очистить металлической щеткой разделку шва от шлака и брызг металла.
После заполнения всей разделки шва изделие переворачивают и выбирают небольшую канавку в корне шва, которую затем аккуратно заваривают. При невозможности подварить шов с обратной стороны следует особенно аккуратно проварить первый слой.
Стыковые швы с Х-образной разделкой выполняют аналогично многослойным швом с обеих сторон разделки.
Угловые швы в нижнем положении лучше выполнять в положении «лодочка» (рис.5, а). Если изделие не может быть так установлено, необходимо особенно тщательно обеспечить хороший провар корня шва и свариваемых кромок.
Сварку следует начинать с поверхности нижней кромки и затем переходить через разделку шва на вертикальную кромку, как показано на рисунке 5, б. При наложении многослойного шва первый валик выполняют ниточным швом электродом с диаметром 3. 4 мм. При этом необходимо обеспечить хороший провар корня шва. Затем после зачистки разделки наплавляют последующие слои.
Рис.5 Техника выполнения швов
Вертикальные швы менее удобно сваривать, так как сила тяжести увлекает капли электродного металла вниз. Вертикальные швы следует выполнять короткой дугой и снизу вверх (рис.5,в). При этом капли металла легче переходят в шов, а образующийся кратер в виде полочки удерживает очередные капли металла от стекания вниз.
Сварку можно вести и сверху вниз. При этом дугу следует зажигать при положении электрода, перпендикулярном плоскости изделия (рис.5, г). После образования первых капель металла электрод наклоняют вниз и сварку выполняют возможно короткой дугой.
Рекомендуется применять электроды диаметром 4. 5 мм при несколько пониженном сварочном токе (150-170 А). Горизонтальные швы выполняют при разделке кромок со скосом у верхнего листа (рис.5, д). Дугу возбуждают на нижней кромке и затем переводят на поверхность скоса и обратно. Сварку выполняют электродом диаметром 4. 5 мм.
Горизонтальные нахлесточные швы (рис.5, е) выполняются легче, так как нижняя кромка образует полочку, удерживающую капли расплавленного металла.
Потолочные швы наиболее трудно выполнимы и поэтому требуют высокой квалификации сварщика. Применяют электроды диаметром не более 5 мм при уменьшенном значении сварочного тока.
Следует применять тугоплавкое покрытие электрода, образующее «чехольчик», в котором удерживается расплавленный металл электрода. Дуга должна быть как можно короче для облегчения перехода капель металла электрода в кратер шва. Выбор способа и порядка выполнения сварных швов зависит главным образом от толщины металла и протяженности шва.
При сварке тонколистовой стали необходимо строгое соблюдение техники выполнения сварных швов. Особую опасность представляют сквозные прожоги и проплавление металла.
Сталь толщиной 0,5. 1,0мм следует сваривать внахлестку с проплавлением через верхний лист (рис.6, а) или встык с укладкой между свариваемыми кромками стальной полосы (рис.6, б). Во втором случае расплавление кромок должно происходить при косвенном воздействии дуги. Рекомендуются следующие режимы сварки.
Читайте также: