Ручная дуговая сварка дсту
Перелік документів, які скасовані 1 вересня 2022 року
Перелік документів, які набули чинності 1 вересня 2022 року
12.09.2022 року втратили чинність відомчі будівельні норми (ВБН) та галузеві будівельні норми (ГБН) у сфері дорожнього господарства України
Перелік чинних будівельних норм, національних стандартів, нормативних та технічних документів для дорожнього господарства (станом на 13.09.2022)
Інформація щодо рівнів заробітної плати, які враховуються при визначенні вартості будівництва об’єктів, прийнятих рішеннями деяких органів місцевого самоврядування на 2022 рік
Нові редакції покажчиків нормативних документів із енергетики станом на 01.07.2022
З Днем Будівельника 2022!
Для роботи з текстом документа (друк документа, пошук по тексту)
необхідно авторизуватись.
- Інформація про документ
- Посилання на документи
- Посилання з інших документів
Найменування документа (укр.) | ДСТУ 2456-94. Зварювання дугове і електрошлакове. Вимоги безпеки |
Дата початку дії | 15.04.1994 |
Дата прийняття | 15.04.1994 |
Статус | Діючий |
Затверджуючий документ | Наказ від 15.04.1994 р. №86 |
Вид документа | ДСТУ (Державний Стандарт України) |
Шифр документа | 2456-94 |
Розробник | Український конструкторсько-технологічний інститут зварювального виробництва (УкрІЗВ) |
У даному документі немає посилань на інші нормативні документи.
ГОСУДАРСТВЕННЫЙ СТАНДАРТ УКРАИНЫ
СВАРКА ДУГОВАЯ И ЭЛЕКТРОШЛАКОВАЯ
ТРЕБОВАНИЯ БЕЗОПАСНОСТИ
ДСТУ 2456-94
Предисловие
1.Разработан и внесен Украинским конструкторско-технологическим институтом сварочного производства (УкрИСП) .
2.Утвержден и введен в действие приказом Гостстандарт Украины №86 от 15 апреля 1994г.
3.Разработчики: Г.И. Лащенко, В.И. Писный В.С. Очеретный, Р.В.Бойчук.
Настоящий стандарт распространяется на работы по дуговой и электрошлаковой сварке металлов во всех областях народного хозяйства и устанавливает требования безопасности при ручной и механизированной дуговой сварке плавящимся и неплавящимся электродом в защитных газах, под флюсом, самозащитной проволокой (электродом) ,а также электрошлаковой сварке.
Требования настоящего стандарта являются обязательными.
В настоящем стандарте приведены ссылки на следующие стандарты:
ГОСТ 1120-83 ЕСТД. Общие правила отражения и оформления требований безопасности труда в технологической документации.
ГОСТ 12.0. 003-74 ССБТ. Опасные и вредные производственные факторы. Классификация.
ГОСТ 12.0. 004-79 ССБТ. Организация обучения работающих безопасности труда. Общие положения.
ГОСТ 12.1. 002-84 ССБТ. Электрические поля промышленной частоты. Допустимые уровни напряжения и требования проведения контроля на рабочих местах.
ГОСТ 12.1. 004-91 ССБТ. Пожарная безопасность. Общие требования.
ГОСТ 12.1. 005-88 ССБТ. Общие санитарно-гигиенические требования к воздуху рабочей зоны.
ГОСТ 12.1. 010-76 ССБТ. Взрывобезопасность. Общие требования.
ГОСТ 12.1. 019-79 ССБТ. Электробезопасность. Общие требования и номенклатура видов защиты.
ГОСТ 12.1. 030-81 ССБТ. Электробезопасность. Защитное заземление, зануление.
ГОСТ 12.1. 031-81 ССБТ. Лазеры. Методы дозиметрического контроля лазерного излучения.
ГОСТ 12.1. 035-81 ССБТ. Оборудование для дуговой и контактной электросварки. Допустимые уровни шума и методы измерений.
ДСТУ 2456-94. Сварка дуговая и электрошлаковая. Требования безопасности
Перечень документов, которые отменены 1 сентября 2022 года
Перечень документов, которые вступили в силу 1 сентября 2022 года
12.09.2022 года утратили силу ведомственные строительные нормы (ВБН) и отраслевые строительные нормы (ГБН) в сфере дорожного хозяйства Украины
Перечень действующих строительных норм, государственных стандартов, нормативных и технических документов для дорожного хозяйства (по состоянию на 13.09.2022)
Информация об уровнях заработной платы, которые учитываются при определении стоимости строительства объектов, принятых решениями некоторых органов местного самоуправления на 2022 год
Новые редакции указателей нормативных документов по энергетике по состоянию на 01.07.2022
С Днем Строителя 2022!
Для работы с текстом документа
(печать документа, поиск по тексту)
необходимо авторизоваться.
- Информация о документе
- Ссылки на документы
- Ссылки из других документов
Наименование документа | ДСТУ 2456-94. Сварка дуговая и электрошлаковая. Требования безопасности |
Дата начала действия | 15.04.1994 |
Дата принятия | 15.04.1994 |
Статус | Действующий |
Утверждающий документ | Приказ от 15.04.1994 г. №86 |
Вид документа | ДСТУ (Государственный Стандарт Украины) |
Шифр документа | 2456-94 |
Разработчик | Украинский конструкторско-технологический институт сварочного производства (УкрИСП) |
В данном документе нет ссылок на другие нормативные документы.
Источники питания для дуговой сварки
Краткая историческая справка о развитии источников питания для дуговой сварки.
Тип сварочного источника питания | С какого года используется (ориентировочно) |
Сварочный преобразователь
(электродвигатель + генератор)
Сварочный тиристорный выпрямитель
Источники питания для дуговой сварки обеспечивают процесс сварки электрической энергией. В тоже время, они оказывают существенное влияние на характер протекания процесса сварки (в первую очередь, на качество и производительность). Поэтому более глубокое понимание свойств источников питания и принципов их работы является обязательным для тех, кто собирается работать в области сварки (хотя, конечно, нижеприведенная краткая классификация источников питания и несколько упрощенное рассмотрение их свойств не предполагают предоставления полной информации по этому вопросу).
Краткая классификация источников питания для дуговой сварки
Как это показано на схеме ниже, источники питания для дуговой сварки могут быть классифицированы по различным признакам.
По первому признаку источники питания классифицируются в соответствии со способом производства энергии: преобразуется ли она из силовой сети питания (что имеет место в трансформаторах, выпрямителях и электронных источниках питания) или вырабатывается самими источниками питания (как это имеет место в случае использования генераторов).
По второму признаку источники питания классифицируются в соответствии со способом преобразования электрической энергии:
- путем использования трансформаторов, которые преобразуют относительно высокое напряжение силовой сети в более низкое напряжение для сварки переменным током;
- путем использования сварочных выпрямителей, состоящих из трансформатора (для понижения напряжения силовой сети) и блока выпрямления для преобразования переменного тока в постоянный;
- путем использования электронных источников питания (например, сварочных инверторов);
- путем использования сварочных преобразователей, состоящих из сварочного генератора, вращение ротора которого обеспечивается электрическим двигателем;
- путем использования сварочных агрегатов, состоящих из сварочного генератора, вращение ротора которого обеспечивается двигателем внутреннего сгорания (строго говоря, в агрегате происходит преобразование не электрической энергии, а механической в электрическую).
Третьим классификационным признаком является способ получения энергии: источники питания могут быть зависимыми (все кроме агрегатов, т.к. получают энергию от стационарной электрической сети) и автономными (агрегаты, т.к. их генератор подсоединен к двигателю внутреннего сгорания).
По четвертому признаку источники питания классифицируются в соответствии со способом регулирования параметров сварки. В трансформаторах, выпрямителях это может быть выполнено с помощью подвижных катушек, подвижных магнитных шунтов, секционированием витков вторичной обмотки и другими способами.
Пятым классификационным признаком является род тока сварки, который обеспечивают источники питания: переменный (AC), постоянный (DC) или оба, как AC, так и DC (комбинированные источники питания).
По шестому классификационному признаку источники питания классифицируются в соответствии с формой внешней (статической) вольт-амперной характеристики (ВВАХ). Внешней вольтамперной характеристикой источника питания является зависимость среднего значения напряжения на клеммах источника от силы тока в сварочной цепи. Она может быть либо падающей (CC - constant current), либо жесткой (CV - constant voltage). И в том и другом случаях эти определения не совсем точны и являются условными, принятыми в сварочной практике. Более подробно о вольт-амперной характеристике см. Вольт-амперная характеристика дуги
Uхх – напряжение холостого хода
Источники питания с падающей ВВАХ характеризуется следующими основными свойствами:
- имеют высокое напряжение холостого хода (≈ 2 … 2,5 раза выше рабочего напряжения дуги);
- напряжение на клеммах источника питания падает существенно при повышении тока сварки;
- имеют ограниченный ток короткого замыкания (не выше, чем 1.1 … 1.3 от номинального тока сварки).
Для источников питания с жесткой ВВАХ характерны следующими основными свойствами:
- напряжение холостого хода лишь незначительно превышает рабочее напряжения дуги;
- напряжение на клеммах источника питания падает незначительно при повышении тока сварки;
- ток короткого замыкания может достигать очень высоких значений (в 2 … 3 раза превышающих номинальный ток сварки).
Форма внешней вольтамперной характеристики источника питания определяется экспериментально путем измерения напряжения на внешних зажимах источника питания (Uн) и тока в цепи (I) при плавном или ступенчатом изменении сопротивления нагрузки (Rн) и при неизменных значениях напряжения холостого хода, активной и индуктивной составляющих внутреннего сопротивления источника питания. По мере снижения сопротивления нагрузки повышается ток в цепи, увеличивается падение напряжения внутри источника питания и, соответственно, снижается напряжение на внешних зажимах источника питания (Uн). Темп снижения напряжения Uн (другими словами, наклон внешней вольтамперной характеристики) определяется значением внутреннего сопротивления источника питания. Чем выше внутреннее сопротивление источника питания, тем более крутой становится внешняя вольтамперная характеристика источника питания.
Статическую ВВАХ не следует путать с динамической характеристикой источника питания, которая характеризует скорость изменения мгновенных значений силы тока в сварочной цепи.
Ниже в таблице представлены данные для выбора рода тока и формы ВВАХ источника питания в зависимости от способа дуговой сварки.
Способ сварки | Постоянный ток | Переменный ток | |
Падающая | Жесткая | Падающая | |
Ручная дуговая сварка покрытым электродом (MMA) | да | нет | да |
Дуговая сварка вольфрамовым электродом в инертном газе (ТИГ) | да | нет | да |
Механизированная дуговая сварка плавящимся электродом в защитном газе (МИГ/МАГ) | нет | да | нет |
Сварочные источники питания также рассчитываются на разный режим работы, который оценивается относительной продолжительностью работы (ПР; иногда обозначается ПН – Период Нагрузки):
ПР = (время работы (сварки) / время всего цикла (сварки и паузы) = 10 мин) * 100%
Длительность всего цикла работы (сварки и паузы) для источников принята равной 10 минутам. Например, если ПР = 20%, то это означает, что после 2-х минут сварки на номинальном токе необходимо, чтобы источник остывал не менее чем 8 минут. В противном случае он может перегреться и выйти из строя.
Конструктивные особенности сварочных трансформаторов
Регулирование тока сварочного трансформатора осуществляется различными способами. В настоящее время наиболее используемыми из них являются:
При введении магнитного шунта в магнитопровод трансформатора, часть магнитного потока создаваемого первичной обмоткой отводится магнитным шунтом и поэтому эта часть магнитного потока минует вторичную обмотку. При этом эффективность передачи энергии от первичной обмотки на вторичную снижается и, в результате, ток сварки уменьшается. При втором способе, когда обмотки разводятся, ухудшается их магнитная связь и снижается эффективность передачи энергии от первичной обмотки на вторичную. В результате чего ток сварки снижается. Оба эти способа обеспечивают плавное регулирование тока сварки. Причем, благодаря постоянству количества витков обмоток, напряжение холостого хода трансформатора остается неизменным. Сварочные трансформаторы этого типа обеспечивают ВВАХ падающего типа, и, таким образом, подходят для ручной дуговой сварки покрытыми электродами.
Конструктивные особенности сварочных выпрямителей
Выпрямителем называется электротехническое устройство, преобразующее переменный ток промышленной частоты в постоянный ток. Ниже представлены наиболее распространенные типы сварочных выпрямителей.
Однофазный сварочный выпрямитель с регулировкой тока сварки с помощью магнитного шунта трансформатора
Выпрямители этого типа обычно небольших размеров, недорогие и предназначаются для дуговой сварки покрытыми электродами.
Трехфазный сварочный выпрямитель с регулировкой тока сварки с помощью подвижных обмоток трансформатора
Обычно промышленные сварочные выпрямители выполняются по трехфазной схеме. Главными достоинствами такой схемы являются:
- равномерное распределение нагрузки по трем фазам силовой сети;
- более высокое качество выпрямления (кривая выпрямленного напряжения имеет меньшие пульсации и по форме близка к прямой).
Ниже представлена упрощенная схема и форма ВВАХ трехфазного сварочного выпрямителя с подвижными обмотками (первичными) для регулирования силы тока. Такой источник питания обеспечивает падающую ВВАХ, подходящую для сварки покрытыми электродами.
Трехфазный сварочный выпрямитель с регулировкой напряжения холостого хода секционированием витков обмоток трансформатора
Секционированием витков первичной обмотки трансформатора можно изменять его коэффициент трансформации и, соответственно, выходные параметры. Это простой, надежный и дешевый способ регулирования, но изменять параметры с его помощью можно только ступенчато. Причем, если не предусмотрено двухдиапазонного регулирования или если число ступеней регулирования мало, настройка напряжения будет довольно грубой. При этом способе регулирования также невозможно использовать дистанционное управление. Однако он часто используется в дешевых источниках питания для сварки МИГ/МАГ.
Тиристорный сварочный выпрямитель
Упрощенная схема универсального тиристорного сварочного выпрямителя приведена ниже.
Тиристор представляют собой управляемый диод. Внешне тиристор выглядит также как и диод, но имеет дополнительный управляющий электрод, по которому он получает сигналы управления, и которые его отпирают (открывают) в заданный момент полупериода напряжения. Этот момент называется углом отпирания тиристора. Запирается тиристор автоматически (самостоятельно) при окончании полупериода напряжения, т.е. когда напряжение на нем снизится до нуля. Регулирование напряжения и тока на выходе источника питания осуществляется изменением угла отпирания тиристора. Чем меньше угол отпирания тиристора, т.е. чем большую часть полупериода напряжения он оказывается открытым, тем выше сила тока на выходе выпрямителя. При использовании больших углов отпирания тиристора значение выходных параметров снижается при одновременном повышении их пульсаций. Для снижения пульсации напряжения и тока на выходе тиристорных источников питания устанавливают большие катушки индуктивности. Индуктивность является эффективным средством по сглаживанию электрических сигналов, но, в то же время, она ухудшает динамические свойства источника питания.
Тиристорные выпрямители являются, как правило, универсальными, т.е. такими которые обеспечивают как падающие, так и пологопадающие внешние вольтамперные характеристики и таким образом, могут быть использованы как для ручной дуговой сварки покрытыми электродами, так и для полуавтоматической и автоматической сварки в защитных газах и под флюсом.
Основные свойства сварочных инверторов
В последнее время (начиная примерно с начала 80-х годов двадцатого века) все большее распространение получают сварочные инверторные источники питания. Основным блоком такого выпрямителя является инвертор – устройство, преобразующее постоянное напряжение в высокочастотное переменное.
Сварочный инвертор работает следующим образом. Сетевой выпрямительный блок преобразует переменное напряжение сети в постоянное. Затем это выпрямленное напряжение преобразуется с помощью инвертора в однофазное переменное высокой частоты (до 50 кГц и выше). Далее напряжение понижается трансформатором, вновь выпрямляется, сглаживается и подается на дугу. Благодаря тому, что на выходе инвертора напряжение имеет высокую частоту, размеры и вес трансформатора может быть резко снижен, так как эффективность трансформации повышается с частотой переменного тока. При этом также снижается длина провода первичной и вторичной обмоток. На рисунке ниже это показано на примере трансформатора мощностью 20 кВт: в одном случае трансформатор рассчитан на работу при частоте 50 Гц, а в другом - 50 кГц
Благодаря малому весу и размерам понижающего трансформатора инверторные источники питания также оказываются небольшими по габаритам и легкими, что, собственно говоря, и являются основным достоинством этих источников. Их рекомендуют использовать в тех случаях, где имеют значение малые масса и габариты – при сварке на монтаже, в быту, на ремонтных работах.
Другим достоинством является их универсальность, так как их внешние вольт-амперные характеристики могут быть любой формы, поскольку формируются искусственно с помощью системы управления с использованием обратных связей по току и напряжению (т.е. в реальном масштабе времени).
Благодаря своим высоким динамическим свойствам (т.е. высокому быстродействию) и возможности управления параметрами сварки в реальном масштабе времени эти источники питания обладают лучшими сварочными свойствами по сравнению с другими типами источников питания, а также часто наделяются дополнительными функциями, которые способствуют улучшению процесса сварки, такими как дистанционное управление, мягкий старт и др.
Табличка с техническими данными для сварочных аппаратов
В соответствии со стандартом ДСТУ IEC 60974-1 "Оборудование для дуговой сварки" Часть 1 "Источники питания для сварки" (“Arc welding equipment” Part 1: “Welding power sources”) вводятся следующие условные обозначения типов сварочных источников питания.
Однофазный трансформатор | |
Однофазный или трехфазный выпрямитель | |
Однофазный или трехфазный инверторный выпрямитель |
В соответствии с этим стандартом также вводятся следующие условные обозначения основных способов сварки и рода тока сварки.
Ручная дуговая сварка покрытыми электродами | |
Ручная дуговая сварка неплавящимся электродом в инертном газе | |
Дуговая сварка в среде инертного и активного газа плавящимся электродом, включая порошковую проволоку (МИГ/МАГ) | |
Дуговая сварка самозащитной порошковой проволокой | |
Дуговая сварка под флюсом | |
Плазменная резка | |
Плазменная строжка | |
Постоянный ток | |
Переменный ток |
В соответствии со стандартом ДСТУ IEC 60974-1 на табличке с техническими данными должны указываться: номинальный ток сварки напряжение дуги, ПР (ПН), а также напряжение холостого хода, требования к сети питания, форма ВВАХ, класс изоляции и другие технические сведения об источнике питания.
Оборудование для сварки
Аргонодуговая (TIG) сварка - время подачи газа до начала сварки (видео)
Аргонодуговая (TIG) сварка - время нарастания сварочного тока (видео)
Третья часть обучающего видео на тему: «Аргонодуговая (TIG) сварка», в которой речь пойдет о таком параметре как – время нарастания сварочного тока.
Предыдущие две части видео:
Аргонодуговая (TIG) сварка - Hot Start и Soft Start (видео)
Четвертая часть обучающего видео на тему «Аргонодуговая (TIG) сварка» из которой Вы узнаете - для чего необходимы такие функции как Hot Start и Soft Start.
Предыдущие три части видео:
Юхин Н.А. Ручная дуговая сварка неплавящимся электродом в защитных газах (TIG/WIG)
В иллюстрированном пособии изложены принципы и особенности ручной дуговой сварки неплавящимся электродом в среде защитных газов. Содержатся данные о сварочных материалах и оборудовании. Приведены рекомендации по технике и технологии сварки сталей, сплавов и цветных металлов. Использованы материалы Института сварки России
Иллюстрированное пособие сварщика
Пособие предназначено для теоретической подготовки, повышения квалификации и переаттестации рабочих следующих профессий:
- газосварщик;
- электрогазосварщик;
- электросварщик ручной сварки
Пособие может быть использовано при подготовке и обучении рабочих следующих профессий:
- газорезчик;
- контролер сварочных работ;
- наладчик сварочного и газоплазморезательного оборудования;
- оператор проекционной аппаратуры и газорезательных машин;
- электровибронаплавщик;
- электросварщик на автоматических и полуавтоматических машинах
Атомно-водородная сварка
Атомно-водородная сварка. Плавление металла происходит за счет тепла, выделяемого при превращении атомарного водорода в молекулярный водород, и за счет тепла независимой дуги, горящей между двумя вольфрамовыми электродами.
Сварка в инертных газах вольфрамовым электродом (TIG)
Сущность процесса сварки ТИГ
Полное наименование этого процесса сварки таково: Ручная дуговая сварка в инертном газе вольфрамовым электродом (ДСТУ 3761.3-98 "Сварка и родственные процессы. Часть 3 Сварка металлов: соединения и швы, технология, материалы и оборудование. Термины и определения"). Схема и сущность процесса сварки ТИГ показана на рисунке ниже.
MIG и MAG сварка, что это и как расшифровать?
MIG сварка — это аббревиатура, состоящая из первых букв полного названия данного способа Metal Inert Gas (Метал Инертный Газ), а расшифровка MAG - Metal Active Gas (Метал Активный Газ). У нас же чаще всего используется название полуавтоматическая сварка или механизированная дуговая сварка плавящимся электродом в среде защитного газа, а в США - GMAW т.е. Gas Metal Arc Welding (Газ Метал Дуговая Сварка).
Но все эти различные названия и аббревиатуры — это по сути электрическая дуговая сварка, при которой сварочная проволока подается автоматически с постоянной скоростью, а сварочная горелка перемещается вдоль шва вручную. При этом дуга, вылет сварочной проволоки, ванна расплавленного металла и ее застывающая часть защищены от воздействия окружающего воздуха защитным газом.
Так как при данном способе сварочная проволока подается автоматически, а горелка перемещается вдоль шва вручную, этот способ сварки еще называется механизированным, а сварочная установка – механизированным аппаратом (сварочным полуавтоматом). Однако сварку в защитных газах можно выполнять также и в автоматическом режиме, когда используются передвижные тележки или передвижные сварочные головки.
Ручная дуговая сварка (ММА)
Сущность процесса ММА
Ручная дуговая сварка (ММА) - это процесс дуговой сварки, при котором используется дуга, горящая между покрытым электродом и сварочной ванной. Покрытый электрод представляет собой металлический стержень, на который нанесено покрытие.
Читайте также: