Шунт для сварочного аппарата

Обновлено: 10.01.2025

В электронике и электротехнике часто можно услышать слово “шунт”, “шунтирование”, “прошунтировать”. Слово “шунт” к нам пришло с буржуйского языка: shunt – в дословном переводе “ответвление”, “перевод на запасной путь”. Следовательно, шунт в электронике – это что-то такое, что “примыкает” к электрической цепи и “переводит” электрический ток по другому направлению. Ну вот, уже легче).
По сути дела шунт представляет из себя простой резист ор который имеет маленькое сопротивление, проще говоря, низкоомный резистор. И как бы это ни странно звучало: шунт является простейшим преобразователем силы тока в напряжение. Но как это возможно? Да оказывается все просто!

Разновидности

Точность измерений рассматриваемого устройства будет зависеть от принципа воздействия и разновидности приспособления. Согласно распространенной классификации все амперметры можно разделить на такие виды:

  • Магнитоэлектрические.
  • Электромагнитные.
  • Электродинамические.
  • Термоэлектрические.
  • Цифровые.
  • Ферродинамические.

Есть и иные аппараты специализированного назначения, чтобы измерять силу тока. Их применяют в узкопрофильных сферах, они не распространены настолько, как указанные выше.

Электромагнитный

Приспособления с электромагнитным принципом функционирования не оснащаются двигающейся катушкой, в отличие от магнитоэлектрических разновидностей приборов. Конструкция рассматриваемых устройств намного проще. В корпусе располагается спецустройство и 1 либо более сердечников, установленных на оси.

Рассматриваемый тип амперметра обладает меньшей восприимчивостью в сравнении с магнитоэлектрическим устройством, потому точность замеров аппарата будет значительно ниже. Достоинствами подобных приспособлений станет универсальность функционирования. Это значит, что они способны измерить силу тока в цепи постоянного и переменного токов. Это в значительной мере расширит сферу использования подобного устройства.



Электромагнитный амперметр

Магнитоэлектрический

Принцип воздействия подобной разновидности устройств основан на взаимодействии магнитного поля и двигающейся катушки, которая находится в конструкции приспособления.

Преимуществами рассматриваемого изделия станет невысокое энергопотребление при работе, повышенная восприимчивость и точность замеров. Каждый магнитоэлектрический прибор оснащается равномерным градуированием измерительной шкалы. Подобное даст возможность производить высокоточные замеры.

Важно! К минусам рассматриваемого приспособления относят сложность внутреннего устройства, присутствие двигающейся катушки. Подобное изделие не считается универсальным, поскольку оно подойдет лишь для постоянного тока.

Невзирая на минусы амперметра, такая разновидность аппарата широко распространена в разных промышленных сферах, в лабораториях.

Термоэлектрический

Такая разновидность приспособлений для замера силы тока используется для электроцепей с высокочастотным током. В конструкции устройств есть магнитоэлектрический механизм, состоящий из проводов с припаянной термопарой. Во время прохождения тока подогреваются жилы проводки. Чем больше сила, тем выше поднимаются температурные показатели. По таким параметрам спецмеханизм будет проводить перевод нагрева в показатели тока.

Электродинамический

Принцип функционирования рассматриваемых приспособлений основан на взаимодействии электрополей токов, проходящих по магнитным катушкам. Устройство амперметра включает в себя подвижную и неподвижную катушки. Универсальное функционирование на каждом виде тока станет главным преимуществом рассматриваемых видов амперметра.

Из минусов следует отметить большую восприимчивость, поскольку приспособления будут реагировать даже на наименьшие магнитные поля, которые расположены в непосредственной близости. Такие поля могут создать для рассматриваемого амперметра значительные помехи, потому подобные устройства используются лишь в защищенных экраном местах.

Ферродинамический

Подобные приспособления отличаются самой большой эффективностью и точностью замеров. Электромагнитные поля, которые расположены в непосредственной близости с амперметром, не будут оказывать на прибор существенного воздействия, потому отсутствует необходимость в монтаже вспомогательных экранов для защиты.

Устройство подобного изделия включает в себя замкнутую ферримагнитную проводку, сердечник и неподвижную катушку. Подобная конструкция дает возможность улучшить надежность функционирования приспособления. Потому ферродинамические разновидности амперметров зачастую используют в военных сферах и оборонных предприятиях. К основным достоинствам аппарата также относят комфорт и простоту использования, точность замеров по отношению к ранее рассмотренным разновидностям приборов.

Вам это будет интересно Особенности конвектора для обогрева

Цифровой

Наиболее современная и комфортная разновидность устройств для замеров силы тока. В них отсутствуют стрелки, которые регулярно колеблются. Подобные приспособления оснащены монитором, где будут выведены показатели, которые отображают силу тока в амперах. В то же время они будут давать достаточно точные сведения. К важным достоинствам цифровых устройств относят их невосприимчивость к вибрации и встряске.

Ввиду этого возможно провести замеры силы тока в автопроводке на ходу, не останавливаясь. Большинство цифровых устройств оснащаются водозащитным и антиударным корпусом, что сделает их более стойкими для применения в трудных условиях. Так как в приспособлении отсутствует стрелка, то его возможно разместить по горизонтали, по вертикали либо под наклоном. Направление устройств во время снятия замеров никоим образом не воздействует на получаемые данные.

Важно! Цифровым приспособлениям не страшны небольшие механические удары, которые возможны от функционирующего вблизи оборудования. Нахождение в вертикальной либо горизонтальной плоскости устройства не оказывает воздействия на его функциональность, как и изменения температурных показателей и давления. Потому подобное устройство также используют снаружи.

Как работает шунт

Итак, имеем простой шунт. Кстати, на схемах он обозначается как резистор. И это неудивительно, потому что это и есть низкоомный резистор.

Условимся считать, что ток у нас постоянный и течет из пункта А в пункт Б. На своем пути он встречает шунт и почти беспрепятственно течет через него, так как сопротивление шунта очень маленькое. Не забываем, что электрический ток характеризуется такими параметрами, как Сила тока и Напряжение. Через шунт электрический ток протекает с какой-то силой ( I ), в зависимости от нагрузки цепи.

Помните Закон Ома для участка электрической цепи? Вот, собственно и он:

Сопротивление шунта у нас всегда постоянно и не меняется, попросту говоря “константа”. Падение напряжение на шунте мы можем узнать, замерив вольтметром как на рисунке:

Значит, исходя из формулы

и делаем простой до ужаса вывод: показания на вольтметре будут тем больше, чем бОльшая сила тока будет протекать через шунт.

Так что же это значит? А это значит, что мы спокойно можем рассчитать силу тока, протекающую по проводу АБ ;-). Все гениальное – просто! И самое замечательное знаете что? Нам даже не надо использовать амперметр ;-).

Вот такой принцип действия шунта. И чаще всего этот принцип используется как раз для того, чтобы расширить пределы измерения измерительных приборов.

Виды шунтов

Промышленные амперметры выглядят вот так:

На самом же деле, как бы это странно ни звучало – это вольтметры. Просто их шкала нарисована (проградуирована) уже с расчетом по закону Ома. Короче говоря, показывает напряжение, а счет идет в Амперах ;-).

На одном из них можно увидеть предел измерения даже до 100 Ампер. Как вы думаете, если поставить такой прибор в разрыв электрической цепи и пропустить силу тока, ну скажем, Ампер в 90, выдержит ли тоненький провод измерительной катушки внутри амперметра? Думаю, пойдет белый густой дым). Поэтому такие измерения проводят только через шунты.

А вот, собственно, и промышленные шунты:

Те, которые справа внизу могут пропускать через себя силу тока до килоАмпера и больше.

К каждому промышленному амперметру в комплекте идет свой шунт. Для начала использования амперметра достаточно собрать шунт с амперметром вот по такой схеме:

В некоторых амперметрах этот шунт встраивается прямо в корпус самого прибора.

Работа шунта на практическом примере

В гостях у нас самый что ни на есть обыкновенный промышленный шунт для амперметра:

Сзади можно прочитать его маркировку:

Как же прочитать характеристику такой маркировки? Здесь все просто! Это означает, что если протекающая сила тока через шунт будет 20 Ампер, то падение напряжения на шунте будет 75 милливольт.

0,5 – это класс точности. То есть сколько мы замерили – это значение будет с погрешностью 0.5% от измеряемой величины. То есть допустим, мы замеряли падение напряжения 50 милливольт. Погрешность измерения составит 50 плюс-минус 0,25. Такой точности вполне хватит для промышленных и радиоэлектронных нужд ;-).

Итак, у нас имеется простая автомобильная лампочка накаливания на 12 Вольт:

Выставляем на Блоке питания напряжение в 12 Вольт, и цепляем нашу лампочку. Лампочка зажигается и мы сразу же видим, какую силу тока она потребляет, благодаря встроенному амперметру в блоке питания. Кушает наша лампа 1,7 Ампер.

Предположим, у нас нету встроенного амперметра в блоке питания, но нам надо знать, какая все-таки сила тока проходит через лампочку. Для этого собираем простенькую схемку:

И замеряем падение напряжения на самом шунте. Получилось 6,3 милливольта.

Так как мы знаем, что при 20 Амперах напряжение на шунте будет 75 милливольт, то какая сила тока будет проходить через шунт, если падение напряжения на нем составит 6,3 милливольта? Вспоминаем училку по математике Марьиванну и решаем простенькую пропорцию за 5-ый класс

Вспоминаем, что показывал наш блок питания?

Погрешность в 0,02 Ампера! Думаю, это можно списать на погрешность приборов).

Так как радиолюбители в основном используют малое напряжение и силу тока в своих электронных безделушках, то можно применить этот принцип и в своих разработках. Для этого достаточно будет взять низкоомный резистор и использовать его как датчик силы тока). Как говорится ” голь на выдумку хитра”

Характеристики приборов

Конструкция амперметра достаточно проста: стрелка с катушкой, находящейся в поле постоянного магнита. Принцип функционирования рассматриваемого устройства крайне прост: во время его включения по катушке будет течь электроток. Под воздействием силы Ампера катушка будет поворачиваться до того момента, пока упругость возвратных пружин не совпадет с силой Ампера.

Вам это будет интересно Список всех инструментов для электромонтажных работ

Нормальное функционирование вольтметра возможно при температурных показателях воздуха не более 25 — 30 градусов с влажностью до 80% и атмосферным давлением 650 — 800 мм ртутного столба. Частота питающей электросети составляет 50 Гц и имеет показатели напряжения 220В (частота не более 400 Гц). На показатели замеров значительное воздействие окажет форма кривой переменного напряжения электросети.

Возможности приспособления оценивают посредством таких параметров и величин:

Как сделать шунт для амперметра к сварочному аппарату.

Подберите подходящую измерительную головку, лучше, если она будет с током полного отклонения стрелки 50 или 100 микроампер. Я нашел у себя на 50микроампер, на примере ее и будем рассчитывать нужный нам шунт для амперметра.

golovka

Выберем предел измерения тока нашим амперметром, ну пусть будет, например 300 ампер. Для самодельных сварочных самый раз.Теперь мультиметром измеряем активное сопротивление головки. У моей головки оно равно 1454 ома. Теперь мы знаем два параметра измерительной головки. Ток полного отклонения и сопротивление. Из формулы закона Ома — I=U/R, выводим формулу для определения напряжения — U=IxR. Открываем виндовский калькулятор. Умножаем значение тока в амперах 0,00005А на сопротивление в омах 1454 ома, получаем величину напряжения, которое необходимо приложить к измерительной головке, чтобы стрелка отклонилась на последнее деление шкалы. У меня получилось U=0,0727В или 72,7 милливольт. Опять идем к Ому. Выводим формулу для сопротивления: R=U/I . Теперь определяем сопротивление шунта. Делим 0, 0727вольт на сварочный ток 300 ампер. Получаем R шунта = 0,0002423 ома.Открываем программу для работы с проволокой. Скриншот на фото.

skrinshot1

Выбираем материал, из которого изготовим шунт. Справа в выпадающем окне выбираем сталь. Самый распространенный материал. Для простоты изготовления пусть шунт будет круглого сечения. В используемой величине ставим точку в окошечке «Диаметр». Вводим величину сопротивление шунта — 0,0002423 ома. Выбираем диаметр нашего шунта, для прочности выбирает пруток диаметром 10 миллиметров. Нажимаем на «Результат». Результат вы видите на фото. Теперь сделать сам шунт не сложнее, чем два пальца об асфальт. Берем стальной пруток соответствующего диаметра, нарезаем резьбу на всю длину для лучшего охлаждения шунта, отмеряем 150мм, отрезаем, получаем шпильку М10 на 150мм. Так как мы нарезали резьбу, то мы изменили диаметр шунта, поэтому его длина для данного сопротивления будет меньше расчетной, при регулировке все определится. Берем четыре гайки на десять, лучше медные или латунные, два наконечника для проводов большого сечения 1 и два лепестка 2, для проводов идущих к измерительной головке. У вас должна получиться примерно вот такая конструкция, только с медными гайками.

Общий вид шунта

Меняя расстояние между лепестками, можно достаточно просто откалибровать амперметр. Лишнюю сталь потом можно отрезать.
Далее открываем программу FrontDesigner_3.0.

frontdes2

Зарядное для авто

Программа имеет русский интерфейс, поэтому я думаю, вы спокойно разберетесь, что к чему. В результате у вас должно получиться примерно вот такой рисунок. Печатайте новую шкалу на бумагу для фотографий. В заключении хочу показать мое зарядное для автомобильных аккумуляторов. Правда за восемь лет оно уже по истаскалось. Здесь шкала и передняя панель, как раз начерчены с помощью этой программы. Печать велась на струйном принтере. Фотография передней панели, после приклейки, обязательно покрывалась автомобильным бесцветным лаком. Первый слой должен быть очень тонким, иначе могут расплыться чернила. Клеить все это дело можно с помощью ПВА. Надеюсь вам это пригодится. До свидания К.В.Ю.

Шунт для сварочного аппарата

Что такое шунт

В электронике и электротехнике часто можно услышать слово «шунт», «шунтирование», «прошунтировать». Слово «шунт» к нам пришло с буржуйского языка: shunt — в дословном переводе «ответвление», «перевод на запасной путь». Следовательно, шунт в электронике — это что-то такое, что «примыкает» к электрической цепи и «переводит» электрический ток по другому направлению. Ну вот, уже легче).

По сути дела шунт представляет из себя простой резист ор который имеет маленькое сопротивление, проще говоря, низкоомный резистор. И как бы это ни странно звучало: шунт является простейшим преобразователем силы тока в напряжение. Но как это возможно? Да оказывается все просто!

Условимся считать, что ток у нас постоянный и течет из пункта А в пункт Б. На своем пути он встречает шунт и почти беспрепятственно течет через него, так как сопротивление шунта очень маленькое. Не забываем, что электрический ток характеризуется такими параметрами, как Сила тока и Напряжение. Через шунт электрический ток протекает с какой-то силой ( I ), в зависимости от нагрузки цепи.

Сопротивление шунта у нас всегда постоянно и не меняется, попросту говоря «константа». Падение напряжение на шунте мы можем узнать, замерив вольтметром как на рисунке:

Шунт

Шунт

и делаем простой до ужаса вывод: показания на вольтметре будут тем больше, чем бОльшая сила тока будет протекать через шунт.

Так что же это значит? А это значит, что мы спокойно можем рассчитать силу тока, протекающую по проводу АБ ;-). Все гениальное — просто! И самое замечательное знаете что? Нам даже не надо использовать амперметр ;-).

промышленный амперметр
амперметр

На самом же деле, как бы это странно ни звучало — это вольтметры. Просто их шкала нарисована (проградуирована) уже с расчетом по закону Ома. Короче говоря, показывает напряжение, а счет идет в Амперах ;-).

промышленный шунт

Шунт

Работа шунта на практическом примере

шунт 75шсм3

шунт маркировка

Как же прочитать характеристику такой маркировки? Здесь все просто! Это означает, что если протекающая сила тока через шунт будет 20 Ампер, то падение напряжения на шунте будет 75 милливольт.

0,5 — это класс точности. То есть сколько мы замерили — это значение будет с погрешностью 0.5% от измеряемой величины. То есть допустим, мы замеряли падение напряжения 50 милливольт. Погрешность измерения составит 50 плюс-минус 0,25. Такой точности вполне хватит для промышленных и радиоэлектронных нужд ;-).

Шунт

схема подключения шунт

Шунт

падение напряжения на шунте

Так как мы знаем, что при 20 Амперах напряжение на шунте будет 75 милливольт, то какая сила тока будет проходить через шунт, если падение напряжения на нем составит 6,3 милливольта? Вспоминаем училку по математике Марьиванну и решаем простенькую пропорцию за 5-ый класс ;-)

Шунт

Так как радиолюбители в основном используют малое напряжение и силу тока в своих электронных безделушках, то можно применить этот принцип и в своих разработках. Для этого достаточно будет взять низкоомный резистор и использовать его как датчик силы тока). Как говорится » голь на выдумку хитра» ;-)

Что такое шунт в электронике и видео про это:

Где купить шунт

Изготовление шунта амперметра для зарядного устройства


Всем добрый вечер! Хочу поделится методикой изготовления шунта для амперметра в зарядное устройство. Не давно у знакомого в зарядном устройстве перегорел шунт и соответственно сгорел и сам амперметр.
И так, нашол вот такой прибор со шкалой от 0 до 50А.


Обмотка измерительной головки и контакты не рассчитана на ток в 50А, для применения в нашем ЗУ надо изготовить шунт.
Шунт — устройство, которое позволяет электрическому току протекать в обход какого либо участка электрической схемы. В нашем случае через шунт проходит основной зарядный ток, а через амперметр малая часть, пропорциональная основной величине тока.
Для шунта берем обычную канцелярскую скрепку.


На упаковке со скрепками было написано "Скрепки никелированные", фото не сделал самой упаковки. Разгибаем ее, чтоб из нее получился прямой кусочек проволоки…
Далее сгибаем кончики проволоки под гайки прибора и прикручиваем их вместе с проводами к амперметру.
Для калибровки амперметра нам понадобится регулируемый блок питания от 0 до 20 В с током в 5А, но можно обойтись обычным автомобильным аккумулятором (напишу далее), проволочный 100 Вт резистор ПЭВ-100,



мультиметр и соединительные провода. Все соединяем проводами между собой последовательно и подключаем к блоку питания.


Выставляем ток в 1А и смотрим на наш амперметр. Он показывает около 1,5 А. Нам надо 1 А.


Уменьшаем длинну шунта, чтоб стрелка амперметра стала показывать 1А.(По шкале амперметра это будет 10А). Далее вместо резистора подключаем лампочку с фары на ближний свет. Проверяем как работает амперметр на больших токах.



После, когда длинна шунта уже нам известна, завернутые под гайку кончики необходимо залудить оловом.
После разбираем наш прибор и белым корректором зарисовываем на шкале нули, собираем прибор. Шкала прибора получилась от 0 до 5А вместо 0-50А.
Если нету под рукой блока питания с регулировкой и проволочного 100 Вт резистора, вместо блока питания можно использовать автомобильный аккумулятор, а вместо резистора лампочку с габаритов задней фары на 15Вт. При подключении к аккумулятору, ток в цепи будет равен около 1 А, что достаточно для начальной калибровки амперметра. Потом так же можна подключить лампочку с передней фары в режиме ближнего света, для проверки амперметра под большим током.
Делаем контрольную поверку мультиметром и прибор можно устанавливать в зарядное.
Вот я поделился наглядной методикой изготовления шунта для амперметра в зарядное устройство…
Задавайте вопросы если что то не понятно…
Удачи всем на дорогах!

Ремонт и доработки сварочных инверторов своими руками

Характеристики большинства бюджетных инверторов нельзя назвать выдающимися, в то же время мало кто откажется от удовольствия использовать оборудование со значительным запасом надёжности. Между тем существует немало способов усовершенствовать недорогой сварочный инвертор.

Ремонт и доработки сварочных инверторов своими руками

Типовая схема и принцип работы инвертора

Чем дороже сварочный инвертор, тем больше в его схеме вспомогательных узлов, задействованных в реализации специальных функций. А вот сама схема силового преобразователя остаётся практически неизменной даже у дорогостоящего оборудования. Этапы превращения сетевого электрического тока в сварочный достаточно легко проследить — на каждом из основных узлов схемы происходит определённая часть общего процесса.

С сетевого кабеля через защитный выключатель напряжение подаётся на выпрямительный диодный мост, сопряжённый с фильтрами высокой ёмкости. На схеме этот участок легко заметить, здесь расположены внушительные по размеру «банки» электролитических конденсаторов. У выпрямителя задача одна — «развернуть» отрицательную часть синусоиды симметрично вверх, конденсаторы же сглаживают пульсации, приводя направление тока практически к чистой «постоянке».

Функциональная схема сварочного инвертора

Схема работы сварочного инвертора

Далее по схеме находится непосредственно инвертор. Эта часть также легко поддаётся идентификации, здесь располагается крупнейший алюминиевый радиатор. Инвертор строится на нескольких высокочастотных полевых транзисторах или IGBT-транзисторах. Довольно часто несколько силовых элементов объединены в общем корпусе. Инвертор снова преобразует постоянный ток в переменный, но при этом частота его существенно выше — порядка 50 кГц. Такая цепочка преобразований позволяет использовать высокочастотный трансформатор, который в разы меньше и легче обычного.

С понижающего трансформатора напряжение снимает выходной выпрямитель, ведь мы хотим сварку именно на постоянном токе. Благодаря выходному фильтру природа тока меняется с высокочастотного пульсирующего до практически прямой линии. Естественно, в рассмотренной цепи преобразований есть множество промежуточных звеньев: датчиков, управляющих и контрольных цепей, но их рассмотрение выходит далеко за рамки любительской радиоэлектроники.

Конструкция сварочного инвертора

Конструкция сварочного инвертора: 1 — конденсаторы фильтра; 2 — выпрямитель (диодная сборка); 3 — IGBT-транзисторы; 4 — вентилятор; 5 — понижающий трансформатор; 6 — плата управления; 7 — радиаторы; 8 — дроссель

Узлы, пригодные к модернизации

Важнейший параметр любого сварочного аппарата — вольт-амперная характеристика (ВАХ), за счёт неё и обеспечивается стабильное горение дуги при разной её длине. Правильная ВАХ создаётся микропроцессорным управлением: маленький «мозг» инвертора на ходу меняет режим работы силовых ключей и мгновенно подстраивает параметры сварочного тока. К сожалению, каким либо образом перепрограммировать бюджетный инвертор нельзя — управляющие микросхемы в нём аналоговые, а замена на цифровую электронику требует незаурядных знаний схемотехники.

Однако «умений» управляющей схемы вполне достаточно, чтобы нивелировать «криворукость» начинающего сварщика, ещё не научившегося стабильно удерживать дугу. Гораздо правильнее сосредоточиться на устранении некоторых «детских» болезней, первая из которых — сильный перегрев электронных компонентов, ведущий к деградации и разрушению силовых ключей.

Модернизация сварочного инвертора

Вторая проблема — использование радиоэлементов сомнительной надёжности. Устранение этого недостатка сильно снижает вероятность возникновения поломок через 2–3 года эксплуатации аппарата. Наконец, даже начинающему радиотехнику будет вполне по силам реализовать индикацию фактического сварочного тока для возможности работы со специальными марками электродов, а также провести ряд других мелких доработок.

Улучшение теплоотвода

Первый недостаток, которым грешит подавляющее большинство недорогих инверторных аппаратов — плохая схема отвода тепла с силовых ключей и выпрямительных диодов. Начинать доработку в этом направлении лучше с увеличения интенсивности принудительного обдува. Как правило, в сварочных аппаратах устанавливают корпусные вентиляторы с питанием от служебных цепей напряжением 12 В. В «компактных» моделях принудительное воздушное охлаждение может вовсе отсутствовать, что для электротехники такого класса, безусловно, нонсенс.

Достаточно просто увеличить воздушный поток путём установки нескольких таких вентиляторов последовательно. Проблема в том, что «родной» кулер скорее всего придётся снять. Чтобы эффективно работать в последовательной сборке, вентиляторы должны иметь идентичную форму и число лопастей, а также скорость вращения. Собрать одинаковые кулеры в «стопку» крайне просто, достаточно стянуть их парой длинных болтов по диаметрально противоположным угловым отверстиям. Также не стоит беспокоиться о мощности источника служебного питания, как правило её достаточно для установки 3–4 вентиляторов.

Улучшение охлаждения сварочного инвертора

Если внутри корпуса инвертора недостаточно места для установки вентиляторов, можно приладить снаружи один высокопроизводительный «канальник». Его установка проще по той причине, что не требуется подключение к внутренним цепям, питание снимается с клемм кнопки включения. Вентилятор, разумеется, должен устанавливаться напротив вентиляционных жалюзеек, часть которых можно вырезать, чтобы снизить аэродинамическое сопротивление. Оптимальное направление потока воздуха — на вытяжку из корпуса.

Второй способ улучшить теплоотвод — замена штатных алюминиевых радиаторов на более производительные. Новый радиатор нужно выбирать с наибольшим количеством как можно более тонких рёбер, то есть с наибольшей площадью контакта с воздухом. Оптимально в этих целях использовать радиаторы охлаждения компьютерных ЦП. Процесс замены радиаторов довольно прост, достаточно соблюдать несколько простых правил:

  1. Если штатный радиатор изолирован от фланцев радиоэлементов слюдой или резиновыми прокладками, их нужно сохранить при замене.
  2. Для улучшения теплового контакта нужно использовать кремнийорганическую термопасту.
  3. Если радиатор нужно подрезать, чтобы он поместился в корпус, обрезанные рёбра нужно тщательно обработать надфилем, чтобы снять все заусенцы, иначе на них будет обильно оседать пыль.
  4. Радиатор должен быть плотно прижат к микросхемам, поэтому предварительно на нём нужно разметить и просверлить крепёжные отверстия, возможно, потребуется нарезать резьбу в теле алюминиевой подошвы.

Улучшение теплоотвода сварочного инвертора

Дополнительно отметим, что нет смысла менять штучные радиаторы отдельно стоящих ключей, замене подвергаются только теплоотводы интегральных схем или нескольких высокомощных транзисторов, установленных в ряд.

Индикация сварочного тока

Даже если на инверторе установлен цифровой индикатор установки тока, он показывает не реальное его значение, а некую служебную величину, масштабированную для наглядного отображения. Отклонение от фактической величины тока может составлять до 10%, что неприемлемо при использовании специальных марок электродов и работе с тонкими деталями. Получить реальное значение сварочного тока можно путём установки амперметра.

Цифровой амперметр SM3D

В пределах 1 тысячи рублей обойдётся цифровой амперметр типа SM3D, его даже можно аккуратно встроить в корпус инвертора. Основная проблема в том, что для измерения столь высоких токов требуется подключение через шунт. Его стоимость находится в пределах 500–700 рублей для токов в 200–300 А. Обратите внимание, что тип шунта должен соответствовать рекомендациям производителя амперметра, как правило, это вставки на 75 мВ с собственным сопротивлением порядка 250 мкОм для предела измерения в 300 А.

Шунт для амперметра

Установить шунт можно либо на плюсовую, либо на минусовую клемму изнутри корпуса. Обычно размеров соединительной шины достаточно для подключения вставки длиной около 12–14 см. Изгибать шунт нельзя, поэтому если длины соединительной шины недостаточно, её нужно заменить медной пластиной, косичкой из очищенного однопроволочного кабеля или отрезком сварочной жилы.

Подключение амперметра через шунт

Амперметр подключается измерительными выходами к противоположным зажимам шунта. Также для работы цифрового прибора требуется подать напряжение питания в диапазоне 5–20 В. Его можно снять с проводов подключения вентиляторов или найти на плате точки с потенциалом для питания управляющих микросхем. Собственное потребление амперметра ничтожно.

Повышение продолжительности включения

Продолжительность включения в контексте сварочных инверторов более разумно называть продолжительностью нагрузки. Это та часть десятиминутного интервала, в которой инвертор непосредственно выполняет работу, оставшееся время он должен пребывать на холостом ходу и охлаждаться.

Для большинства недорогих инверторов реальная ПН составляет 40–45% при 20 °С. Замена радиаторов и устройство интенсивного обдува позволяют увеличить этот показатель до 50–60%, но это далеко не потолок. Добиться ПН порядка 70–75% можно путём замены некоторых радиоэлементов:

  1. Конденсаторы обвязки ключей инвертора нужно поменять на элементы той же ёмкости и типа, но рассчитанные под более высокое напряжение (600–700 В);
  2. Диоды и резисторы из обвязки ключей следует заменить на элементы с большей рассеиваемой мощностью.
  3. Выпрямительные диоды (вентили), а также MOSFET или IGBT-транзисторы можно заменить на аналогичные, но более надёжные.

Замена конденсаторов в сварочном инверторе

О замене самих силовых ключей стоит рассказать отдельно. Для начала следует переписать маркировку на корпусе элемента и найти подробный даташит на конкретный элемент. По паспортным данным выбрать элемент для замены достаточно просто, ключевыми параметрами служат пределы частотного диапазона, рабочее напряжение, наличие встроенного диода, тип корпуса и предельный ток при 100 °С. Последний лучше рассчитать собственноручно (для высоковольтной стороны с учётом потерь на трансформаторе) и приобрести радиоэлементы с запасом предельного тока около 20%. Из производителей такого рода электроники наиболее надёжными считаются International Rectifier (IR) или STMicroelectronics. Несмотря на довольно высокую цену, крайне рекомендуется приобретать детали именно этих брендов.

Замена силовых транзисторов в сварочном инверторе

Намотка выходного дросселя

Одним из наиболее простых и в то же время самых полезных дополнений для сварочного инвертора будет намотка индуктивной катушки, сглаживающей пульсации постоянного тока, которые неизбежно остаются при работе импульсного трансформатора. Основная специфика такой затеи в том, что дроссель изготавливается индивидуально для каждого отдельного аппарата, а также может со временем корректироваться по мере деградации электронных компонентов или при изменении порога мощности.

Заводской дроссель сварочного инвертора

Для изготовления дросселя понадобится всего ничего: изолированный медный проводник сечением до 20 мм 2 и сердечник, желательно из феррита. В качестве магнитопровода оптимально подойдёт либо ферритовое кольцо, либо сердечник броневого трансформатора. Если магнитопровод набран из листовой стали, его нужно просверлить в двух местах с отступом около 20–25 мм и стянуть заклёпками, чтобы иметь возможность беспроблемно прорезать зазор.

Выходной дроссель для сварочного инвертора

Дроссель начинает работать, начиная от одного полного витка, однако реальный результат виден, начиная с 4–5 витков. При испытаниях следует добавлять витки до тех пор, пока дуга не начнёт ощутимо сильно тянуться, мешая отрыву. Когда варить с отрывом станет затруднительно, нужно скинуть с катушки один виток и подключить параллельно дросселю лампу накаливания на 24 В.

Тонкая настройка дросселя выполняется с помощью сантехнического винтового хомута, которым можно уменьшить зазор в сердечнике, либо деревянного клина, которым этот зазор можно увеличить. Нужно добиваться, чтобы горение лампы при розжиге дуги было максимально ярким. Рекомендуется изготовить несколько дросселей для работы в диапазонах до 100 А, от 100 до 200 А и более 200 А.

Выходной дроссель для сварочного инвертора

Заключение

Все «навесные» дополнения, такие как дроссель или амперметр, лучше монтировать отдельной приставкой, которая включается в разрыв любой из сварочных жил посредством штекера типа байонет. Таким образом внутри корпуса инвертора сохранится достаточно пространства для вентиляции, а дополнительные устройства можно будет легко отключить за ненадобностью.

Нужно помнить, что кардинальной, глубокой модернизации провести не получится, иными словами, «РЕСАНТУ» в KEMPPI разумными силами и средствами не превратить. Однако изготовление приспособлений и мелкая доработка оборудования — отличный способ лучше изучить технологию дуговой сварки и проникнуться профессиональными тонкостями.

Читайте также: