Основные легирующие элементы вводимые в сталь

Обновлено: 05.01.2025

Элементы, специально вводимые в сплав с целью изменения его строения и свойств, называют легирующими, a данный сплав легированным. Для легирования сталей используют значительное число элементов периодической системы (табл. 2.4.).

Наиболее существенное влияние легирующие элементы оказывают на свойства сталей, воздействуя на полиморфизм железа. Температура полиморфных превращений железа зависит от всех растворенных в нем элементов. В их присутствии расширяется область существования g-железа. При введении определенного количества легирующих элементов область g-состояния от комнатной температуры до температуры плавления. Такие сплавы называются аустенитными. Другие элементы (V, Si, Mo и др.) делают феррит устойчивым до температуры плавления. Такие сплавы называют ферритными. При нагреве и охлаждении в них не происходит эвтектоидное превращение.

Легирующие элементы могут находиться в сталях в свободном состоянии, в форме химических соединений с железом или между собой, в виде оксидов, сульфидов и других неметаллических примесей, в карбидной фазе, а также в виде твердых растворов в железе. Наиболее часто они растворяются в основных фазах сплавов железа с углеродом (в феррите, аустените, цементите) или образуют специальные карбиды.

Карбидообразующие элементы (молибден, ванадий, вольфрам, титан) задерживают выделение карбидов при отпуске и увеличивают конструкционную прочность стали.

Влияние легирующих элементов на свойства сталей проявляется, прежде всего, в изменении свойств феррита, дисперсности карбидной фазы, прокаливаемости, размера зерна и т. д. По объему (более 90%) феррит — основная составляющая конструкционных сталей. Легирующие элементы растворяются в нем, замещая атомы железа в решетке и искажая ее, что приводит к возрастанию прочности и твердости феррита. Увеличению последней наиболее сильно способствует введение кремния, марганца и никеля. Большинство легирующих элементов, однако, снижают вязкость феррита и повышают порог его хладноломкости. Исключением является никель, оказывающий наиболее благоприятное влияние на свойства стали. Хром и никель являются основными легирующими компонентами нержавеющих сталей (табл. 2.4.).

Влияние легирующих элементов на свойства сталей.

Легирующий элемент Обозначение Свойства, придаваемые сталям Примеры марок сталей
Азот (N) А Обработка в атмосфере азота (азотирование) приводит к образованию твёрдого раствора в феррите, нитридных соединений, что придаёт твёрдость поверхностным слоям
Ниобий (Nb) Б Ниобий - повышает кислотостойкость сталей 03Х16Н15М3Б
Вольфрам (W) В Вольфрам увеличивает твердость и красностойкость, способность сохранять при высоких температурах износостойкость. Вольфрам придает стали вязкость. В18 В6М5К5
Марганец (Mn) Г Марганец - при содержании свыше 1 процента увеличивает твердость, износоустойчивость, стойкость против ударных нагрузок. Марганец в виде ферромарганца применяется для «раскисления» стали при её плавке, т. е. для удаления из неё кислорода. Связывает серу, что также улучшает свойства сталей. Иногда в сочетании с другими легирующими металлами, сильно упрочняет сталь, делает её твердой и сопротивляющейся износу и ударам (сталь резко упрочняется и становится тверже при ударах). Такая сталь используется для изготовления шаровых мельниц, землеройных и камнедробильных машин, броневых элементов и т. д. 14Г2 ШХ15ГС 30ХГС-Ш А40Г
Медь (Cu) Д Медь - уменьшает коррозию сталей 10Х18Н3Г3Д2Л
Кобальт (Co) К Кобальт - повышает жаропрочность, магнитопроницаемость Р6М5К5
Молибден (Mo) М Молибден - увеличивает красностойкость, прочность, коррозионную стойкость при высоких температурах. Молибден используется для легирования сталей, как компонент жаропрочных и коррозионную стойких сплавов. Р6М5К5 03Х16Н15М3Б
Никель (Ni) Н Никель - повышает прочность, пластичность, коррозионную стойкость Введение достаточного количества никеля (Ni) в хромистую сталь обеспечивает лучшую механическую прочность, делает сталь более стойкой к коррозии (нержавеющая сталь) и к низким температурам. 03Х16Н15М3Б 12Х2Н4А
Фосфор (P) П Повышает текучесть, хрупкость
Бор (B) Р Увеличивает прокаливаемость стали, делает сталь чувствительной к перегреву.
Кремний (Si) С Придает прочность, увеличивает ударную вязкость, способствует раскислению. 30ХГС-Ш 60С2ХФА 33ХС 38ХС
Титан (Ti) Т Повышает прочность, сопротивление коррозии
Ванадий (V) Ф Повышает плотность, прочность, сопротивление удару, истиранию. Замедляет старение стали. 9Х2МФ
Хром (Cr) Х Повышает твердость, коррозионную стойкость. Хромистые стали по сравнению с углеродистыми обладают более высокими прочностными свойствами при некоторой меньшей пластичности в сердцевине и лучшей прочности в цементируемом слое; чувствительна к перегреву, прокаливаемость невелика. При введении легирующих элементов происходит скачкообразное повышение коррозионной стойкости. Стали хорошо свариваются. ШХ15ГС 30ХГС-Ш ШХ6 03Х16Н15М3Б 40Х
Цирконий (Zr) Ц Легирование сталей цирконием (до 0,8 %) повышает их механические свойства и обрабатываемость.
Алюминий (Al) Ю Алюминий – повышает окалиностойкость Алитированием придают коррозионную и окалиную стойкость стальным и другим сплавам. Повышает жаростойкость сплавов на основе железа, меди, титана и некоторых других металлов. Замедляет старение стали. АК7М2АК21М2
Редкоземельные металлы Ч Используются для связывания серы, фосфора в тугоплавкие соединения

В основу классификации легированных сталей заложены четыре признака: химический состав, равновесная структура (после отжига), структура после охлаждения на воздухе (после нормализации), назначение.

В зависимости от вводимых элементов легированные стали подразделяют на хромистые, марганцовистые, хромоникелевые, хромоникельмолибденовые Разновидностью классификации по химическому составу является классификация по качеству. Легированные стали подразделяют на качественные (до 0,04% S и до 0,035% Р), высококачественные (до 0,025% S и до 0,025% Р) и особовысококачественные (до 0,015% S и до 0,025% Р) (раздел 2.5. классификация сталей).

По типу равновесной структуры.

По этому признаку стали подразделяются на доэвтектоидные, эвтектоидные, заэвтектоидные и ледебуритные. Эвтектоидные стали имеют перлитную структуру, а доэвтектоидные и заэвтектоидные наряду с перлитом содержат соответственно избыточный феррит или вторичные карбиды типа М3С. Таким образом, с учетом фазового равновесия легированные стали относят к перлитному, карбидному, ферритному или аустенитному классам.

По структуре после нормализации. Здесь предполагается разделение сталей на три основных класса: перлитный, мартенситный и аустенитный.

Такое подразделение обусловлено тем, что с увеличением содержания легирующих элементов в стали возрастает устойчивость аустенита в перлитной области (это проявляется в смещении вправо С-образных кривых); одновременно снижается температурная область мартенситного превращения. Все это приводит к изменению получаемых при нормализации структур от перлита (сорбита, троостита и бейнита) в относительно малолегированных сталях до мартенсита (в легированных) и аустенита (в высоколегированных).

По назначению. По назначению стали подразделяют на конструкционные (например, цементуемые, улучшаемые), инструментальные и с особыми свойствами. К последним относят «автоматные», пружинные, шарикоподшипниковые, износостойкие, коррозионностойкие, теплоустойчивые, жаропрочные, электротехнические и другие стали. «Особые свойства» стали бывают физическими, например, с определенными магнитными характеристиками или малым коэффициентом линейного расширения: электротехническая сталь, суперинвар, химическими, например, нержавеющие, жаростойкие, жаропрочные стали.

Жаропрочные стали и сплавы. К жаропрочным, или окалиностойким, относят стали, обеспечивающие эксплуатацию изделий при температурах свыше 500 °С в течение заданного времени (их подробное изложение приведено далее, в разделе 2.13).

По содержанию легирующих элементов жаропрочные стали и сплавы разделяют на низко-, средне- и высоколегированные.

Нагруженные детали установок с температурой рабочей среды 450 – 470 °C изготовляют из хромистых сталей. Для повышения эксплуатационных характеристик в состав сталей вводят ванадий, вольфрам, молибден, ниобий, титан. Эти элементы, образуя карбиды и фазы Лавеса, увеличивают жаропрочность стали. Легирование бором, цирконием, церием, а также азотирование способствуют дополнительному увеличению ее жаропрочности (раздел 2.13).

Инструментальные стали и твердые сплавы. Низколегированные стали с небольшой прокаливаемостью применяют для изготовления инструмента, работающего при температурах до 200 – 260 °С. Из таких сталей можно изготавливать инструменты больших размеров и сложной формы.

Низколегированные стали выпускают в виде прутков, лент и прутков с повышенным качеством отделки поверхности. Для изготовления высокопроизводительного инструмента, предназначенного для работы с высокими скоростями резания, применяют быстрорежущие стали. Главным достоинством быстрорежущих сталей является высокая теплостойкость, которая обеспечивается введением значительного количества карбидообразующих элементов: W, Мо, V, Со. Быстрорежущие стали сохраняют мартенситную структуру вплоть до температур 600 – 640 °С, что позволяет повысить скорость резания в 3-5 раз по сравнению с обработкой обычным инструментом. Содержащиеся в быстрорежущих сталях легирующие элементы обусловливают уменьшение критической скорости закалки.

Стоимость быстрорежущих сталей примерно в 5-6 раз превышает стоимость легированных инструментальных сталей. Поэтому инструменты из них применяют преимущественно для резания высокопрочных и трудно обрабатываемых материалов.

Маркировка легированных сталей. Легирующие сталимаркируют цифрами и буквами, указывающими на примерный состав стали. В начале марки приводятся двузначные цифры (например, 12ХН3А), указывающие среднее содержание углерода в сотых долях процента. Русские буквы справа от цифры обозначают легирующие элементы, входящие в состав стали (табл. 2.5.).

Если после буквы, обозначающей легирующий элемент, находится цифра, то она указывает содержание этого элемента в процентах. Если цифры нет, то сталь содержит 0,8 – 1,5% легирующего элемента, за исключением молибдена и ванадия (содержание которых в сталях обычно до 0,2 – 0,3%), а также бора (в стали с буквой Р его должно быть не менее 0,0010%).

Высококачественные и особовысококачественные стали маркируют, так же как и качественные, но в конце марки высококачественной стали ставят букву А, (эта буква в середине марочного обозначения указывает на наличие азота, специально введённого в сталь), а после марки особовысококачественной через тире букву "Ш".

Отдельные группы сталей обозначают несколько иначе.

Шарикоподшипниковые стали маркируют буквами "ШХ", после которых указывают содержание хрома в десятых долях процента:

ШХ6 - шарикоподшипниковая сталь, содержащая 0,6 % хрома;

ШХ15ГС - шарикоподшипниковая сталь, содержащая 1,5 % хрома и от 0,8 до 1,5 % марганца и кремния.

Быстрорежущие стали. Обозначения марок быстрорежущих сталей начинаются с буквы Р и цифры, указывающей среднее содержание вольфрама в стали. Далее следуют буквы и цифры, определяющие массовые доли других элементов. В отличие от легированных сталей в наименованиях быстрорежущих сталей не указывается процентное содержание хрома, т.к. оно составляет около 4% во всех сталях, и углерода (оно пропорционально содержанию ванадия). Буква Ф, показывающая наличие ванадия, указывается только в том случае, если содержание ванадия составляет более 2,5%.

Р18 – быстрорежущая сталь, содержащая в среднем 18,0 % вольфрама.

Обозначения корозионно - стойких (нержавеющих), жаростойких и жаропрочных сталей согласно ГОСТ 5632-72 состоят из цифр и строятся по тем же принципам, что и обозначения конструкционных легированных сталей. В обозначения литейных корозионно-стойких сталей такого вида добавляется буква Л.

08Х18Н10Т имеет состав 0,08% C, 17,0-19,0 % Cr, 9,0-11,0 % Ni, 0.5 -0.7 % Ti, литейная сталь

Опытные стали, выплавленные на заводе «Электросталь», первоначально обозначают буквами ЭИ (электросталь исследовательская) или ЭП (электросталь пробная) с порядковым номером разработки (освоения), например ЭИ962 (11Х11Н2В2МФ), ЭПЗЗ (10Х11Н23ТЗМР). Такое упрощенное обозначение сталей, особенно высоколегированных, в дальнейшем широко используется и в заводских условиях.

При маркировке сплавов на железоникелевой основе указывается коли­чественное содержание никеля (в процентах) с перечислением лишь буквен­ных обозначений остальных легирующих элементов, например ХН38ВТ, ХН45МВТЮБР.

03Х16Н15М3Б - высоко легированная качественная сталь, спокойная содержит 0,03% углерода, 16,0% хрома, 15,0% никеля, до 3,0% молибдена, до 1,0% ниобия.

Виды сталей, их марки, состав, области применения (примеры).

Сталь инструментальная углеродистая

У7, У7А, У8, У8А, У8Г, У8ГА, У9, У9А, У10, У10А, У11, У11А, У12, У12А, У13А

Сплав жаропрочный

10Х15Н35В3ТЮ; ХН35ВТР; ХН45Ю; ХН56ВМКЮ; ХН60Ю; ХН70ВМТЮФ; ХН32Т; ХН65ВМТЮ; ХН75ВМЮ; ХН78Т

Сталь для отливок с особыми свойствами

07Х17Н16ТЛ; 08Х15Н4ДМЛ; 10Х12НДЛ; 10Х18Н3Г3Д2Л; 120Г10ФЛ; 12Х25Н5ТМФЛ; 15Х18Н22В6М2Л; 15Х13Л; 10Х18Н9Л; 07Х18Н9Л.

Сталь для отливок обыкновенная

03Н12Х5М3ТЛ; 110Г13Л; 12Х7Г3СЛ; 15ГЛ; 20ГЛ; 20Л; 20ХМЛ; 25Л; 27Х5ГСМЛ; 12ДН2Ф.

Сталь жаропрочная высоколегированная

08Х15Н24В4ТР; 08Х20Н14С2; 09Х16Н16МВ2БР; 10Х11Н20Т3Р; 10Х15Н25М3В3ТЮК; 10Х7МВФБР; 12Х25Н16Г7АР; 13Х12Н2В2МФ; 15Х18СЮ; 18Х12ВМБФР.

Сталь жаропрочная низколегированная

12МХ; 15Х5ВФ; 15ХМФКР; 12Х1МФ; 15Х1М1Ф; 15Х5М; 16ГНМ; 12Х2МФБ; 15ХМ.

Сталь жаропрочная релаксационностойкая

20Х1М1Ф1БТ; 25Х1М1Ф; 30ХМА; 20Х1М1Ф1ТР; 25Х1МФ; 35ХМ; 20Х3МВФ; 25Х2М1Ф; 38Х2МЮА; 20ХМФБР.

Сталь инструментальная легированная

05Х12Н6Д2МФСГТ; 13Х; 5ХВ2СФ; 6Х4М2ФС; 8Х6НФТ; 9Х5ВФ; 9ХФМ; ХВ4Ф; 9Г2Ф; 6Х3МФС.

Сталь инструментальная штамповая

27Х2Н2М1Ф; 3Х3М3Ф; 4Х3ВМФ; 4Х5МФС; 5Х3В3МФС; 6ХВ2С; 7ХГ2ВМ; Х12; 5Х2МНФ; 4Х2НМФ.

Сталь инструментальная быстрорежущая

11М5Ф; Р12; Р18К5Ф2; Р2М5; Р6М5Ф3; Р9М4К8; 11Р3АМ3Ф2; Р12Ф3; Р18Ф2; Р9.

Сталь инструментальная валковая

45ХНМ; 60ХН; 75ХСМФ; 9X2; 55X; 60ХСМФ; 7Х2СМФ; 9Х2МФ; 60Х2СМФ; 75ХМ.

Сталь конструкционная низколегированная для сварных конструкций

06Г2СЮ; 09Г2Д; 10Г2БД; 10ГТ; 12Г2Б; 12ХГН2МФБАЮ; 14ХГС; 15Г2СФД; 08Г2С; 10Г2С1.

Сталь конструкционная подшипниковая

11Х18М-ШД; ШХ20СГ; 8Х4В9Ф2-Ш; ШХ4; ШХ15; ШХ15СГ.

Сталь конструкционная легированная

10Г2; 12ХН; 14Х2ГМР; 15Н2М; 15ХФ; 18Х2Н4МА; 20Г; 20Х2Н4А; 15ХА; 12ХН3А.

Сталь конструкционная повышенной обрабатываемости

А11; A35; А45Е; АС14ХГН; АС35Г2; АС45Г2; A12; А35Е; АС30ХМ; А40ХЕ;

Сплав прецизионный с высоким электрическим сопротивлением

© 2014-2022 — Студопедия.Нет — Информационный студенческий ресурс. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав (0.027)

Легирующие элементы. Легированные стали, их маркировка.

© 2014-2022 — Студопедия.Нет — Информационный студенческий ресурс. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав (0.026)

Легирование стали

Легирование стали

Сталь представляет собой сплав железа (не меньше 45%) и углерода (до 2,14%). Последний повышает прочностные характеристики металлов, при этом, если сравнивать с химически однородным металлом, понижает их пластичность. В процессе производства стали концентрация углерода специально доводится до необходимых значений. Контроль за содержанием углерода позволяет получать несколько видов стали:

  • Низкоуглеродистую – содержание углерода не более 0,25%.
  • Среднеуглеродистую – не более 0,6%.
  • Высокоуглеродистую – 0,6 – 2,14%.

В металле также могут обнаруживаться и иные примеси, поэтому стали классифицируются как легированные и нелегированные. Последние представляют собой железно-углеродный сплав, в составе которого присутствуют и другие элементы в виде примесей или добавок меньше установленного предельного содержания.

Легирование стали

Легированные стали

Элементы, содержание которых превышает обычное предельное значение, указанное в стандартах, называются легирующими добавками. Изменение химического состава металла путем введения легирующих добавок называется легированием стали. Основные цели легирования:

  • повышение прокаливаемости;
  • получение специфических прочностных свойств;
  • вызов желаемых структурных изменений;
  • получение специальных химических или физических свойств;
  • улучшение и упрощение технологии термообработки;
  • повышение коррозионной стойкости и устойчивости к различным температурам.

Исходя из вышесказанного следует, что легирование стали – это металлургический процесс плавки, в ходе которого в него вводятся различные добавки. Добавление легирующих элементов производится двумя способами:

  • Объемным – компоненты проникают в глубинную структуру материала путем их добавления в шихту или расплав.
  • Поверхностный – введение легирующих компонентов только верхний слой стали, на глубину 1-2 мм. Такой способ придает материалу определенные свойства, к примеру, антифрикционные.

Легирование стали-2

Легирующие элементы

  • Хром – увеличивает прочность и твердость, повышает ударную вязкость. В инструментальные стали добавляется для повышения прокаливаемости. В случае нержавеющих сталей – определяет коррозионную стойкость.
  • Никель – повышает прочность и твердость при сохранении высокой ударной вязкости. Понижает пороговую температуру хрупкости. Это влияет на хорошую прокаливаемость сталей, особенно при участии хрома и молибдена.
  • Марганец - повышает твердость и прочность за счет пластических свойств. Марганцевая сталь характеризуются повышенным пределом упругости и более высокой стойкостью к истиранию.
  • Кремний – в металлургическом процессе играет роль раскислителя. Его добавление увеличивает прочность и твердость стали.
  • Молибден – повышает прокаливаемость сталей больше, чем хром и вольфрам. Уменьшает хрупкость металла после высокого отпуска.
  • Алюминий – сильно раскисляет, предотвращает рост аустенитных зерен.
  • Титан – понижает зернистость, что приводит к большей устойчивости к появлению расколов и трещин. Улучшает восприимчивость к металлообработке.

Легирующих добавок может быть несколько, и для получения тех или иных характеристик их введение может производиться на разных этапах плавки.

Помимо того, что в состав стали вводят различные добавки, в самом материале также присутствуют примеси, которые полностью убрать из состава невозможно:

  • Углерод – способствует повышению твердости, прочности и ударостойкости. Однако его превышение в составе металла понижает пластичность и все вышеперечисленные характеристики.
  • Марганец – раскислитель, защищающий от кислорода и серы.
  • Сера – высоким считается ее содержание выше 0,6%, что плохо сказывается на пластичности, прочности, свариваемости и коррозионной устойчивости.
  • Фосфор – ведет к повышению текучести и хрупкости, понижает вязкость и пластичность.
  • Кислород, азот, водород – делают сплав более хрупким, снижают показатели его выносливости.

Легирование стали-3

Применение

Благодаря таким характеристикам, как прочность, устойчивость к нагрузкам, твердость, уменьшение намагниченности и нужный уровень вязкости, легированную сталь используют в самых разных сферах человеческой деятельности. Из нее производят:

  • медицинские инструменты, в том числе, и режущие;
  • детали с высокой опорной и радиальной нагрузкой;
  • элементы станков для металлообработки;
  • нержавеющую посуду;
  • детали автомобилей;
  • аэрокосмические детали;
  • пресс-формы и другие элементы для горячей штамповки, сохраняющие свои свойства при температуре до + 600 градусов;
  • измерительные приборы и так далее.

Классификация легированных сталей

Принимая принцип разделения по структуре, образованной в условиях медленного охлаждения стали в диапазоне температур, близких к солидусу, или в отожженном состоянии, сталь можно классифицировать следующим образом:

  • подевтектоид с ферритно-перлитной структурой;
  • эвтектоид с перлитной структурой;
  • гиперэвтектоид, содержащий вторичные карбиды, отделенные от аустенита;
  • ледебуритная сталь, в структуре которой встречаются первичные карбиды, выделившиеся при кристаллизации;
  • ферритная или аустенитная с осаждением карбидов или интерметаллических фаз. Обычно это стали с высоким содержанием легирующих элементов и низким содержанием углерода;
  • ферритно-мартенситная или ферритно-аустенитная сталь с наиболее часто высокотемпературным ферритом δ.

Все марки легированных сталей разделяют на три подвида в зависимости от количества полезных примесей:

  • Низколегированная – процентное содержание добавок около 2,5%. Прибавление некоторых положительных качеств при практически неизменных основных характеристиках.
  • Среднелегированная – процентное содержание добавок около 10%. Наиболее часто используемое соединение.
  • Высоколегированная – процентное содержание добавок варьируется от 10 до 50%. Высоколегированная сталь является максимально прочной и дорогой.

Независимо от того, какое процентное содержание добавок в составе металла, сталь разделяется на 3 подвида:

  1. Инструментальная – жаропрочный материал, используемый при производстве станочных и ручных инструментов (сверла, фрезы, стальные резцы и так далее).
  2. Конструкционная – прочная сталь, способная выдерживать высокие динамические и статические нагрузки. Используется при изготовлении двигателей и стальных механизмов в машиностроении, применяется в сфере строительства и станкостроения.
  3. С особыми свойствами – сталь, отличающаяся химической и термической устойчивостью (нержавеющая, кислотостойкая, магнитная, износостойкая, трансформаторная и другие виды). Ряд исследователей предлагают отдельное деление для данного вида сталей:
  • Жаропрочные – способны выдерживать температуру до 1000 градусов.
  • Окалиностойкие и жароустойчивые – стали, невосприимчивы к распаду.
  • Устойчивые к коррозии – применяются при производстве изделий, работающих в условиях высокой влажности.

Марки

В СНГ используется буквенно-цифровая маркировка легированных сталей. Буквами обозначают основные легирующие добавки, цифрами, идущими следом за буквами, обозначают процент их содержания в сплаве (округляя до целого числа). Если в металле присутствует не более 1,5% той или иной добавки, цифра не ставится. Процентное содержание углерода × 100 указывается вначале наименования стали. Буква A, стоящая в середине маркировки, указывает на содержание азота. Если две буквы A стоят в конце, это указывает на особо чистую сталь. Буква Ш в конце обозначает сталь особо высокого качества.

Маркировка может быть дополнена и другими обозначениями, к примеру:

  • Э — электротехническая;
  • P — быстрорежущая;
  • A — автоматная;
  • Л — полученная литьем.

Исчерпывающие перечни марок легированной стали указаны в ГОСТ 4543-71.

Оформите заявку на сайте, мы свяжемся с вами в ближайшее время и ответим на все интересующие вопросы.

Легирующие элементы и примеси в сталях: краткий справочник

Характеристики углеродистых сталей далеко не всегда соответствуют требованиям, которые предъявляют к материалам различные отрасли промышленности. Чтобы откорректировать их свойства, используют легирование.

Чем отличаются легирующие элементы от примесей

В углеродистых сталях, помимо основных элементов – железа и углерода, есть и другие: марганец, сера, фосфор, кремний, водород и прочие. Их считают примесями и делят на несколько групп:

  • К постоянным относят серу, фосфор, марганец и кремний. Они всегда содержатся в стали в небольших количествах, попадая в нее из чугуна или используясь в качестве раскислителей.
  • К скрытым относят водород, кислород и азот. Они тоже присутствуют в любой стали, попадая в нее при выплавке.
  • К случайным относят медь, мышьяк, свинец, цинк, олово и прочие элементы. Они попадают в сталь из шихтовых материалов и считаются особенностью руды.

Для каждой из перечисленных примесей характерно определенное процентное содержание. Так, марганца в стали, как правило, не более 0,8 %, кремния – не более 0,4 %, фосфора – не более 0,025 %, серы – не более 0,05 %. Если обычного содержания некоторых элементов недостаточно, для получения сталей с нужными свойствами в них дополнительно вносят в определенных количествах специальные примеси, которые называют легирующими добавками.

Выплавка стали

Химический состав стали, формируемый в процессе выплавки, напрямую влияет на ее механические свойства

Как примеси влияют на свойства сталей

Примеси оказывают разное влияние на характеристики сталей:

  • Углерод (С) повышает твердость, прочность и упругость сталей, но снижает их пластичность.
  • Кремний (Si) при содержании в стали до 0,4 % и марганец при содержании до 0,8 % не оказывают заметного влияния на свойства.
  • Фосфор (P) увеличивает прочность и коррозионную стойкость сталей, но снижает их пластичность и вязкость.
  • Сера (S) повышает хрупкость сталей при высоких температурах, снижает их прочность, пластичность, свариваемость и коррозионную стойкость.
  • Азот (N2) и кислород (O2) уменьшают вязкость и пластичность сталей.
  • Водород (H2) повышает хрупкость сталей.

Как легирующие элементы влияют на свойства сталей

Легирующие добавки вводят в стали для изменения их характеристик:

  • Хром (Cr) повышает твердость, прочность, ударную вязкость, коррозионную стойкость, электросопротивление сталей, одновременно уменьшая их коэффициент линейного расширения и пластичность.
  • Никель (Ni) увеличивает пластичность, вязкость, коррозионную стойкость и ударную прочность сталей.
  • Вольфрам (W) повышает твердость и прокаливаемость сталей.
  • Молибден (Mo) увеличивает упругость, коррозионную стойкость, сопротивляемость сталей растягивающим нагрузкам и улучшает их прокаливаемость.
  • Ванадий (V) повышает прочность, твердость и плотность сталей.
  • Кремний (Si) увеличивает прочность, упругость, электросопротивление, жаростойкость и твердость сталей.
  • Марганец (Mn) повышает твердость, износоустойчивость, ударную прочность и прокаливаемость сталей.
  • Кобальт (Co) увеличивает ударную прочность, жаропрочность и улучшает магнитные свойства сталей.
  • Алюминий (Al) повышает жаростойкость и стойкость сталей к образованию окалины.
  • Титан (Ti) увеличивает прочность, коррозионную стойкость и улучшает обрабатываемость сталей.
  • Ниобий (Nb) повышает коррозионную стойкость и устойчивость сталей к воздействию кислот.
  • Медь (Cu) увеличивает коррозионную стойкость и пластичность сталей.
  • Церий (Ce) повышает пластичность и прочность сталей.
  • Неодим (Nd), цезий (Cs) и лантан (La) снижают пористость сталей и улучшают качество поверхности.

Виды легированных сталей

В зависимости от содержания легирующих элементов, стали делят на три вида:

  1. Если легирующих элементов менее 2,5 %, стали относят к низколегированным.
  2. При их содержании от 2,5 до 10 % стали считаются среднелегированными.
  3. Если легирующих элементов более 10 %, стали относят к высоколегированным.

Заключение

Примеси неизбежно присутствуют в сталях, но ряд из них являются вредными (к ним относятся скрытые примеси), поэтому их содержание стараются минимизировать. Легирующие элементы добавляют в стали целенаправленно для улучшения их свойств или получения специфических характеристик.

Информация о легирующих элементах стали

Каждый отдельный элемент придает стали в зависимости от его доли определенные специфические свойства. В случае присутствия нескольких элементов эффект может быть увеличен. Но существуют варианты сплавов, в которых отдельные элементы в отношении определенного поведения оказывают свое влияние не в одном направлении, а могут противодействовать друг другу. Наличие легирующих элементов в стали создает только предпосылку для желаемых свойств; их можно достичь лишь с помощью переработки и тепловой обработки. Ниже перечислены главные виды влияния, которые оказывают на сталь легирующие и сопутствующие элементы.

Алюминий (Al) Температура плавления 658° C

Это наиболее сильное, очень часто применяемое дезоксидационное и, кроме этого, денитрирующее средство; благодаря этому оно очень благоприятно воздействует на нечувствительность к старению. В небольших добавках он поддерживает образование мелких зерен. Поскольку Al образовывает с азотом нитриды высокой твердости, он является преимущественно легирующим элементом в азотированной стали. Он повышает стойкость к окалинам и поэтому часто добавляется в ферритную жаростойкую сталь. В нелегированной углеродной стали можно с помощью „алитирования“ (добавления Al в поверхность) повысить стойкость к окалинам. Al сильно суживает - зону. Из-за сильного повышения коэрцитивной силы алюминий является легирующим элементом в магнитотвердых сплавах железа, никеля, кобальта, алюминия.

Свинец (Pb) Температура плавления 327.4° C

Добавляется в автоматную сталь в содержании прибл. 0.2-0.5%, поскольку благодаря его чрезвычайно тонкому суспензионному распределению достигается образование краткой стружки и чистой поверхности разреза. Указанные содержания свинца практически не влияют на механические свойства стали.

Бор (B) Температура плавления 2300° C

Поскольку бор имеет большое эффективное поперечное сечение для абсорбции нейтронов, им легируют сталь для регуляторов и экранов в установках по атомной энергии. Аустенитная 18/8 CrNi-сталь может с помощью бора благодаря дисперсионному твердению получить более высокий предел текучести при растяжении и прочность, при чем уменьшается антикоррозионная стойкость. Вызванные бором выделения улучшают прочность высокожаропрочных типов аустенитной стали в зоне повышенных температур. В строительной стали этот элемент улучшает глубокую цементацию и вызывает, таким образом, повышения прочности зерна цементируемой стали. Следует рассчитывать на сокращение сварочных работ в легированной бором стали.

Хром (Cr) Температура плавления 1857° C

Cr делает сталь способной к закалке в масле и воздухе. Вследствие понижения необходимой для образования мартензитов критической скорости охлаждения он повышает закаливаемость и улучшает, таким образом, способность к повышению качества. Однако ударная вязкость уменьшается, но сокращает растяжение лишь немного. Свариваемость сокращается в чистой хромовой стали при увеличении содержания хрома. Прочность стали на растяжение повышается на 80-100 н/мм на каждый 1% Cr. Cr является образователем карбида. Его карбиды повышают стойкость к режущим инструментам и износостойкость. Термическая стойкость и стойкость к напорному водороду увеличиваются благодаря хрому. В то время, как увеличение содержания хрома повышает стойкость к окалинам, для антикоррозионной стойкости стали необходимо минимальное содержание хрома прибл. 13%, который должен быть растворен в матрице. Элемент отсекает зону и расширяет, таким образом, ферритную зону; стабилизирует аустенит в аустенитной стали Cr-Mn- или Cr-Ni. Теплопроводимость и электрическая проводимость уменьшаются. Тепловое расширение понижается (сплавы для впаивания в стекло). При одновременно более высоком содержании углерода содержание хрома до 3% повышает остаточный магнетизм и коэрцитивную силу.

Углерод (C) Температура плавления 3540° C

Углерод является наиболее важным и влиятельным легирующим елементом в стали. Наряду с углеродом каждая нелегированная сталь содержит кремний, марганец, фосфор и серу, которые добавляются при изготовлении непреднамеренно. Добавление дальнейших легирующих элементов для достижения особых эффектов, а также сознательное повышение содержания марганца и кремния вызывает образование легированной стали. При увеличении содержания углерода повышаются прочность и твердость стали, напротив его расширение, ковкость и обрабатываемость уменьшаются (режущими инструментами). Углерод практически не влияет на антикоррозионную стойкость к воде, кислотам и горячим газам.

Медь (Cu) Температура плавления 1084° C

Медь добавляется только к небольшому количеству сортов стали, поскольку она обогащается под слоем окалины и вследствие проникновения в пределы ядра вызывает большую нечувствительность поверхности при процессах тепловой деформации, поэтому она рассматривается частично как вредитель для стали. Предел текучести при растяжении и соотношение предела текучести при растяжении и прочности повышаются. Содержание выше 0.30% может вызвать дисперсионное твердение. Закаливаемость улучшается. Медь не влияет на сварочные работы. В нелегированной и слаболегированной стали благодаря меди достигается значительное улучшение стойкости к атмосферным явлениям.

Марганец (Mn) Температура плавления 1221° C

Марганец дезоксидирует. Он связывает серу как сульфиды марганца и сокращает, таким образом, неблагоприятное влияние сульфида железа. Это имеет особое значение при автоматной стали: опасность красноломкости уменьшается. Марганец очень сильно сокращает скорость охлаждения и, таким образом, повышает закаливаемость. Предел текучести при растяжении, а также прочность благодаря марганцу повышаются, кроме этого, марганец благоприятно влияет на ковкость и свариваемость и сильно увеличивает глубину прокаливемости. Содержание выше 4% вызывают также при медленном охлаждении образование хрупкой мартензитной структуры, так что легирующая зона почти не используется. Сталь с содержанием марганца выше 12% являются при одновременном высоком содержании углерода аустенитной, потому что марганец значительно расширяет зону. Такие виды стали получают при ударной нагрузке поверхности очень высокое холодное упрочнение, в то время, как ядро остается вязким; поэтому они при ударном воздействии имеют высокую износостойкость. Сталь с содержанием марганца выше 18% остаются немагнетизируемыми также после сравнительно сильной холодной обработки давлением и применяется как специальная сталь и как вязкая в холодном состоянии сталь при температурной нагрузке. Под влиянием марганца повышается коэффициент теплового расширения, в то время, как тепловая проводимость и электрическая проводимость понижаются.

Молибден (Mo) Температура плавления 2622° C

Молибден легируют преимущественно вместе с другими элементами. Вследствие сокращения критической скорости охлаждения улучшается закаливаемость. Молибден существенно уменьшает хрупкость отпуска, например, в хромо-никелевой и марганцевой стали, способствует образованию мелкого зерна и благоприятно влияет также на свариваемость. Повышение предела текучести при растяжении и прочности. При высоком содержании молибдена затрудняется ковкость. Сильный образователь карбида; благодаря этому улучшаются режущие свойства быстрорежущей стали. Он принадлежит к тем элементам, которые повышают антикоррозионную стойкость и поэтому часто используется в высоколегированной хромовой стали и аустенитной хромо-никелевой стали; высокое содержание молибдена уменьшает склонность к сквозной коррозии. Очень сильное сужение зоны; повышение теплостойкости, стойкость к окалинам сокращается.

Никель (Ni) Температура плавления 1453° C

Вызывает в строительной стали значительное повышение ударной вязкости образца с надрезом и поэтому легируется для повышения вязкости в цементируемой, улучшенной и вязкой в холодном состоянии стали. Все точки преобразований (A1-A4), понижаются под влиянием никеля; он является образователем карбида. Благодаря сильному расширению зоны никель в химически стойкой стали с содержанием больше 7% придает аустенитную структуру до уровня ниже комнатной температуры. Сам никель с высоким процентным содержанием делает сталь только инертной к коррозии, в аустенитной хромо-никелевой стали создает стойкость к влиянию восстанавливающихся химикатов; стойкость этих видов стали достигается благодаря хрому. Аустенитная сталь имеет при температурах выше 600° C более высокую теплостойкость, поскольку температура её рекристаллизации высокая; она практически не намагничивающаяся. Тепловая проводимость и электрическая проводимость сильно уменьшаются. Высокое содержание никеля в точно ограниченных легирующих зонах создают физическую сталь с определенными физическими свойствами, например, температурное расширение (тип инвар).

Фосфор (P) Температура плавления 44° C

Рассматривается преимущественно как вредитель стали, поскольку фосфор вызывает сильную первичную сегрегацию при затвердении плавки и возможность вторичной сегрегации в твердом состоянии вследствие сильного отсекания зоны. Вследствие сравнительно небольшой скорости диффузии, как и в альфа-, так и в гамма–твёрдом растворе (смешанном кристалле) указанные сегрегации могут с трудом уравновешиваться. Поскольку вряд ли возможно достичь гомогенного распределения фосфора, стремятся удерживать содержание фосфора на очень низком уровне и соответственно в высококачественной стали достигать верхний предел 0.03-0.05%. Размер сегрегации нельзя определить с точностью. Фосфор повышает уже в минимальном содержании чувствительность к хрупкости отпуска. Фосфорная хрупкость увеличивается при увеличении содержания углерода, при увеличении температуры твердения. Размера зерна и при уменьшении степени уковки. Хрупкость появляется как хладноломкость и чувствительность к ударной нагрузке (склонность к хрупкому разрушению). В слаболегированной строительной стали с содержанием углерода прибл. 0.1% фосфор повышает прочность и антикоррозионную стойкость к атмосферным явлениям; медь поддерживает улучшение антикоррозионной стойкости (инертная к коррозии сталь). Добавки фосфора в аустенитную хромо-никелевую сталь вызвать повышение предела текучести при растяжении и эффекты выделения.

Сера (5) Температура плавления 118 0 С

Из всех примесей в стали даёт самую сильную ликвацию. Сульфид железа приводит к красноломкости, или «горячеломкости». поскольку низкоплавкая сульфидная эвтектика в виде сетки охватывает кристаллиты, так что имеет место низкое сцепление последних, и при горячей деформации преимущественно разрушаются границы зерен; эффект усиливается под действие кислорода. Сера имеет особенно высокое сродство к марганцу, ее связывают в виде сульфида марганца, поскольку из всех присутствующих обычно включений он является наименее опасным, распределен в стали точечно и имеет высокую температуру плавления. Сера в среднем существенно снижает вязкость. Серу намеренно добавляют в сталь автоматной обработки в количестве до 0.4%, поскольку благодаря смазывающему действию на режущую кромку уменьшение трения между заготовкой и инструментом позволяет достичь повышения его стойкости. Кроме того, у
автоматных сталей при обработке резанием образуется короткая стружка. Сера усиливает склонность к образованию сварочных трещин.

Кремний (5i) Температура плавления 1414 0 С

Кремний, аналогично марганцу, содержится в любой стали, так как уже железные руды в зависимости от состава вносят его соответствующее количество. Также и собственно при производстве стали кремний из огнеупорной футеровки печи переходит в расплав. Однако кремнистыми называют только такие стали, которые содержат более 0.40% кремния. Кремний не является металлом, но так называемым металлоидом, как, например, фосфор и сера. Кремний раскисляет. Он благоприятствует выпадению графита и сильно сужает гамма-область, повышает
прочность и износостойкость (кремниймарганцовые улучшаемые стали); сильное повышение предела упругости, поэтому целесообразен в качестве легирующей добавки в пружинные стали. Кремний значительно повышает окалиностойкость, так что им легируют жаростойкие стали. Однако вследствие отрицательного влияния на деформацию в горячем и холодном состоянии допустимые содержания ограничиваются. При 12% кремния достигается дополнительная кислотостойкость, однако такие марки могут быть изготовлены только в виде очень твердых и хрупких
отливок, которые могут быть обработаны только шлифованием. Вследствие сильного снижения электропроводности, коэрцитивной силы и активных потерь кремний используется в электротехнических листовых сталях.

Азот (N) Температура плавления –210° C

Этот элемент может проявляться как вредитель для стали, и как легирующий элемент. Вредитель из-за уменьшения вязкости вследствие процессов выделения, увеличения чувствительности к старению и синеломкости (деформация в диапазонах голубой теплоты 300-350° C), а также из-за возможности появления межкристаллитного коррозионного растрескивания в нелегированой и низколегированной стали. В качестве легирующего элемента азот расширяет зону и стабилизирует аустенитную структуру; повышает в аустенитной стали прочность и прежде всего предел текучести при растяжении, а также механические свойства в теплоте. Азот позволяет получить высокую твердость поверхности благодаря образованию нитридов при нитрировании (нитрирование).

Титан (Ti) Температура плавления 1680° C

Благодаря своему высокому химическому сродству с кислородом, серой и углеродом имеет сильное дезоксидирующее действие, сильное денитрирующее действие, серообразующее и сильное карбидобразующее действие. Широко используется в стойкой к коррозии стали в качестве образователя карбида для стабилизации по отношению к межкристаллитной коррозии; имеет, кроме этого, зерноизмельчающие свойства. Tитан очень сильно сужает y-зону. Он в более высоких долях вызывает процессы выделения и благодаря достижению высокой коэрцитивной силы добавляется в магнитотвердые сплавы. Титан повышает длительную прочность благодаря образованию специальных нитридов. Однако титан имеет сильную склонность к сегрегации и образованию строк.

Ванадий (V) Температура плавления 1910° C

Измельчает первичное зерно и, таким образом, структуру литья; сильный образователь карбида, вследствие чего появляется увеличение износостойкости, режущей способности и теплостойкости; поэтому предпочитается использование в качестве дополнительного легирующего элемента в быстрорежущей, теплообрабатываемой и теплостойкой стали. Значительное улучшение твердости после отпуска, уменьшение чувствительности к перегреву. Поскольку ванадий измельчает зерно и вследствие образования карбида тормозит воздушную закалку, он повышает ковкость улучшенной стали. Благодаря образованию карбида повышение стойкости к напорному водороду. Ванадий сужает – зону и перемещает коэффициент Кюри к более высоким температурам.

Читайте также: