Структура и свойства пламени сварочных горелок

Обновлено: 10.01.2025

Сварочная горелка — это устройство для смешения газов, формирования сварочного пламени и регулирования его вида и мощности. Она является основным инструментом газосварщика, от свойств и характеристик которого зависят производительность, качество сварной конструкции и безопасность работ.

  • способу подачи горючего газа и кислорода в смесительную камеру — инжекторные и безынжекторные;
  • роду горючего газа —ацетиленовые, водородные, для газов-заменителей и жидких горючих;
  • числу факелов — однопламенные и многопламенные;
  • назначению — универсальные (сварка, резка, пайка, наплавка) и специализированные (выполнение одной операции);
  • мощности пламени — горелки микромощности (расход ацетилена 5. 60 дм 3 /ч), малой (60. 700 дм 3 /ч), средней (700. 2500 дм 3 /ч) и большой (2500. 7000 дм 3 /ч) мощности;
  • способу применения —ручные, машинные.

В безынжекторных горелках горючий газ и кислород поступают в смеситель под одинаковым давлением.

Инжекторные горелки, отличающиеся высокой безопасностью, простотой обслуживания, надежностью работы и универсальностью, наиболее эффективны.

На рис. 6.17 представлены схема инжекторной горелки и конструкция инжекторного устройства. Кислород из баллона под рабочим давлением через ниппель, газоподводящую трубку и вентиль 5 поступает в сопло 4 инжектора. Выходя из сопла с большой скоростью, он создает разряжение в ацетиленовом канале, в результате чего ацетилен, проходя через ниппель 6, трубку и вентиль 7, подсасывается в смесительную камеру 3. В этой камере образуется горючая смесь, которая, проходя через наконечник 2 и мундштук 7, сгорает на выходе из горелки, образуя сварочное пламя.


Рис. 6.17. Схема инжекторной горелки (а) и конструкция инжекторного устройства (б):
1 — мундштук; 2 — наконечник; 3 — смесительная камера; 4 — сопло инжектора; 5, 7 — вентили кислорода и ацетилена; 6 — ниппели; 8, 9 — каналы для подачи кислорода и ацетилена; 10 — инжектор

Для нормальной работы инжекторных горелок необходимо, чтобы давление кислорода составляло 150. 500 кПа (1,5. 5,0 кгс/см 2 ), а давление ацетилена — 3. 120 кПа (0,03. 1,2 кгс/см 2 ). Устойчивое горение пламени достигается при скорости истечения горючей смеси 50. 170 м/с.

На рис. 6.18, а представлена схема безынжекторной горелки. В ее конструкцию вместо инжектора входит смесительная камера наконечника 2. Кислород через ниппель 4, регулировочный вентиль 3 и специальные дозирующие каналы поступает в смесительную камеру. Аналогично через ниппель 5 и вентиль 6 подается ацетилен. Из смесительной камеры горючая смесь проходит через наконечник 2 и выходит из мундштука 1. Сгорая, горючая смесь образует сварочное пламя.


Рис. 6.18. Конструкция безынжекторной горелки (а) и схема ее подключения к газовым баллонам (б):
1 — мундштук; 2 — наконечник; 3, 6 — вентили кислорода и ацетилена; 4, 5 — ниппели кислорода и ацетилена; 7,8 — баллонные редукторы; 9 — редуктор равных давлений; 10 — рукава; 11 — горелка

При подключении безынжекторной горелки к газовым баллонам (рис. 6.18, б) применяют редуктор 9, который автоматически поддерживает равенство рабочих давлений кислорода и ацетилена.

Правила выбора сварочной горелки приведены в табл. 6.3.

Таблица 6.3
Правила выбора горелки




На рис. 6.19 представлена конструкция инжекторной горелки средней мощности Г-3-02 для ручной сварки и пайки сталей и цветных металлов.


Рис. 6.19. Инжекторная горелка Г-3-02:
1 — мундштук; 2, 8, 9 — ниппели; 3, 6, 11 — трубки; 4 — смесительная камера; 5 — инжектор; 7, 10 — накидные гайки; 12 — корпус; 13, 14 — кислородный и ацетиленовый вентили соответственно; 15 — наконечник

Газовая сварка. Справочник

При газовой сварке расплавление основного и присадочного металла осуществляется в результате использования тепла, которое выделяется при сгорании в атмосфере кислорода горючих газов, паров бензина или керосина в специальных горелках. Регулируя соотношение горючих веществ и кислорода, можно получить различные виды пламени: нормальное (восстановительное), окислительное и науглероживающее, и за счет этого выполнять сварку без дополнительных покрытий или флюсов. Газовую сварку применяют, главным образом, при небольших объемах работ, изготовлении тонкостенных изделий, трубопроводных и сантехнических работах и т.д.

1. Газы для газопламенной обработки, их свойства и условия хранения

Для сварки используют горючие вещества, свойства которых приведены в табл. 1, а возможности их использования при сварке различных материалов — в табл. 2.

Наибольшая температура достигается при сгорании газов в атмосфере кислорода — газообразного 1, 2, 3 сорта согласно ГОСТ 5583-78 и жидкого 1 и 2 сорта по ГОСТ 6331-78.

Таблица 1. Свойства горючих газов, их заменителей, кислорода и условия их хранения

*1 При подогревании смеси.

Таблица 2. Возможность использования различных горючих веществ для газовой сварки материалов

  1. «+», «–», «±» — использование данного горючего газа целесообразно, нецелесообразно и ограничено соответственно.
  2. Для сварки используется осветительный керосин. При работе на тракторном керосине сварочная аппаратура забивается смолистыми веществами.

2. Оборудование и аппаратура для сварки

Основным инструментом газосварщика является сварочная горелка — устройство для смешивания горючего газа или паров горючей жидкости с кислородом и создания сварочного пламени (табл. 3). Технические характеристики безынжекторных и инжекторных горелок согласно ГОСТ 1077-79 приведены в табл. 4 и 5, сварочных горелок, работающих на газах (заменителях ацетилена), — в табл. 6.

Кроме того, практикуется использование специальных комплектов для сварочных и резательных работ (табл. 7).

Таблица 3. Технические характеристики универсальных ацетилено-кислородных горелок

*1 Горелка типа Г1 — безынжекторные, остальных типов — инжекторные.

*2 Горелка ГС-4 предназначена для подогрева. Конструкция горелки Г2-04 подобна конструкции ранее выпускающимся горелкам Г2-02, «Звездочка», «Малютка».

Таблица 4. Техническая характеристика безынжекторных горелок типа Г1

Таблица 5. Технические характеристики инжекторных горелок

Таблица 6. Технические характеристики горелок сварочных на газах — заменителях ацетилена

*Горелка ГЗУ-3 универсальная; ГЗУ-4 — для сварки чугуна и цветных металлов (кроме меди), а также наплавки, пайки, нагрева; ГД-Д1 — газовоздушная горелка с максимальной температурой нагрева до 700 о С, массой 0,35 кг.

Таблица 7. Газосварочные комплекты

Примечание. В состав комплекта КГС-1-72 входят горелка Г2-04 и резак вставной РГМ-70, комплекта КГС-2А — горелка Г3-03 и резак вставной РГС-70. В оба комплекта входят сменные наконечники, мундштуки и футляр.

Для питания горелок ацетиленом используют как баллонный, так и газ передвижных генераторов (табл. 8). В зависимости от размеров кусков карбида кальция выход ацетилена составляет 210…375 л/ч при времени разложения 5…13 мин.

Таблица 8. Технические характеристики передвижных генераторов ацетилена

В стационарных условиях пользуются специальными газоразборными постами (табл. 9).

Таблица 9. Технические характеристики газоразборных постов

Сварка с использованием флюса выполняется с помощью специального поста УФП-1, который осуществляет подачу в пламя горелки паров флюса БМ-1, при сгорании которых образуется флюсовое вещество — оксид бора.

Пост УФП-1 включает газораздаточные посты ПГУ-5 и ПГК-10, флюсопитатель ФГФ-3, осушитель ацетилена ОАФ-3, экономизатор и рукава. Наибольший расход кислорода и ацетилена — 3,2 м 3 /ч, флюса — 30…100 г на 1 м 3 горючего газа, емкость резервуара флюсопитателя — 5,2 л, масса силикагеля в осушителе — 5,3 кг.

Для мелких работ используют переносные установки, например ПГУ-3 (табл. 10).

Таблица 10. Технические характеристики переносной установки ПГУ-3 для сварки, пайки и резки металлов

К баллону присоединяется редуктор для снижения давления газа до рабочего значения; его тип выбирается в зависимости от заданного расхода газа (табл. 11, 12).

Таблица 11. Характеристики редукторов для малых расходов газа (для сварки горелкой ГС-1 с наконечником 000,00,0)

Таблица 12. Характеристики редукторов для газопламенной обработки

Примечание. Цифра в обозначении типоразмера — наибольшая пропускная способность (м 3 /ч) при наибольшем рабочем давлении. Первая буква — назначение редуктора: Б — баллонный, С — сетевой, Р — рамповый, Ц — центральный (магистральный), У — универсальный высокого давления. Вторая буква — редуцируемый газ: К — кислород, А — ацетилен. П — пропан, В — воздух, М — метан. Третья буква — код числа ступеней редуцирования и способа задачи рабочего давления: О — одноступенчатый с пружинным заданием, З — одноступенчатый со специальным задатчиком, Н — одноступенчатый с заданием рабочего давления от специальных пневмокамер, Д — двухступенчатый.

Газы из баллона подаются к резаку по специальным рукавам(табл. 13.), на их пути после редуктора устанавливают предохранительные устройства для зашиты сварочных постов — постовые затворы (наиболее компактным и надежным из них является ЗСУ-1) и обратные клапаны (табл. 14). Последние используют при работе на газах — заменителях ацетилена АЗС-1, АЗС-3 и для горючих жидкостей ЛКО-1.

Обратные клапаны типа ЛЗС и жидкостные предохранительные затворы — защитные устройства гравитационного действия, они должны устанавливаться строго вертикально, а обратный клапан ЛКО присоединяться к рукоятке керосинореза.

Таблица 13. Рукава для газовой сварки и резки (ГОСТ 9356-75)

Пламегасители (табл. 14) устанавливаются на входных штуцерах рычагов, горелок, напыляющих устройств стационарных машин и установок для газопламенной обработки и служат препятствием для попадания обратного удара пламени в рукав, соединяющий огневую аппаратуру с предохранительным устройством (основным затвором или газовым коллектором газопотребляющего агрегата).

Таблица 14. Технические характеристики предохранительных устройств

3. Материалы и технология сварки сталей

Ниже перечислены основные параметры режима газовой сварки.

  1. Тепловая мощность сварочного пламени определяется расходом ацетилена, который проходит через горелку за один час и регулируется сменными наконечниками горелки; мощность можно подсчитать по формуле: QА= А s, где QА — расход ацетилена, л/ч; s — толщина металла, мм; А — эмпирический коэффициент: для углеродистых сталей А = 100…130, для меди А = 150…200, для алюминия А = 100…150. Мощность горелки при правом способе сварки выбирают из расчета 120…150 л/час ацетилена, а при левом —100…130 л/ч на 1 мм толщины свариваемого металла.
  2. Способ сварки — правый и левый. При правом способе сварку ведут слева направо, пламя направляют на сваренный участок шва, а присадочную проволоку перемещают вслед за горелкой. Этот способ обеспечивает лучшую защиту сварочной ванны от кислорода и азота воздуха, большую глубину провара, замедленное охлаждение металла шва; производительность выше на 20…25 %, а расход газа на 15…20 % меньше. При левом способе сварку ведут справа налево, пламя направляют на еще незаваренные кромки металла, а присадочную проволоку перемещают впереди пламени. При этом сварщик лучше видит свариваемый металл: предварительный подогрев кромок способствует хорошему перемешиванию сварочной ванны. Применяется для сварки тонколистовых и легкоплавких металлов.
  3. Вид пламени зависит от соотношения β = vO2 : vC2 H2. Для нормального пламени β = 1…1,3; для окислительного пламени β > 1,3; для науглероживающего пламени β < 1,1. Газосварщик устанавливает и регулирует вид пламени на глаз. Нормальным пламенем сваривают большинство сталей, окислительным пользуются при сварке латуни, науглероживающим сваривают чугун.
  4. Марка и диаметр присадочной проволоки. Марка проволоки должна соответствовать составу свариваемого металла; диаметр ее выбирают в зависимости от толщины свариваемого металла и способа сварки. При правом способе d = s/2, но не более 6 мм, при левом способе d = s/2 + 1, где s — толщина металла.
  5. Скорость нагрева регулируется сменой угла наклона мундштука к поверхности металла Чем толще металл и больше его теплопроводность, тем больше угол наклона.
  6. Манипулирование концом мундштука горелки — поперечное и продольное; основным является продольное, поперечное движение служит для прогрева кромок основного металла и получения шва необходимой ширины.
  7. Флюс применяется для защиты расплавленного металла от окисления и удаления из него оксидов и вводится различными способами: подсыпают совком, приготавливают пасты и наносят на кромки деталей и присадочную проволоку, вводят непосредственно в сварочное пламя через горелку в порошкообразном или газообразном виде. В качестве флюсов используют борную кислоту, оксиды и соли бария, калия, лития и др.

Газовой сваркой можно выполнять все виды сварных швов во всех пространственных положениях. Параметры подготовки кромок стыковых швов приведены в табл. 15. Технологические рекомендации относительно сварки сталей приведены в табл. 16.

Таблица 15. Подготовка кромок при сварке стыковых швов

Таблица 16. Технологические параметры сварки сталей

Аустенитные хромоникелевые стали сваривают быстро, без подогрева, околошовную зону защищают мокрым асбестом. Сразу после сварки необходимо охлаждение водой или сжатым воздухом.

Качество соединений удовлетворительное при толщине стали до 2 мм. Стали типа Х13 сваривают с местным подогревом до 200… 250 °С (тонкий лист — левым способом, более толстый — только правым).

Примечания. 1. Высокоуглеродистые стали сваривают нормальным или слабонауглероживающим пламенем, остальные стали — нормальным пламенем. 2. Диаметр проволоки при сварке сталей толщиной до 15 мм равен половине толщины стали для правого способа и половине толщины плюс 1 мм — для левого. Сталь толщиной более 15 мм сваривают проволокой диаметром 6…8 мм.

4. Технология сварки чугуна и цветных металлов и сплавов

Несмотря на высокую трудоемкость, низкую производительность и тяжелые условия труда, это весьма эффективный способ сварки чугуна вследствие «мягкого» введения тепловой мощности в основной металл. Области применения этого способа зависят от характера дефектов и требований к качеству наплавленного металла (табл. 17). Присадочным металлом служат чугунные прутки (см. табл. 15, 18) в сочетании с флюсами разных марок (табл. 19). Сварка выполняется нормальным пламенем с предварительным подогревом детали до температуры 650 о С на режиме, приведенном в табл. 20.

Таблица 17. Области применения различных способов сварки чугуна

Примечание. При пайко-сварке основной металл не доводится до расплавления.

Таблица 18. Марка и назначение чугунных прутков

Примечание. Размеры прутков всех марок, мм: диаметр 6…(8…16); длина 350…450.

Таблица 19. Составы флюсов для сварки и пайко-сварки чугуна, %

Примечание. Назначение флюсов: ФСЧ-1 — газовая сварка, ФСЧ-2 — пайко-сварка чугуном, ФПСН-1 — пайко-сварка бескремнистыми латунями, ФПСН-2 — пайко-сварка кремнистыми латунями и сплавом ЛОМНА, МАФ-1 — пайко-сварка чугуном и сплавами на медной основе, БМ-1 — газообразный флюс для газовой сварки.

Таблица 20. Технологические параметры горячей газовой сварки чугуна

Наконечник ацетиленовой горелки:
площадь дефекта, см 2 До 5 5…25 Свыше 25
номер наконечника 5 6 7 и 8
Присадочный пруток:
площадь дефекта, см 2 До 20 20…60 Свыше 60
диаметр прутка, мм 6…8 10…12 14…16
Пламя Нормальное
Температура предварительного подогрева, общего или частичного 650 о С

Сначала подогревают основной металл вокруг дефекта до светло-красного цвета, затем оплавляют поверхность разделки и ванным способом заполняют ее присадочным металлом, погружая его во флюс.

Охлаждение замедленное: отвести горелку на 50…100 мм, задержать 1…2 мин, потом закрыть деталь асбестом и горячим песком или загрузить ее в печь, нагретую до 650…750 °С и вместе с ней охладить.

При пайке-сварке процесс ведут нормальным пламенем на 4-м и 5-м номере наконечника горелки, не расплавляя основного металла. Присадочным материалом служат стандартные латунные прутки (см. табл. 6), а в качестве флюса применяют марки ФПСН-1, ФПСН-2, МАФ-1. При этом максимальная температура нагрева основного металла должна быть не более 850…950 °С, индикатором ее достижения является расплавление флюса. Кромки засыпают флюсом и облуживают участками, натирая прутком латуни. Затем в горячей зоне пламени расплавляют присадочный металл и заполняют разделку, а горячий металл проковывают.

Медь и ее сплавы сваривают, в основном, ацетилено-кислородным пламенем, газы-заменители используют только для сварки металлов малой толщины. Мощность пламени сварки увеличивают почти вдвое по сравнению с пламенем сварки стали, металлы большой толщины сваривают двумя или тремя горелками одновременно (две из них служат для подогрева) одним слоем с максимальной скоростью во избежание роста зерна и образования пор. Медь и бронзу сваривают нормальным пламенем, а латунь — окислительным для снижения растворения водорода в жидком металле и уменьшения интенсивности испарения цинка.

В качестве присадки используют медную проволоку с 0,2 % фосфора, иногда с 0,15…0,3 % кремния, выступающими в роли раскислителей. При сварке медных сплавов, в состав которых входят активные раскислители (А1, Si, Мn), можно использовать присадку того же состава. В качестве флюса применяют составы на основе буры и борной кислоты. Диаметр присадки выбирают в зависимости от толщины свариваемого металла:

Толщина, мм 1,5 1,5…2,5 2,5…4 4…8 8…15 15
Диаметр присадки, мм 1,5 2 3 4…5 6 8

Медь толщиной до 3 мм сваривают без разделки кромок с зазором до 1 мм. Если металлы большой толщины, то выполняют V-образную разделку с углом 60…70 о , притуплением 1,5 мм и зазором не более 1,5 мм. Пламя горелки направляют под прямым углом к свариваемым деталям, расстояние от ядра до поверхности не более 5…6 мм. Сварку ведут левым способом без остановок. После окончания для получения мелкозернистой пластичной структуры рекомендуется проковка. Изделие из латуни и бронзы рекомендуют после сварки подвергнуть отжигу при температурах 600…700 о С и 500…600 о С соответственно.

Никель и его сплавы сваривают, используя нормальное или слегка восстановительное пламя при расходе ацетилена 120…130 л/мин на 1 мм толщины.

В качестве присадки применяют никелевую проволоку, легированную 3 % марганца. Флюсом служит как чистая бура, так и многокомпонентный флюс (30 % буры, 50 % борной кислоты, 10 % NaCl, 10 % KCl). Сварку нихрома выполняют быстро, без перерывов, мощность пламени 50…70 л/ч на 1 мм толщины в сочетании с многокомпонентным флюсом, приведенным выше. После сварки для увеличения пластичности и вязкости сварного соединения рекомендуется проводить нормализацию при температуре 825…900 о С.

Свинец сваривают нормальным пламенем при расходе ацетилена 50… 100 л/ч. В качестве присадки используют круглые свинцовые прутки или «лапшу», нарезанную из листов длиной не более 400 мм. Диаметр присадки зависит от толщины свариваемого металла:

Толщина, мм 3 6 8 10…12
Диаметр присадки, мм 0,8…1,2 1,5…2 2,5…3 4…8

Металл толщиной до 4 мм сваривают без разделки и зазора, металл большей толщины разделывают под углом 60…90 о без зазора. В качестве флюса используют смесь стеарина с канифолью, им натирают кромки листов и поверхность присадочных прутков. При толщине листов более 2 мм сварку ведут несколькими слоями левым способом. В многопроходных швах первый шов выполняют без присадки.

Сварка алюминия и его сплавов выполняется после сложной предварительной подготовки (см. в § 4). Сварку ведут нормальным пламенем с расходом ацетилена 100 л/ч на 1 мм толщины металла. Номер наконечника и диаметр присадки выбирают в зависимости от толщины свариваемого металла:

Толщина, мм 1…1,5 2…4 4…6 7…9 10…12 14…16
Номер наконечника 1 2 3 4 5 6
Диаметр присадки, мм 1,5…2 2…3 3…4 4…4,5 4,5…5,5 5…5,5

Сварку чистого алюминия ведут проволокой марки Св-АВ00, сплавов AMг, АМц — проволокой АМГ3, АМГ5, литейных сплавов — проволокой марок СвАК3, СвАК5. В качестве флюса применяют марку АФ-4 а состоящего из хлористых и фтористых солей калия, натрия и лития. Сварку ведут левым способом, металл толщиной до 4 мм сваривают за один проход, более толстый — несколькими проходами с общим или местным предварительным подогревом до 250…300 о С. После сварки остатки флюса удаляют, промывая швы и околошовную зону теплой или слегка подкисленной водой (2 %-ным раствором хромовой кислоты). При заварке дефектов силуминового литья нужен предварительный подогрев до 300 о С и последующий отжиг изделия.

Виды сварочного пламени

Сварочное пламя образуется при сгорании горючего газа или паров горючей жидкости в кислороде. Пламя нагревает и расплавляет основной и присадочный металл в месте сварки. Наибольшее применение при газовой сварке нашло кислородно-ацетиленовое пламя, так как оно имеет высокую температуру (3150°С) и обеспечивает концентрированный нагрев. Однако в связи с дефицитностью ацетилена в настоящее время получили широкое распространение (особенно при резке металлов) газы-заменители ацетилена - пропан-бутан, метан, природный и городской газы.

От состава горючей смеси, т. е. от соотношения кислорода и горючего газа, зависят внешний вид, температура и влияние сварочного пламени на расплавленный металл. Изменяя состав горючей смеси, сварщик тем самым изменяет основные параметры сварочного пламени.

Для получения нормального пламени отношение кислорода к горючему газу должно быть для ацетилена - 1,1-1,2, природного газа - 1,5-1,6, пропана - 3,5.

Все горючие газы, содержащие углеводороды, образуют сварочное пламя, которое имеет три ярко различимые зоны:

Водородное пламя ярко различимых зон не имеет, что затрудняет его регулировку по внешнему виду.

При зажигании газовой струи, вытекающей из сопла, пламя перемещается по направлению движения струи газовой смеси. Скорость истечения для каждого газа подбирается такой, чтобы пламя не проникало внутрь сопла горелки и не отрывалось от него. Газ в струе должен прогреваться до температуры воспламенения, ацетилен воспламеняется при температуре 450-500°С, а газы-заменители - 550-650°С. Поэтому ядро пламени при сгорании газов-заменителей длиннее, чем при сгорании ацетилена.

а - окислительное, б - нормальное, в - науглероживающее; 1 - ядро, 2 - восстановительная зона, 3 - факел

Рисунок 1 - Виды сварочного пламени

Процесс сгорания ацетилена в кислороде можно условно разделить на две стадии. Сначала под влиянием нагрева происходит распад ацетилена на элементы: С2Н2=2С+Н2. Затем происходит первая стадия сгорания ацетилена за счет кислорода смеси по реакции 2С+Н2+O2=2СО+Н2. Вторая стадия горения протекает за счет кислорода воздуха: 2СО+Н2+1,5O2=2СO22O. Процесс горения горючего газа в кислороде экзотермичен, т.е. идет с выделением теплоты.

Ядро имеет резко очерченную форму (близкую к форме цилиндра), плавно закругляющуюся в конце, с ярко светящейся оболочкой. Оболочка состоит из раскаленных частиц углерода, которые сгорают в наружном слое оболочки. Размеры ядра зависят от состава горючей смеси, ее расхода и скорости истечения. Диаметр канала мундштука горелки определяет диаметр ядра пламени, а скорость истечения газовой смеси - его длину.

Площадь поперечного сечения канала мундштука горелки прямо пропорциональна толщине свариваемого металла. Сварочное пламя не должно быть слишком "мягким" или "жестким". Мягкое пламя склонно к обратным ударам и хлопкам, жесткое - способно выдувать расплавленный металл из сварочной ванны. При увеличении давления кислорода скорость истечения горючей смеси увеличивается и ядро сварочного пламени удлиняется, при уменьшении скорости истечения ядро укорачивается. С увеличением номера мундштука размеры ядра увеличиваются. Температура ядра достигает 1000°С.

Восстановительная (средняя) зона располагается за ядром и по своему более темному цвету заметно отличается от него. Длина ее зависит от номера мундштука и достигает 20 мм. Зона состоит из продуктов неполного сгорания ацетилена - оксид углерода и водорода. Она называется восстановительной, так как оксид углерода и водорода раскисляют расплавленный металл, отнимая кислород от его оксидов. Если в процессе сварки расплавленный металл сварочной ванны находится в средней зоне, то сварочный шов получается без пор газовых и шлаковых включений. Этой зоной пламени выполняю сварку и поэтому ее называют рабочей. Восстановительная зона имеет наиболее высокую температуру (3140°С) в точке, отстоящей на 3-6 мм от конца ядра.

Зона полного сгорания (факел) располагается за восстановительной зоной. Она состоит из углекислого газа, паров воды и газа, которые образуются в пламени при сгорании оксида углерода и водорода восстановительной зоны за счет кислорода окружающего воздуха. Температура этой зоны значительно ниже, чем температура восстановительной, и колеблется от 1200 до 2520°С.

В зависимости от соотношения между кислородом и ацетиленом получают три основных вида сварочного пламени: нормальное, окислительное и науглероживающее. Нормальное пламя теоретически получают тогда, когда в горелку на один объем кислорода подают несколько больше от 1,1 до 1,3 объема ацетилена.

Нормальное пламя характеризуется отсутствием свободного кислорода и углерода в его восстановительной зоне. Кислорода в горелку подается немного больше из-за небольшой его загрязненности и расхода на сгорание водорода. В нормальном пламени ярко выражены все три зоны.

Окислительное пламя получается при избытке кислорода, при подаче в горелку на один объем ацетилена более 1,3 объема кислорода. При этом ядро приобретает конусообразную форму, значительно сокращается по длине, становится с менее резкими очертаниями и приобретает более бледную окраску. Сокращаются по длине также восстановительная зона и факел. Все пламя приобретает синевато-фиолетовую окраску. Пламя горит с шумом, уровень которого зависит от давления кислорода. Температура окислительного пламени выше нормального, однако сваривать стали таким пламенем нельзя из-за наличия в пламени избытка кислорода. Избыток кислорода приводит к окислению металла шва, шов получается пористым и хрупким. Окислительное пламя можно применять при газовой сварке латуни и пайке твердыми припоями.

Науглероживающее пламя получается при избытке ацетилена, когда в горелку на один объем ацетилена подается 0,95 и менее объема кислорода. Ядро такого пламени теряет резкость своего очертания, на конце его появляется зеленый венчик, по которому судят об избытке ацетилена. Восстановительная зона значительно светлее и почти сливается с ядром, а факел приобретает желтоватую окраску. При большом избытке ацетилена пламя начинает коптить, так как в нем ощущается недостаток кислорода, необходимого для полного сгорания ацетилена. Находящийся в пламени избыточный углерод легко поглощается расплавленным металлом и ухудшает качество металла шва. Температура науглероживающего пламени ниже, чем нормального и окислительного. Уменьшая подачу ацетилена в горелку до полного исчезновения зеленого венчика на конце ядра, ацетиленовое пламя превращается в нормальное. Слегка науглероживающее пламя применяют для сварки чугуна и при наплавке твердыми сплавами.

Характер сварочного пламени сварщик определяет на глаз по форме и окраске пламени. При регулировании пламени необходимо обращать внимание на правильность подбора расхода горючего газа и кислорода.

Вытекающая из мундштука горючая смесь оказывает механическое воздействие на расплавленный металл сварочной ванны и формирует валик шва. Жидкий металл отжимается к краям ванны. Характер формообразования металла зависит от угла наклона мундштука горелки к поверхности свариваемого металла.

а - вертикальном, б - наклонном, в - схема перемещения жидкого металла в ванне

Рисунок 2 - Схема механического воздействия пламени на жидкий металл сварочный ванны при различных положениях мундштука

Давление газов оказывает влияние на жидкий металл, перемещая его к задней стенке сварочной ванны, образуя чешуйки шва. При большом давлении кислорода горючая смесь вытекает из мундштука с большой скоростью, пламя становится "жестким" и выдувает расплавленный металл из сварочной ванны, затрудняя тем самым сварку.

Качество наплавленного металла и прочность сварного шва зависят от состава пламени, поэтому во время газовой сварки сварщик должен следить за его характером, регулировать его состав в течение всего процесса сварки. Характер пламени подбирают в зависимости от свариваемого металла и его свойства. Для газовой сварки сталей требуется нормальное пламя, для сварки чугуна, наплавки твердых сплавов - науглероживающее, для сварки латуни - окислительное пламя.

Сварочное пламя

Сварочное пламя образуется в результате сгорания горючих газов или паров горючих жидкостей в смеси с техническим кислородом. При этом пламя имеет сложную структуру и строение, которое показано на рис.1. Качество газовой сварки во многом зависит от правильности регулировки пламени, которое сварщик выставляет «на глаз» по форме и цвету. Поэтому очень важно знать строение и структуру пламени газовой горелки, чтобы учитывать это в повседневной работе. Форму, цвет и структуру пламени горелки меняют соотношением ацетилена и кислорода, подаваемых в зону горения. В качестве примера рассмотрим ацетилено-кислородное пламя.

Ядро пламени имеет форму цилиндра с заостренным концом, вокруг которого расположена ярко светящаяся оболочка. Длина ядра пламени регулируется скоростью подачи газовой смеси и ее качественным составом. Диаметр ядра зависит от размеров мундштука и расхода горючей смеси.

Строение пламени меняется при изменении соотношения смеси и может быть: нормальным, науглероженным и окислительным (рис.2).

Нормальное пламя получается, когда на один объем горючего газа подается один объем кислорода. Если в качестве горючего газа принят ацетилен, то процесс его нормального сгорания можно записать в следующем виде: С 2 Н 22 = 2СО+ Н 2 .

Составляющие ацетилено-кислородного пламени:

Составляющие ацетилено-кислородного пламени:

Составляющие ацетилено-кислородного пламени:

Рис. 1. Составляющие ацетилено-кислородного пламени: 1 — ядро; 2 — восстановительная зона; 3 — факел пламени

Разновидности ацетилено-кислородного пламени и зависимость температуры от вида пламени: А — нормальное; Б — науглераживающее; В — окислительное

Рис. 2. Разновидности ацетилено-кислородного пламени и зависимость температуры от вида пламени : А — нормальное; Б — науглераживающее; В — окислительное

При этом продукты неполного сгорания догорают за счет кислорода, присутствующего в атмосферном воздухе, по следующей реакции: 2СО +Н2 + 1,5О2 = 2С02 + Н2О. Так как абсолютно чистых веществ в природе не бывает и кислород содержит в себе некоторое количество примесей, то нормальное пламя получается при некотором его повышенном значении, то есть при соотношении ацетилена и кислорода, равном 1,1 -1,2. Ядро нормального пламени светлое со слегка затемненной восстановительной зоной и факелом. По форме ядро пламени напоминает цилиндр с четкими очертаниями и закругленным концом. Диаметр цилиндра зависит от размера мундштука сварочной горелки, а длина - определяется скоростью истечения газовой смеси. Вокруг ядра пламени размещается светлая оболочка, в которой происходит сгорание раскаленных частиц углерода. При высокой скорости подачи газа пламя способствует сгоранию металла и выдуванию его из сварочной ванны. Малая скорость подачи газов чревата обратными ударами и хлопками.

Восстановительная зона пламени имеет более темный цвет и располагается в пространстве в пределах 20 мм от конца ядра. Температура пламени в этой зоне может достигать 3150°С (при сгорании ацетилена). Размер восстановительной зоны зависит от номера сварочного мундштука. При помощи этой зоны пламени нагревают метал, плавят его и ведут сварку. Остальная часть пламени, расположенная за восстановительной зоной, состоящая из углекислого газа, паров воды и азота, имеет значительно меньшую температуру.

Науглероженное пламя получается, когда соотношение ацетилена и кислорода превышает указанное соотношение, то есть становится больше значения 1,1. Теоретически науглероженное пламя получается, когда в горелку подается 0,95 объема кислорода и менее. В этом случае ядро пламени увеличивается в объеме и теряет свои очертания. Недостаток кислорода в таком пламени приводит к неполному его сгоранию, и оно начинает коптить. Избыток ацетилена в науглероженном пламени приводит к его разложению на углерод и водород. Углерод из пламени переходит в металл, науглераживая его. Обычно науглероженное пламя применяют для сварки высокоуглеродистых сталей, чугуна, цветных металлов и при наплавке твердых сплавов.

Восстановительная зона науглероженного пламени светлая и практически сливается с ядром. Температура такого пламени ниже, поэтому работать с ним более тяжело. Для перевода пламени в нормальное состояние увеличивают подачу кислорода или снижают подачу ацетилена.

Окислительное пламя получается при недостатке ацетилена, то есть соотношение ацетилен: кислород становится меньше 1,1. Практически окислительное пламя получается при объеме кислорода, превышающем в 1,3 объем ацетилена. Ядро такого пламени укорачивается и заостряется, а его края становятся расплывчатыми, цвет бледнеет. Температура такого пламени выше температуры нормального. Избыточный кислород окисляет железо и примеси, находящиеся в стали, что в конечном итоге приводит к хрупкости сварочного шва, пористости его структуры, обедненной марганцем и кремнием. Поэтому при сварке сталей окислительным пламенем пользуются присадочной проволокой с повышенным содержанием этих элементов, являющихся раскислителями. Самая высокая температура нормального пламени достигается в восстановительной зоне. Окислительное пламя можно применять при сварке латуни и пайке твердым припоем.

Примерный химический состав нормального ацетилено-кислородного пламени приведен в таблице 1. Нужно отметить, что ацетилено-кислородная смесь дает самую высокую температуру пламени. Изменение горючих газов несколько снижает температуру пламени и распределение ее по объему. Графическая зависимость изменения температур метан-кислородного и пропан-бутан-кислородного пламени представлена на рис.3.

Таблица 1. Химический состав нормального ацетилено-кислородного пламени

Часть пламени

Содержание по объему %

7.1. Сварочное пламя

При газовой сварке происходят разнообразные процессы: физические, связанные с нагревом и расплавлением металла, формированием шва, а также химические, обусловленные горением, взаимодействием флюса и присадочного материала с расплавленным металлом.

Основным инструментом газосварщика является сварочное пламя. Оно образуется при сгорании горючего газа в кислороде. От соотношения объемов кислорода и горючего газа в их смеси зависят внешний вид, температура и характер влияния сварочного пламени на расплавленный металл.

Рассмотрим строение пламени (рис. 7.1). Сварочное пламя имеет три четко различимые области: ядро 7, восстановительную зону 2 и факел 3.


Рис. 7.1. Строение ацетиленового сварочного пламени и распределение температуры по длине факела: 1 — ядро; 2 — восстановительная зона; 3 — факел

Ядро пламени представляет собой ярко светящуюся зону, в наружном слое которой сгорают раскаленные частицы углерода, образующиеся при разложении ацетилена.

Восстановительная зона, более темная, состоит из оксида углерода и водорода, которые раскисляют расплавленный металл, отбирая кислород от его оксидов.

Факел — периферийная часть пламени — представляет собой зону полного сгорания углеводородов в кислороде окружающей среды.

В зависимости от соотношения объемов кислорода и ацетилена получают три основных вида сварочного пламени: нормальное, окислительное и науглероживающее (рис. 7.2).


Рис. 7.2. Виды сварочного пламени: а — нормальное; б — окислительное; в — науглероживающее; 1 — ядро; 2 — восстановительная зона; 3 — факел

Нормальное сварочное пламя образуется тогда, когда в горелке на один объем кислорода приходится один объем ацетилена. В нормальном пламени ярко выражены все три зоны.

Ядро имеет резко очерченную форму, близкую к цилиндру с ярко светящейся оболочкой. Температура ядра достигает 1000 °С.

В восстановительной зоне, содержащей продукты неполного сгорания ацетилена, проводят сварку. Температура этой зоны в точке, отстоящей на 3. 6 мм от ядра, составляет 3150°С. Факел имеет температуру 1200. 2500 °С.

Нормальным сварочным пламенем осуществляют сварку сталей всех марок, меди, бронзы и алюминия.

Окислительное сварочное пламя получают при избытке кислорода, когда в горелку подают на один объем ацетилена более 1,3 объема кислорода. Ядро такого пламени имеет укороченную, конусообразную форму. Оно приобретает менее резкие очертания и более бледную окраску, чем у нормального пламени. Протяженность восстановительной зоны уменьшается по сравнению с нормальным пламенем. Факел имеет синевато-фиолетовую окраску. Горение сопровождается шумом, уровень которого зависит от давления кислорода. Температура окислительного пламени выше, чем у нормального, однако при сварке таким пламенем из-за избытка кислорода образуются пористые и хрупкие швы.

Окислительное пламя применяют при сварке латуни и пайке твердыми припоями.

Науглероживающее сварочное пламя получают при избытке ацетилена, когда в горелке на один объем ацетилена приходится не более 0,95 объема кислорода. Ядро такого пламени теряет резкость очертаний, на его конце появляется зеленый венчик, по наличию которого судят об избытке ацетилена. Восстановительная зона существенно светлее, чем у нормального пламени, и почти сливается с ядром. Факел приобретает желтую окраску. При значительном избытке ацетилена пламя коптит. Температура науглероживающего пламени ниже, чем у нормального и окислительного.

Слегка науглероживающим пламенем сваривают чугун и осуществляют наплавку твердых сплавов.

Газосварщик регулирует и устанавливает вид сварочного пламени «на глаз».

При выполнении сварочных работ необходимо, чтобы сварочное пламя обладало тепловой мощностью, достаточной для расплавления свариваемого металла.

Мощность пламени при газовой сварке зависит от расхода ацетилена — объема газа, проходящего за один час через горелку. Мощность регулируют подбором наконечника горелки и изменением положения ацетиленового вентиля. Мощность пламени выбирают в соответствии с толщиной свариваемого металла и его теплофизическими свойствами.

Расход ацетилена, дм 3 /ч, необходимый для расплавления слоя свариваемого металла толщиной 1 мм, устанавливают на практике. Так, слой низкоуглеродистой стали толщиной 1 мм расплавляется при расходе ацетилена 100. 130 дм 3 /ч. Чтобы определить расход ацетилена при сварке конкретной детали, нужно умножить расход, соответствующий единичной толщине, на действительную толщину свариваемого металла, мм.

Пример. При сварке низкоуглеродистой стали толщиной 3 мм минимальный расход ацетилена, дм 3 /ч, составит 100х3 = 300, а максимальный — 130х3 = 390.

Читайте также: