Самая твердая сталь в мире

Обновлено: 06.01.2025

Известно, что нож всегда был спутником человека (помните об этом, отвечая на вопрос - зачем тебе нож?)). Также известно, что первые люди изготавливали ножи, откалывая и отслаивая кусочки камня, чтобы получить режущую кромку. Иногда они прикрепляли эти кусочки к деревяшке, чтобы получить копье или топор.

Естественно, со временем человек открыл новые и лучшие материалы для изготовления ножей. По мере развития технологий совершенствовались и ножи. Камень стал медью. Затем в ход пошли бронза, сплав меди и олова. Затем в ход пошло железо. Затем сталь, сплав железа и углерода. В некоторых частях света для изготовления ножей использовали даже экзотические материалы, такие как осколки метеорита. Приобретая новый нож, вы хотите принять взвешенное решение, независимо от того, планируете ли вы использовать этот инструмент для выполения хозяйственных работ, выживания, решения секретных тактических задач. В следующем материале мы расскажем о деталях, которые вам необходимо знать.


При выборе различных характеристик для клинков ножей, вам может потребоваться рассмотреть несколько различных атрибутов. Например, улучшение одного атрибута обычно ухудшает другой. Также важно иметь в виду, что ни одна сталь для ножей не справляется со всеми задачами. Как правило, стали, предназначенные для удержания кромки, становятся более хрупкими. Сталь, предназначенная для рубки, часто обладает меньшей коррозионной стойкостью. Иногда имеет смысл носить с собой более одного ножа (резать, рубить или колоть). Учитывая это, ниже приведены свойства сталей и их описания.

Твердость:
Это, возможно, самое частое, что вы слышите. Твердость в ножевых сталях соотносится с прочностью. Она представляет собой способность сопротивляться деформации и измеряется по шкале Роквелла С (HRC). Большинство ножевых лезвий попадают в диапазон от 56 до 60. Чем тверже сталь, тем труднее ее затачивать.

Вязкость:
Этот показатель используется для описания способности противостоять повреждениям, таким как сколы и трещины. Лезвие со сколом не так-то просто вернуть в обычное состояние. Твердость и вязкость прямо противоположны друг другу. В общем, чем тверже сталь, тем менее прочной (или более хрупкой) она может быть. Высокоуглеродистые стали компенсируют этот баланс, жертвуя некоторой коррозионной стойкостью.

Износостойкость:
Это сопротивление истиранию (а также адгезии). Этот показатель обычно коррелирует с твердостью. Чем тверже сталь, тем меньше она изнашивается, хотя легирующие материалы (для не твердых сталей) вносят большой вклад в это свойство.


Коррозионная стойкость:
Это способность противостоять ржавчине, вызванной воздействием окружающей среды, такой как влажность, влага и соль. Это свойство оказывает наибольшее влияние на общие характеристики кромки, поскольку легирующий материал (хром) может снизить прочность и способность удерживать острую кромку. Настоящее нержавеющее лезвие имеет содержание хрома не менее 14%. D2 является примером полунержавеющего лезвия с содержанием хрома 12%, в то время как такая сталь, как M4, далека от нержавеющей - 4% (ее часто называют инструментальной или высокоуглеродистой сталью).

Сохранение кромки:
Наконец, свойство, присущее самому инструменту, - сохранение кромки - это способность кромки ножа сохранять свою остроту при использовании. Это баланс между другими свойствами и определением того, как вы будете использовать нож. Это определит, какие свойства важны при выборе материала для ножа.

Интересно, что кромка состоит из крошечных, очень твердых стеклоподобных структур, называемых карбидами, которые обнажаются при заточке и создают микроскопический "лес" зубьев. 3D-изображение поперечного сечения этой структуры похоже на палочки для пикировки. Для получения наилучшей режущей кромки современные стали пытаются создать сбалансированный продукт с наибольшим количеством непересекающихся карбидов. Это подводит нас к следующей теме - общие типы сталей.

Сталь, используемая для изготовления лезвий ножей, делится на три общие категории: инструментальная сталь, углеродистая сталь и нержавеющая сталь.


Инструментальная сталь

Эта сталь - закаленная легированная сталь, которая используется в режущих инструментах, гаечных ключах и, конечно, в лезвиях наших карманных ножей. Молибден, вольфрам и другие легирующие элементы придают этой стали прочность, твердость и износостойкость.

Углеродистая сталь

Этот тип стали назван по количеству углерода в сплаве (низкое, среднее или высокое). Углерод хорошо закаляется, поэтому из этой стали изготавливают лезвия для тяжелых работ, например, топоры и мачете. Высокоуглеродистая сталь также часто используется для изготовления ножей, поскольку она хорошо держит кромку и легко затачивается. Недостатком является то, что ножи из этого материала требуют более тщательного ухода, поскольку они не так хорошо противостоят коррозии, как нержавеющая сталь.

Нержавеющая сталь

Эта сталь - один из самых популярных видов стали для клинков ножей. Добавление не менее 14% хрома помогает этой стали противостоять коррозии. Однако в определенных условиях они окрашиваются и не держат такую острую кромку, как высокоуглеродистая сталь.

Современный метод получения стальных сплавов называется порошковой металлургией. Расплавленная сталь распыляется в жидкий азот, в котором сталь мгновенно замораживается. Затем порошок очищается, сортируется по размеру (удаляются крупные частицы и загрязнения), а идеальный порошок спекается (нагревается до температуры чуть ниже точки плавления) в горячем прессе высокого давления для затвердевания стали. Лезвия из сплава, изготовленные таким способом, обладают превосходной способностью удерживать кромку. Совсем недавно многие современные производители сталей усовершенствовали этот процесс, создавая порошковые стали в криогенных камерах.


Из чего еще можно изготовить лезвие ножа?

Экзотические материалы

Наконец, у нас есть экзотические материалы. Некоторые нестальные материалы, такие как керамика и титан, также используются для изготовления лезвий ножей, как и кустарный дамаск и сан-май, которые представляют собой ламинированные или слоистые стали.

Керамические лезвия

Керамические лезвия изготавливаются путем обжига и прессования порошкообразного диоксида циркония. Они прекрасно держат кромку и не ржавеют, но их недостатком является хрупкость. К тому же, они легче скалываются и ломаются.

Титановые лезвия

Титан - металл, который принято считать экзотическим материалом для лезвий ножей. Более прочные, легкие и устойчивые к коррозии, ножи из титана могут быть также дорогими, но они являются популярным выбором для ножей для дайвинга. Они отлично держат кромку, но обычно их приходится подтачивать, а не затачивать традиционными способами.

Дамасская сталь

Мастера создают дамасскую сталь, узорчатую сталь, путем сваривания молотом полос стали и железа с последующим многократным нагревом и ковкой. Сегодня большинство мастеров выбирают для изготовления узорчатой стали два-три сплава, которые хорошо сочетаются друг с другом. Сварка различных сплавов смешивает качества этих сплавов вместе, и эти различные сплавы могут способствовать абразивному, пилящему действию лезвия, действуя как микросеррейтор. Часто такие ножи являются предметом коллекционирования.


Большинство настоящих дамасских ножей изготавливаются из высокоуглеродистой стали и более подвержены ржавчине. В последние годы такие компании, как Damasteel, создали нержавеющий порошковый дамаск, который лучше соответствует потребностям пользователей, использующих нож ежедневно.

Сан-май - это японский термин, означающий три слоя. Чтобы создать сан-май, вы создаете "стальной сэндвич", сваренный вместе с помощью кузнечной сварки, подобно дамасской стали, но без многократного складывания. Часто сан-май состоит из высокоуглеродистой (более твердой) сердцевины, зажатой между двумя низкоуглеродистыми (более мягкими) внешними слоями, создавая прочное, но гибкое оружие для самурая или высококлассный поварской нож.

Суперстали

Существуют стали, которые относятся к категории "суперстали". К суперсталям относятся не только порошковые стали, но и стали нового поколения, такие как M390, S90V и 20CV.

Покрытия и отделка лезвий

Самым ранним видом покрытия была "воронение". Это процесс, который помогает защититься от коррозии. При хорошем исполнении он также позволяет получить великолепный цветовой рисунок.

Причин для нанесения покрытия на лезвия в наши дни множество: улучшение эксплуатационных характеристик, внешнего вида или свойств самого покрытия. Тефлоновые покрытия черно-земного цвета существуют для военных применений, а некоторые порошковые покрытия создают лучшую текстуру для специальных работ или лучшей коррозионной стойкости.


Какая сталь лучше?

Не существует "лучшей" стали для лезвия ножа. Вместо этого выбирайте нож по его назначению. Примите во внимание предполагаемое использование вашего ножа. Выбор материала для лезвия зависит от его использования.

Хотя высокоуглеродистая сталь очень острая, вы должны тщательно следить за ее чистотой и сухостью. Кроме того, ее необходимо часто смазывать маслом.

Если это будет ваш нож для подводного плавания, то коррозионная стойкость будет иметь первостепенное значение.

Вы много ходите по тропам каждое лето, вырубая подлесок, чтобы найти идеальное место для кемпинга? В этом случае прочность - это то, что вам нужно.

Если это ваш нож EDC (повседневного ношения), и вы используете его для таких задач, как вскрытие упаковок, обрезание нитки на рубашке или обрезка ветки, вам нужен нож, который хорошо держит кромку, но легко затачивается.

Не зацикливайтесь на поиске лучшего типа стали для конкретного применения. Современные производители стали создают запатентованные смеси сплавов, а ножевые компании манипулируют используемой сталью, закаляя ее путем термообработки и отпуска, а иногда используя специальные виды отделки, чтобы придать клинкам нужные им качества. Таким образом, клинок, изготовленный из одной и той же стали двумя разными ножевыми компаниями, может иметь совершенно разные свойства, особенно в плане легкости заточки. К счастью, большинство производителей ножей указывают качества каждой модели на своем сайте или в каталоге.


В действительности, большинство современных сталей работают достаточно хорошо, чтобы начинающий покупатель ножа обращал больше внимания на то, как нож управляется, и на его предполагаемое использование. Форма клинка (и рукоятки) также играет большую роль в определении характеристик ножа.

Ознакомьтесь с доступными типами материалов лезвия, а затем возьмите нож в руки. Он должен хорошо лежать и ощущаться в руке, пока вы пантомимой показываете движения, для которых вы будете его использовать. А затем откиньтесь назад и наслаждайтесь ножом. и подумайте о том, как далеко шагнули технологии.

Самые прочные металлы в мире: топ-10


Можете ли вы представить, что произошло, если бы наши предки не обнаружили важные металлы, такие как серебро, золото, медь и железо? Наверное, мы бы до сих пор жили в хижинах, используя камень в качестве основного инструмента. Именно крепость металла сыграла важную роль в формировании нашего прошлого и теперь работают как основа, на которой мы строим будущее.

Некоторые из них очень мягкие и буквально тают в руках, как самый активный металл в мире. Другие - настолько твердые, что их невозможно согнуть, поцарапать или сломать без применения спецсредств.

А если вам интересно, какие металлы самые твердые и прочные в мире, мы ответим на этот вопрос, учитывая различные оценки относительной твердости материалов (шкала Мооса, метод Бринелля), а также такие параметры как:

  • Модуль Юнга: учитывает эластичность элемента при растяжении, то есть способность объекта к сопротивлению при упругой деформации.
  • Предел текучести: определяет максимальный предел прочности материала, после которого он начинает проявлять пластичное поведение.
  • Предел прочности при растяжении: предельное механическое напряжение, после которого материал начинает разрушаться.

10. Тантал

Тантал

У этого металла сразу три достоинства: он прочный, плотный и очень устойчив к коррозии. Кроме того, этот элемент относится к группе тугоплавких металлов, таких как вольфрам. Чтобы расплавить тантал вам придется развести огонь температурой 3 017 °C.

Тантал в основном используется в секторе электроники для производства долговечных, сверхмощных конденсаторов для телефонов, домашних компьютеров, камер и даже для электронных устройств в автомобилях.

9. Бериллий

Бериллий

А вот к этому металлическому красавцу лучше не приближаться без средств защиты. Потому что бериллий высокотоксичен, и обладает канцерогенным и аллергическим действием. Если вдыхать воздух, содержащий пыль или пары бериллия, то возникнет заболевание бериллиоз, поражающее легкие.

Однако бериллий несет не только вред, но и благо. Например, добавьте всего 0,5 % бериллия в сталь и получите пружины, которые будут упругими даже если довести их до температуры красного каления. Они выдерживают миллиарды циклов нагрузки.

Бериллий применяют в аэрокосмической промышленности для создания тепловых экранов и систем наведения, для создания огнеупорных материалов. И даже вакуумная труба Большого Адронного Коллайдера сделана из бериллия.

8. Уран

Уран

Это естественное радиоактивное вещество очень широко распространено в земной коре, но сконцентрировано в определенных твердых скальных образованиях.

Один из самых твердых металлов в мире имеет два коммерчески значимых применения - ядерное оружие и ядерные реакторы. Таким образом, конечной продукцией урановой промышленности являются бомбы и радиоактивные отходы.

7. Железо и сталь

Железо и сталь

Как чистое вещество железо не такое твердое по сравнению с другими участниками рейтинга. Но из-за минимальных затрат на добычу оно часто комбинируется с другими элементами для производства стали.

Сталь - это очень прочный сплав из железа и других элементов, таких как углерод. Это наиболее часто используемый материал в строительстве, машиностроении и других отраслях промышленности. И даже если вы не имеете к ним никакого отношения, то все равно используете сталь каждый раз, когда режете продукты ножом (если он, конечно, не керамический).

6. Титан

Титан

Титан - это практически синоним прочности. Он обладает впечатляющей удельной прочностью (30-35 км), что почти вдвое выше, чем аналогичная характеристика легированных сталей.

Будучи тугоплавким металлом, титан обладает высокой устойчивостью к нагреву и истиранию, поэтому является одним из самых популярным сплавов. Например, он может быть легирован железом и углеродом.

Если вам нужна очень твердая и при этом очень легкая конструкция, то лучше чем титан металла не найти. Это делает его выбором номер один для создания различных деталей в авиа- и ракетостроении и судостроении.

5. Рений

Рений

Это очень редкий и дорогой металл, который хотя и встречается в природе в чистом виде, обычно идет «довеском»-примесью к молибдениту.

Если бы костюм Железного человека был сделан из рения, он мог бы выдержать температуру в 2000 ° C без потери прочности. О том, что стало бы с самим Железным человеком внутри костюма после такого «фаер-шоу» мы умолчим.

Россия - третья страна в мире по природным запасам рения. Этот металл используется в нефтехимической промышленности, электронике и электротехнике, а также для создания двигателей самолетов и ракет.

4. Хром

Хром

По шкале Мооса, которая измеряет устойчивость химических элементов к царапинам, хром находится в пятерке лучших, уступая лишь бору, алмазу и вольфраму.

Хром ценится за высокую коррозионную стойкость и твердость. С ним легче обращаться, чем с металлами платиновой группы, к тому же он более распространен, поэтому хром является популярным элементом, используемым в сплавах, таких, как нержавеющая сталь.

А еще один из прочнейших металлов на Земле используется при создании диетических добавок. Конечно, вы будете принимать внутрь не чистый хром, а его пищевое соединение с другими веществами (например, пиколинат хрома).

3. Иридий

Иридий

Как и его «собрат» осмий, иридий относится к металлам платиновой группы, и по внешнему виду напоминает платину. Он очень твердый и тугоплавкий. Чтобы расплавить иридий, вам придется развести костер температурой выше 2000 °C.

Иридий считается одним из самых тяжелых металлов на Земле, а также одним из самых устойчивых к коррозии элементов.

2. Осмий

Осмий

Этот «крепкий орешек» в мире металлов относится к платиновой группе и обладает высокой плотностью. Фактически это самый плотный природный элемент на Земле (22,61 г/см3). По этой же причине осмий не плавится до 3033 ° C.

Когда он легирован другими металлами платиновой группы (такими как иридий, платина и палладий), он может использоваться во многих различных областях, где необходимы твердость и долговечность. Например, для создания емкостей для хранения ядерных отходов.

1. Вольфрам

Вольфрам – самый прочный металл в мире

Самый прочный металл, который только есть в природе. Этот редкий химический элемент также самый тугоплавкий из металлов (3422 ° C).

Впервые он был обнаружен в форме кислоты (триоксида вольфрама) в 1781 году шведским химиком Карлом Шееле. Дальнейшие исследования привели двух испанских ученых - Хуана Хосе и Фаусто д'Эльхуяра - к открытию кислоты из минерала вольфрамита, из которого они впоследствии изолировали вольфрам с помощью древесного угля.

Помимо широкого применения в лампах накаливания, способность вольфрама работать в условиях сильной жары делает его одним из наиболее привлекательных элементов для оружейной промышленности. Во время Второй мировой войны этот металл сыграл важную роль в инициировании экономических и политических отношений между европейскими странами.

Вольфрам также используется для изготовления твердых сплавов, а в аэрокосмической промышленности - для изготовления ракетных сопел.

Таблица предела прочности металлов

МеталлОбозначениеПредел прочности, МПа
СвинецPb18
ОловоSn20
КадмийCd62
АлюминийAl80
БериллийBe140
МагнийMg170
МедьCu220
КобальтCo240
ЖелезоFe250
НиобийNb340
НикельNi400
ТитанTi600
МолибденMo700
ЦирконийZr950
ВольфрамW1200

Сплавы против металлов

Сплавы

Сплавы представляют собой комбинации металлов, и основной причиной их создания является получение более прочного материала. Наиболее важным сплавом является сталь, которая представляет собой комбинацию железа и углерода.

Чем выше прочность сплава - тем лучше. И обычная сталь тут не является «чемпионом». Особенно перспективными представляются металлургам сплавы на основе ванадиевой стали: несколько компаний выпускают варианты с пределом прочности до 5205 МПа.

А самым прочным и твердым из биосовместимых материалов на данный момент является сплав титана с золотом β-Ti3Au.

10 самых тяжелых металлов в мире по плотности

Мы все любим металлы. Машины, велосипеды, кухонная техника, банки для напитков и множество других вещей - все они состоят из металла. Металл - краеугольный камень нашей жизни. Но иногда он бывает очень тяжелым.

Когда мы говорим о тяжести того или иного метала, то обычно имеем в виде его плотность, то есть соотношение массы к занимаемому объёму.

Еще одним способом измерения «веса» металлов является их относительная атомная масса. Самыми тяжелыми металлами по относительной атомной массе являются плутоний и уран.

Если вы хотите узнать, какой металл самый тяжелый, если рассматривать его плотность, то мы рады вам помочь. Вот топ-10 самых тяжелых металлов на Земле с указанием их плотности на кубический см.

10. Тантал - 16,67 г/см³

Тантал

Десятую строчку в рейтинге занимает синевато-серый, очень твердый металл со сверхвысокой температурой плавления. Несмотря на свою твердость он пластичен, как золото.

Тантал является важным компонентом во многих современных технологиях. В частности, он используется для производства конденсаторов, которые применяются в компьютерной технике и мобильных телефонах.

9. Уран - 19,05 г/см³

Уран самый тяжелый элемент по атомной массе

Это самый тяжелый элемент на Земле, если учитывать его атомную массу - 238,0289 г/моль. В чистом виде уран представляет собой серебристо-коричневый тяжелый металл, который почти вдвое плотнее свинца.

Как и плутоний, уран служит необходимым компонентом для создания ядерного оружия.

8. Вольфрам - 19,29 г/см³

Вольфрам

Считается одним из самых плотных элементов в мире. В дополнение к своим исключительным свойствам (высокая теплопроводность и электропроводность, очень высокая стойкость к воздействию кислот и истиранию) вольфрам также отличается тремя уникальными свойствами:

  • После углерода он имеет самую высокую температуру плавления - плюс 3422 ° C. А его температура кипения - плюс 5555 ° C, эта температура примерно сопоставима с температурой поверхности Солнца.
  • Сопровождает оловянные руды, однако препятствует выплавке олова, переводя его в пену шлаков. За это и получил свое название, которое в переводе с немецкого означает «волчьи сливки».
  • Вольфрам имеет самый низкий коэффициент линейного расширения при нагревании из всех металлов.

7. Золото - 19,29 г/см³

Золото

С давних времен люди покупают, продают и даже убивают за этот драгоценный металл. Да что люди, целые страны занимаются скупкой золота. Лидером государств с самыми крупными запасами золота на данный момент является Америка. И вряд ли наступит пора, когда в золоте не будет нужды.

Говорят, что деньги не растут на деревьях, но золото - растет! Небольшое количество золота можно найти в листьях эвкалипта, если тот находится на золотоносной почве.

6. Плутоний - 19,80 г/см³

Шестой самый тяжелый металл в мире - один из самых нужных компонентов для ядерных держав мира. А еще он - настоящий хамелеон в мире элементов. Плутоний демонстрирует красочное состояние окисления в водных растворах, при этом их цвет варьируется от светло-фиолетового и шоколадного до светло-оранжевого и зеленого. Цвет зависит от степени окисления плутония и солей кислот.

5. Нептуний - 20,47 г/см³

Нептуний

Этот металл с серебристым блеском, названный в честь планеты Нептун, был открыт химиком Эдвином Макмилланом и геохимиком Филиппом Абельсоном в 1940 году. Он используется для получения шестого номера в нашем списке, плутония.

4. Рений - 21,01 г/см³

Рений

Слово «Рений» происходит от латинского Rhenus, что означает «Рейн». Нетрудно догадаться, что этот металл был обнаружен в Германии. Честь его открытия принадлежит немецким химикам Иде и Вальтеру Ноддакам. Это последний из открытых элементов, у которого есть стабильный изотоп.

Из-за очень высокой температуры плавления рений (в виде сплавов с молибденом, вольфрамом и другими металлами) применяется для создания компонентов ракетной техники и авиации.

3. Платина - 21,40 г/см³

Платина

Один из самых драгоценных металлов в этом списке (кроме Осмия и Калифорния-252) используется в самых разных областях - от ювелирного дела до химической промышленности и космической техники. В России лидером по добыче платинового металла является ГМК «Норильский никель». В год в стране добывается около 25 тонн платины.

2. Осмий - 22,61 г/см³

Осмий

Хрупкий и при этом крайне твердый металл редко используется в чистом виде. В основном его смешивают с другими плотными металлами, такими как платина, для создания очень сложного и дорогого хирургического оборудования.

Название «осмий» происходит от древнегреческого слова «запах». При растворении щелочного сплава осмиридия в жидкости появляется резкое амбре, похожее на запах хлора или подгнившей редьки.

И осмий и иридий (первое место рейтинга) весят примерно в два раза больше свинца (11,34 г/см³).

1. Иридий - 22,65 г/см³ – самый тяжелый металл

Иридий

Этот металл с полным правом может претендовать на звание элемента с наибольшей плотностью. Однако споры о том, какой же металл тяжелее - иридий или осмий, все-таки ведутся. А все дело в том, что любая примесь может снизить плотность этих металлов, а их получение в чистом виде - очень тяжелая задача.

Теоретическая расчетная плотность иридия составляет 22,65 г/см³. Он почти втрое тяжелее, чем железо (7,8 г/см³). И почти вдвое тяжелее, чем самый тяжелый жидкий металл - ртуть (13,6 г/см³).

Плотность иридия составляет 22,65 г/см³

Как и осмий, иридий был открыт английским химиком Смитсоном Теннантом в начале 19 века. Любопытно, что Теннант нашел иридий вовсе не целенаправленно, а случайно. Он был обнаружен в примеси, оставшейся после растворения платины.

Смитсон Теннант, химик открывший Иридий

Иридий в основном используется в качестве отвердителя платиновых сплавов для оборудования, которое должно выдерживать высокие температуры. Он перерабатывается из платиновой руды и является побочным продуктом при добыче никеля.

Iridium в периодической таблице Менделеева

Название «иридий» переводится с древнегреческого как «радуга». Это объясняется наличием в металле солей разнообразной окраски.

Самый тяжелый металл в периодической таблице Менделеева очень редко встречается в земных веществах. Поэтому его высокая концентрация в образцах породы - маркер их метеоритного происхождения. За год во всем мире добывают около 10 тысяч килограмм иридия. Крупнейший его поставщик - Южная Африка.

Особенности высокопрочных сталей

Знание особенностей высокопрочных сталей — в том числе и того, какая из них самая прочная, — очень полезно для заказчиков металлургической продукции. Внимание придется уделить конкретным маркам и расшифровке их маркировки. Также актуальными темами будут применение таких металлов и ГОСТ на них, состав и свойства сталей конкретного типа, их сварка.

Общее описание

Начать следует с определения того, что же, собственно, следует считать высокопрочными сталями. В России под таким термином подразумевают сплав железа с углеродом, который способен переносить более или менее длительное время нагрузку 1800—2000 МПа и выше. Помимо этого показателя, очень важен и другой момент — хорошая устойчивость к хрупкому разрушению. Дополнительно требуется контролировать пластичность и вязкость. Только при четком соблюдении всех этих моментов металлургии производители могут заявить, что они действительно делают высокопрочный металл.


Марки

Среди упрочненных сплавов популярностью пользуется низкоотпущенная сталь со средним легированием. В ней содержится от 0,25 до 0,4% углерода. Специалисты научились значительно повышать в таких сплавах вязкость и пластичность. Их состав включает:



Популярная марка 30ХГСА выпускается согласно различным ГОСТ — сообразно форме исполнения. Так, сортовой прокат должен соответствовать стандарту 4543 от 1971 года. Калиброванные прутки делают по ГОСТ 8559-75. А для полос применяют ГОСТ 103-2006, и это еще не полный перечень. Необходимая прочность поддерживается за счет старения мартенсита.

Такие мартенситно-стареющие стали имеют привлекательные технологические свойства. После закаливания они будут весьма пластичны и хорошо обрабатываемы режущим инструментом. Вырабатывают эти металлы в индукционных печах либо электрошлаковой плавкой. Мартенситно-стареющие стали имеют иногда высокую коррозионную устойчивость. Рассмотреть их состав уместно на примере маркировки 03Х9К14Н6М3Д.

В нее входят:

Также стоит обратить внимание на ПНП-стали, делящиеся на две подгруппы. Одна имеет полностью аустенитную структуру — и называется еще трип-сталями. В таком виде сплавов создается высокая концентрация никеля и прочих стабилизирующих аустенит компонентов. Это существенно удорожает продукцию. Свариваемость ПНП-металла ограничена, обработать его механически также будет весьма трудно.



Многофазные марки стали содержат аустенит, обогащаемый углеродом. В процессе деформации или при активном механическом воздействии он будет преобразовываться в мартенсит. Концентрация углерода составляет 0,2%. Доля марганца достигает 1,5%.

Подобные стали, наряду с высокой прочностью, имеют еще одно хорошее свойство — они легко деформируются, что позволяет получать конструкции со сложной геометрией.



Говоря про другие марки, надо упомянуть еще 20Х2Г2СНВМ. При концентрации углерода 0,18—0,25% она содержит также:

Среди трип-сталей выделяется 30Х9Н8М4Г2С. Это метастабильный аустенитный сплав. В его состав входят:

2% марганца и кремния.



Применение

Особо стойкие марки стали применяют не только для болтов и других крепежей. Тот же сплав 30ХГСА используют, чтобы делать:

прочие улучшаемые части, эксплуатируемые при температуре до 200 градусов;

сварные конструкции, применяемые для ответственных работ;

прочие изделия, рассчитанные на знакопеременные нагрузки.

Марка 35ХГСА после грамотного отпуска прочнее предыдущего сплава. Такой материал подойдет для получения:

сварных сложных деталей;

прочих изделий, рассчитываемых на особые нагрузки.

Примечательна сталь ЭИ643. Она подходит для дисков и валов. Из нее делают шестеренки редукторов и различные крепежи. Ее, наряду с 30ХГСА и ВЛ-1, используют даже в авиационной промышленности. Мартенситно-стареющая сталь представлена еще и сплавом Н18К9М5Т; здесь аналогами будут:

Мартенситно-стареющий металл может работать при охлаждении до — 196 градусов и при нагреве до 400 градусов. Допускается его эксплуатация в среде со слабой химической агрессивностью. Такие вещества имеют превосходную эрозионную стойкость. Хорошими примерами являются:


Такие металлы применяют, чтобы делать:

резервуары, рассчитанные на высокое давление;

зубчатые передачи различных моторов;

двигательные валы на вертолетах.

Сварка

Высокопрочные стали варят по особой технологии. Среднеуглеродистый легированный металл относительно вязок и пластичен. Рессорная сталь с легирующими компонентами варится при условии непременной предварительной термической обработки. В ходе самой работы требуется обеспечить подогрев. Но и после окончания сварки придется заниматься термообработкой.

Средние по содержанию углерода сплавы отличаются хорошей прокаливаемостью. Прогрев свариваемых изделий не понижает скорости падения температуры. Это приводит к ускоренному росту зерен. Вывод прост: варить подобный металл следует без заблаговременного подогрева.

Однако могут использоваться специализированные методики: блочная, каскадная сварка, работа на укороченных участках.

Иногда используются специальные приспособления, подогревающие шов. Это позволяет поддержать его дольше при заданной температуре. Чтобы перегреть сталь, исключая возникновение мартенситной структуры, могут применять отжигающие валики. Концентрация углерода в создаваемом шве должна составлять максимум 0,15%. Иначе обстоят дела при сварке на умеренно легируемых глубоко прокаленных сталях особой прочности.

Это требует подбора сварочных материалов, позволяющих формировать швы с повышенной деформационной способностью. Такое свойство должно достигаться при ограниченном насыщении ванны водородом. Недопустимо применение электродов с органическими покрытиями. В шве должно содержаться максимум:

1,5% хрома и марганца;

0,5% кремния и ванадия;

Среднеуглеродистый металл варят под аргоновой защитой. При этом используют неплавкий электрод. Присадочное вещество подбирают сообразно применяемому газу.

Улучшить работу помогает использование активирующего флюса. Он позволит отказаться от разделки кромок.

Какая сталь самая прочная в мире?

Наивысшую прочность имеет нитинол. Такая сталь известна также как SM-100. Изначально ее создавали для использования в ракетах в США. Этот металл весьма прочен и отличается жесткостью. Сегодня SM-100 применяют широко и для изготовления ножей.

Ножевой ликбез: самая твердая сталь в мире

Возможно на вполне увлечения ножами, вы начали разбираться в типах сталей, характеристиках и особенностях. Однако, многие представители ножевого сообщества считают, что самыми твердыми сплавами являются инструментальные порошковые сплавы американского или европейского производства. Но это не так.

Давайте же вместе найдем ответ на вопрос, который заботит многих из нас - что является самой твердой сталью, известной человечеству? Короткий ответ - нитинол, также известный как Ni-Ti-Nol.

Ножи из этого сплава высоко ценятся среди известных коллекционеров. Не только благодаря своей твердости, но и за счет способности приобретать яркую и непредсказуемую окраску в процессе термической обработки.

Нитинол, также известный как Ni-Ti-Nol, был впервые обнаружен еще в 1959 году учеными Уильямом Булером и Фредериком Вангом в лаборатории военно-морских сил. Сокращение Ni-Ti-Nol означает "лаборатория никель-титановых сплавов".

Булер и Ванг искали сверхупругий сплав для носовых конусов ракет, который был бы гибким при экстремальных температурах, но после охлаждения вернулся бы в свою первоначальную форму. Их усилия увенчались успехом. Но полученный ими прочный сплав был настолько сложен в обработке, что не использовался в течение долгого времени.

Как нитинол стал SM-100

Нож со сталью SM-100

Интерес к этому металлу пришел много лет спустя и, как водится, "оттуда откуда не ждали". Угадайте с одного раза, кого может заинтересовать высокотвердый и редкий сплав, который дает яркий и непредсказуемый узор в процессе термической обработки?

Ножевой дизайнер Дуэйн Двайер из Strider Knives заинтересовался нитинолом еще в 2005 году, когда искал сплав сверхтвердых металлов, который не ржавел бы. Он обратился к металлургу и другу Скотту Деванне, вице-президенту по технологиям SB Specialty Metals, и поинтересовался возможностью производства нитинола с использованием технологии, которая никогда не применялась.

Вскоре после этого Скотт познакомил Дуэйна с Эриком Боно, металлургом и производителем ножей, который также интересовался нитинолом, и они втроем начали изучать возможности создания клинков из этого сплава.

Обладая знаниями и опытом в области металлургии, Боно в 2006 году разработал рабочий вариант сплава, получивший название "SM-100", в виде порошкового металла. Еще несколько лет ушло на рафинирование сплава и процессов, и в 2009 году Боно и его деловой партнер Фред Йолтон создали компанию Summit Metals LLC для производства SM-100.

С тех пор SM-100 (60% никеля и 40% титана), который компания продает под названием "HIPTiNite", завоевал интерес не только у ножевой промышленности, но и у американского космического агентства NASA и у представителей различных команд Формулы-1.

Свойства стали SM-100

Свойства стали SM-100

Запатентованный и брендированный сплав SM-100 нитинола, как и его предшественник, чрезвычайно прочен и очень тяжело поддается обработке. Например, одна шлифовальная лента может использоваться для шлифовки нескольких ножей из нержавеющей стали, однако для одного ножа из сплава SM-100 требуется несколько лент. Как правило, шесть и более лент.

Естественно, что работа с таким сплавам доступна только небольшому количеству найфмейкеров. Изготовленные и продаваемые в небольших количествах ножи из SM-100 стоят недешево. Если добавить к этому стоимость ремней и дополнительное время на грамотную обработку материала, то стоимость одного ножа, как говорится, улетает в космос. По словам создателей сплава, нож из SM-100 можно бросить в соленую морскую воду и через 50 лет вы не найдете на нем ни капли коррозии.

Во время разработки SM-100 Боно обнаружил, что он может быть окрашен в теплые оттенки, превращаясь в изысканную радугу цветов. Благодаря содержанию титана, SM-100 окисляется при термической обработке, как и другие сплавы, содержащие титан, но процесс достижения цветовых эффектов совершенно иной. Однако, создатели уверяют что дело не только в высокой температуре. Боно уверен, что магия происходит во время процесса термообработки, в котором он допускает попадание небольших воздушных пузырьков на поверхность ножа. Перед термообработкой клинки обматываются фольгой, под которой сознательно оставляются воздушные каналы.

При термической обработке на клинке возникают различные цветовые сочетания в зависимости от содержания кислорода на определенных участках. Учитывая относительную новизну этого сплава, будем надеяться, что мы еще о нем услышим и, может быть, даже увидим в ближайшее время на территории Российской Федерации.

Читайте также: