Реализация виртуальной памяти в ос может быть осуществлена следующими механизмами
Поэтому вместо загрузки одного длинного процесса в основную память ОС загружает различные части более чем одного процесса в основную память. Виртуальная память в основном реализована с разбивкой по страницам и сегментации.
Из этого руководства по операционной системе вы узнаете:
Зачем нужна виртуальная память?
Вот причины использования виртуальной памяти:
- Всякий раз, когда у вашего компьютера нет места в физической памяти, он записывает то, что ему нужно запомнить, на жесткий диск в файле подкачки в качестве виртуальной памяти.
- Если компьютеру под управлением Windows требуется больше памяти / оперативной памяти, а затем установленному в системе, он использует для этой цели небольшую часть жесткого диска.
Как работает виртуальная память?
В современном мире виртуальная память стала довольно распространенной в наши дни. Он используется всякий раз, когда некоторые страницы требуют загрузки в основную память для выполнения, и память не доступна для этих многих страниц.
Таким образом, в этом случае вместо предотвращения входа страниц в основную память, ОС ищет пространство ОЗУ, минимально используемое в последнее время или на которое не ссылаются во вторичной памяти, чтобы освободить место для новых страниц в основная память.
Давайте разберемся с управлением виртуальной памятью с помощью одного примера.
Например:
Давайте предположим, что ОС требуется 300 МБ памяти для хранения всех запущенных программ. Однако в настоящее время в оперативной памяти хранится только 50 МБ доступной физической памяти.
- Затем ОС установит 250 МБ виртуальной памяти и будет использовать программу, называемую Virtual Memory Manager (VMM), для управления этими 250 МБ.
- Таким образом, в этом случае VMM создаст на жестком диске файл размером 250 МБ для хранения дополнительной необходимой памяти.
- Теперь ОС перейдет к адресной памяти, поскольку она считает 300 МБ реальной памяти, хранящейся в ОЗУ, даже если доступно только 50 МБ.
- Работа VMM заключается в управлении 300 МБ памяти, даже если доступно только 50 МБ реальной памяти.
Что такое пейджинг по требованию?
Таким образом, когда происходит переключение контекста, ОС никогда не копирует ни одной из страниц старой программы с диска или страниц новой программы в основную память. Вместо этого он начнет выполнение новой программы после загрузки первой страницы и извлечет страницы программы, на которые имеются ссылки.
Во время выполнения программы, если программа ссылается на страницу, которая может быть недоступна в основной памяти, поскольку она была заменена, то процессор считает ее недопустимой ссылкой на память. Это происходит из-за сбоя страницы и передачи управления обратно из программы в ОС, что требует сохранения страницы обратно в память.
Типы методов замены страниц
Вот несколько важных методов замены страниц
- ФИФО
- Оптимальный алгоритм
- Замена страницы LRU
Замена страницы FIFO
Особенности:
Оптимальный алгоритм
Оптимальный метод замены страницы выбирает эту страницу для замены, для которой время до следующей ссылки самое большое.
Особенности:
- Оптимальный алгоритм приводит к наименьшему количеству ошибок страниц. Этот алгоритм сложно реализовать.
- Оптимальный метод алгоритма замены страниц имеет наименьшую частоту ошибок страниц среди всех алгоритмов. Этот алгоритм существует и который должен называться MIN или OPT.
- Замените страницу, которую не хотите использовать в течение более длительного периода времени. Используется только время, когда страница должна быть использована.
Замена страницы LRU
Полной формой LRU является страница «Наименее недавно использованные». Этот метод помогает ОС найти страницу за короткий промежуток времени. Этот алгоритм должен быть реализован путем связывания счетчика с четной страницей.
Как это работает?
Особенности:
Частота отказов
Привет, Хабрахабр!
В предыдущей статье я рассказал про vfork() и пообещал рассказать о реализации вызова fork() как с поддержкой MMU, так и без неё (последняя, само собой, со значительными ограничениями). Но прежде, чем перейти к подробностям, будет логичнее начать с устройства виртуальной памяти.
Конечно, многие слышали про MMU, страничные таблицы и TLB. К сожалению, материалы на эту тему обычно рассматривают аппаратную сторону этого механизма, упоминая механизмы ОС только в общих чертах. Я же хочу разобрать конкретную программную реализацию в проекте Embox. Это лишь один из возможных подходов, и он достаточно лёгок для понимания. Кроме того, это не музейный экспонат, и при желании можно залезть “под капот” ОС и попробовать что-нибудь поменять.
Любая программная система имеет логическую модель памяти. Самая простая из них — совпадающая с физической, когда все программы имеют прямой доступ ко всему адресному пространству.
При таком подходе программы имеют доступ ко всему адресному пространству, не только могут “мешать” друг другу, но и способны привести к сбою работы всей системы — для этого достаточно, например, затереть кусок памяти, в котором располагается код ОС. Кроме того, иногда физической памяти может просто не хватить для того, чтобы все нужные процессы могли работать одновременно. Виртуальная память — один из механизмов, позволяющих решить эти проблемы. В данной статье рассматривается работа с этим механизмом со стороны операционной системы на примере ОС Embox. Все функции и типы данных, упомянутые в статье, вы можете найти в исходном коде нашего проекта.
Будет приведён ряд листингов, и некоторые из них слишком громоздки для размещения в статье в оригинальном виде, поэтому по возможности они будут сокращены и адаптированы. Также в тексте будут возникать отсылки к функциям и структурам, не имеющим прямого отношения к тематике статьи. Для них будет дано краткое описание, а более полную информацию о реализации можно найти на вики проекта.
- Расширение реального адресного пространства. Часть виртуальной памяти может быть вытеснена на жёсткий диск, и это позволяет программам использовать больше оперативной памяти, чем есть на самом деле.
- Создание изолированных адресных пространств для различных процессов, что повышает безопасность системы, а также решает проблему привязанности программы к определённым адресам памяти.
- Задание различных свойств для разных участков участков памяти. Например, может существовать неизменяемый участок памяти, видный нескольким процессам.
Аппаратная поддержка
Обращение к памяти хорошо описанно в этой хабростатье. Происходит оно следующим образом:
Процессор подаёт на вход MMU виртуальный адрес
Если MMU выключено или если виртуальный адрес попал в нетранслируемую область, то физический адрес просто приравнивается к виртуальному
Если MMU включено и виртуальный адрес попал в транслируемую область, производится трансляция адреса, то есть замена номера виртуальной страницы на номер соответствующей ей физической страницы (смещение внутри страницы одинаковое):
Если запись с нужным номером виртуальной страницы есть в TLB [Translation Lookaside Buffer], то номер физической страницы берётся из нее же
Если нужной записи в TLB нет, то приходится искать ее в таблицах страниц, которые операционная система размещает в нетранслируемой области ОЗУ (чтобы не было промаха TLB при обработке предыдущего промаха). Поиск может быть реализован как аппаратно, так и программно — через обработчик исключения, называемого страничной ошибкой (page fault). Найденная запись добавляется в TLB, после чего команда, вызвавшая промах TLB, выполняется снова.
Таким образом, при обращении программы к тому или иному участку памяти трансляция адресов производится аппаратно. Программная часть работы с MMU — формирование таблиц страниц и работа с ними, распределение участков памяти, установка тех или иных флагов для страниц, а также обработка page fault, ошибки, которая происходит при отсутствии страницы в отображении.
В тексте статьи в основном будет рассматриваться трёхуровневая модель памяти, но это не является принципиальным ограничением: для получения модели с бóльшим количеством уровней можно действовать аналогичным образом, а особенности работы с меньшим количеством уровней (как, например, в архитектуре x86 — там всего два уровня) будут рассмотрены отдельно.
Программная поддержка
- Выделение физических страниц из некоторого зарезервированного участка памяти
- Внесение соответствующих изменений в таблицы виртуальной памяти
- Сопоставление участков виртуальной памяти с процессами, выделившими их
- Проецирование региона физической памяти на виртуальный адрес
Виртуальный адрес
Page Global Directory (далее — PGD) — таблица (здесь и далее — то же самое, что директория) самого высокого уровня, каждая запись в ней — ссылка на Page Middle Directory (PMD), записи которой, в свою очередь, ссылаются на таблицу Page Table Entry (PTE). Записи в PTE ссылаются на реальные физические адреса, а также хранят флаги состояния страницы.
То есть, при трёхуровневой иерархии памяти виртуальный адрес будет выглядеть так:
Значения полей PGD, PMD и PTE — это индексы в соответствующих таблицах (то есть сдвиги от начала этих таблиц), а offset — это смещение адреса от начала страницы.
В зависимости от архитектуры и режима страничной адресации, количество битов, выделяемых для каждого из полей, может отличаться. Кроме того, сама страничная иерархия может иметь число уровней, отличное от трёх: например, на x86 нет PMD.
Для обеспечения переносимости мы задали границы этих полей с помощью констант: MMU_PGD_SHIFT, MMU_PMD_SHIFT, MMU_PTE_SHIFT, которые в приведённой выше схеме равны 24, 18 и 12 соответственно их определение дано в заголовочном файле src/include/hal/mmu.h. В дальнейшем будет рассматриваться именно этот пример.
На основании сдвигов PGD, PMD и PTE вычисляются соответствующие маски адресов.
Эти макросы даны в том же заголовочном файле.
Для работы с виртуальной таблицами виртуальной памяти в некоторой области памяти хранятся указатели на все PGD. При этом каждая задача хранит в себе контекст struct mmu_context, который, по сути, является индексом в этой таблице. Таким образом, к каждой задаче относится одна таблица PGD, которую можно определить с помощью mmu_get_root(ctx).
Размер страницы
В реальных (то есть не в учебных) системах используются страницы от 512 байт до 64 килобайт. Чаще всего размер страницы определяется архитектурой и является фиксированным для всей системы, например — 4 KiB.
С одной стороны, при меньшем размере страницы память меньше фрагментируется. Ведь наименьшая единица виртуальной памяти, которая может быть выделена процессу — это одна страница, а программам очень редко требуется целое число страниц. А значит, в последней странице, которую запросил процесс, скорее всего останется неиспользуемая память, которая, тем не менее, будет выделена, а значит — использована неэффективно.
С другой стороны, чем меньше размер страницы, тем больше размер страничных таблиц. Более того, при отгрузке на HDD и при чтении страниц с HDD быстрее получится записать несколько больших страниц, чем много маленьких такого же суммарного размера.
Отдельного внимания заслуживают так называемые большие страницы: huge pages и large pages [вики] .
Платформа | Размер обычной страницы | Размер страницы максимально возможного размера |
x86 | 4KB | 4MB |
x86_64 | 4KB | 1GB |
IA-64 | 4KB | 256MB |
PPC | 4KB | 16GB |
SPARC | 8KB | 2GB |
ARMv7 | 4KB | 16MB |
Действительно, при использовании таких страниц накладные расходы памяти повышаются. Тем не менее, прирост производительности программ в некоторых случаях может доходить до 10% [ссылка] , что объясняется меньшим размером страничных директорий и более эффективной работой TLB.
В дальнейшем речь пойдёт о страницах обычного размера.
Устройство Page Table Entry
В реализации проекта Embox тип mmu_pte_t — это указатель.
Каждая запись PTE должна ссылаться на некоторую физическую страницу, а каждая физическая страница должна быть адресована какой-то записью PTE. Таким образом, в mmu_pte_t незанятыми остаются MMU_PTE_SHIFT бит, которые можно использовать для сохранения состояния страницы. Конкретный адрес бита, отвечающего за тот или иной флаг, как и набор флагов в целом, зависит от архитектуры.
- MMU_PAGE_WRITABLE — Можно ли менять страницу
- MMU_PAGE_SUPERVISOR — Пространство супер-пользователя/пользователя
- MMU_PAGE_CACHEABLE — Нужно ли кэшировать
- MMU_PAGE_PRESENT — Используется ли данная запись директории
Можно установить сразу несколько флагов:
Здесь vmem_page_flags_t — 32-битное значение, и соответствующие флаги берутся из первых MMU_PTE_SHIFT бит.
Трансляция виртуального адреса в физический
Как уже писалось выше, при обращении к памяти трансляция адресов производится аппаратно, однако, явный доступ к физическим адресам может быть полезен в ряде случаев. Принцип поиска нужного участка памяти, конечно, такой же, как и в MMU.
Для того, чтобы получить из виртуального адреса физический, необходимо пройти по цепочке таблиц PGD, PMD и PTE. Функция vmem_translate() и производит эти шаги.
Сначала проверяется, есть ли в PGD указатель на директорию PMD. Если это так, то вычисляется адрес PMD, а затем аналогичным образом находится PTE. После выделения физического адреса страницы из PTE необходимо добавить смещение, и после этого будет получен искомый физический адрес.
Пояснения к коду функции.
mmu_paddr_t — это физический адрес страницы, назначение mmu_ctx_t уже обсуждалось выше в разделе “Виртуальный адрес”.
С помощью функции vmem_get_idx_from_vaddr() находятся сдвиги в таблицах PGD, PMD и PTE.
Работа с Page Table Entry
Для работы с записей в таблице страниц, а так же с самими таблицами, есть ряд функций:
Эти функции возвращают 1, если у соответствующей структуры установлен бит MMU_PAGE_PRESENT
Page Fault
Page fault — это исключение, возникающее при обращении к странице, которая не загружена в физическую память — или потому, что она была вытеснена, или потому, что не была выделена.
В операционных системах общего назначения при обработке этого исключения происходит поиск нужной странице на внешнем носителе (жёстком диске, к примеру).
В нашей системе все страницы, к которым процесс имеет доступ, считаются присутствующими в оперативной памяти. Так, например, соответствующие сегменты .text, .data, .bss; куча; и так далее отображаются в таблицы при инициализации процесса. Данные, связанные с потоками (например, стэк), отображаются в таблицы процесса при создании потоков.
Выталкивание страниц во внешнюю память и их чтение в случае page fault не реализовано. С одной стороны, это лишает возможности использовать больше физической памяти, чем имеется на самом деле, а с другой — не является актуальной проблемой для встраиваемых систем. Нет никаких ограничений, делающих невозможной реализацию данного механизма, и при желании читатель может попробовать себя в этом деле :)
Для виртуальных страниц и для физических страниц, которые могут быть использованы при работе с виртуальной памятью, статически резервируется некоторое место в оперативной памяти. Тогда при выделении новых страниц и директорий они будут браться именно из этого места.
Исключением является набор указателей на PGD для каждого процесса (MMU-контексты процессов): этот массив хранится отдельно и используется при создании и разрушении процесса.
Выделение страниц
Итак, выделить физическую страницу можно с помощью vmem_alloc_page
Функция page_alloc() ищет участок памяти из N незанятых страниц и возвращает физический адрес начала этого участка, помечая его как занятый. В приведённом коде virt_page_allocator ссылается на участок памяти, резервированной для выделения физических страниц, а 1 — количество необходимых страниц.
Выделение таблиц
Тип таблицы (PGD, PMD, PTE) не имеет значения при аллокации. Более того, выделение таблиц производится также с помощью функции page_alloc(), только с другим аллокатором (virt_table_allocator).
После добавления страниц в соответствующие таблицы нужно уметь сопоставлять участки памяти с процессами, к которым они относятся. У нас в системе процесс представлен структурой task, содержащей всю необходимую информацию для работы ОС с процессом. Все физически доступные участки адресного пространства процесса записываются в специальный репозиторий: task_mmap. Он представляет из себя список дескрипторов этих участков (регионов), которые могут быть отображены на виртуальную память, если включена соответствующая поддержка.
brk — это самый большой из всех физических адресов репозитория, данное значение необходимо для ряда системных вызовов, которые не будут рассматриваться в данной статье.
ctx — это контекст задачи, использование которого обсуждалось в разделе “Виртуальный адрес”.
struct dlist_head — это указатель на начало двусвязного списка, организация которого аналогична организации Linux Linked List.
За каждый выделенный участок памяти отвечает структура marea
Поля данной структуры имеют говорящие имена: адреса начала и конца данного участка памяти, флаги региона памяти. Поле mmap_link нужно для поддержания двусвязного списка, о котором говорилось выше.
Ранее уже рассказывалось о том, как происходит выделение физических страниц, какие данные о виртуальной памяти относятся к задаче, и теперь всё готово для того, чтобы говорить о непосредственном отображении виртуальных участков памяти на физические.
Отображение виртуальных участков памяти на физическую память подразумевает внесение соответствующих изменений в иерархию страничных директорий.
Подразумевается, что некоторый участок физической памяти уже выделен. Для того, чтобы выделить соответствующие виртуальные страницы и привязать их к физическим, используется функция vmem_map_region()
В качестве параметров передаётся контекст задачи, адрес начала физического участка памяти, а также адрес начала виртуального участка. Переменная flags содержит флаги, которые будут установлены у соответствующих записей в PTE.
Основную работу на себя берёт do_map_region(). Она возвращает 0 при удачном выполнении и код ошибки — в ином случае. Если во время маппирования произошла ошибка, то часть страниц, которые успели выделиться, нужно откатить сделанные изменения с помощью функции vmem_unmap_region(), которая будет рассмотрена позднее.
Рассмотрим функцию do_map_region() подробнее.
Макросы GET_PTE и GET_PMD нужны для лучшей читаемости кода. Они делают следующее: если в таблице памяти нужный нам указатель не ссылается на существующую запись, нужно выделить её, если нет — то просто перейти по указателю к следующей записи.
В самом начале необходимо проверить, выровнены ли под размер страницы размер региона, физический и виртуальный адреса. После этого определяется PGD, соответствующая указанному контексту, и извлекаются сдвиги из виртуального адреса (более подробно это уже обсуждалось выше).
Затем последовательно перебираются виртуальные адреса, и в соответствующих записях PTE к ним привязывается нужный физический адрес. Если в таблицах отсутствуют какие-то записи, то они будут автоматически сгенерированы при вызове вышеупомянутых макросов GET_PTE и GET_PMD.
После того, как участок виртуальной памяти был отображён на физическую, рано или поздно её придётся освободить: либо в случае ошибки, либо в случае завершения работы процесса.
Изменения, которые при этом необходимо внести в структуру страничной иерархии памяти, производятся с помощью функции vmem_unmap_region().
Все параметры функции, кроме последнего, должны быть уже знакомы. free_pages отвечает за то, должны ли быть удалены страничные записи из таблиц.
try_free_pte, try_free_pmd, try_free_pgd — это вспомогательные функции. При удалении очередной страницы может выясниться, что директория, её содержащая, могла стать пустой, а значит, её нужно удалить из памяти.
Исходный код функций try_free_pte, try_free_pmd, try_free_pgd
нужны как раз для случая двухуровневой иерархии памяти.
Конечно, данной статьи не достаточно, чтобы с нуля организовать работу с MMU, но, я надеюсь, она хоть немного поможет погрузиться в OSDev тем, кому он кажется слишком сложным.
Необходимым условием для того, чтобы программа могла выполняться, является ее нахождение в оперативной памяти. Объем оперативной памяти, который имеется в компьютере, существенно сказывается на характере протекания вычислительного процесса. Он ограничивает число одновременно выполняющихся программ и размеры их виртуальных адресных пространств. В некоторых случаях, когда все задачи мультипрограммной смеси являются вычислительными (то есть выполняют относительно мало операций ввода-вывода, разгружающих центральный процессор), для хорошей загрузки процессора может оказаться достаточным всего 3-5 задач. Однако если вычислительная система загружена выполнением интерактивных задач, то для эффективного использования процессора может потребоваться уже несколько десятков, а то и сотен задач.
Большое количество задач, необходимое для высокой загрузки процессора, требует большого объема оперативной памяти. В условиях, когда для обеспечения приемлемого уровня мультипрограммирования имеющейся оперативной памяти недостаточно, был предложен метод организации вычислительного процесса, при котором образы некоторых процессов целиком или частично временно выгружаются на диск.
В мультипрограммном режиме помимо активного процесса, то есть процесса, коды которого в настоящий момент интерпретируются процессором, имеются приостановленные процессы, находящиеся в ожидании завершения ввода-вывода или освобождения ресурсов, а также процессы в состоянии готовности, стоящие в очереди к процессору. Образы таких неактивных процессов могут быть временно, до следующего цикла активности, выгружены на диск. Несмотря на то что коды и данные процесса отсутствуют в оперативной памяти, ОС «знает» о его существовании и в полной мере учитывает это при распределении процессорного времени и других системных ресурсов. К моменту, когда подходит очередь выполнения выгруженного процесса, его образ возвращается с диска в оперативную память. Если при этом обнаруживается, что свободного места в оперативной памяти не хватает, то на диск выгружается другой процесс.
Такая подмена (виртуализация) оперативной памяти дисковой памятью позволяет повысить уровень мультипрограммирования - объем оперативной памяти компьютера теперь не столь жестко ограничивает количество одновременно выполняемых процессов, поскольку суммарный объем памяти, занимаемой образами этих процессов, может существенно превосходить имеющийся объем оперативной памяти. В данном случае в распоряжение прикладного программиста предоставляется виртуальная оперативная память, размер которой намного превосходит всю имеющуюся в системе реальную оперативную память. Пользователь пишет программу, а транслятор, используя виртуальные адреса, переводит ее в машинные коды так, как будто в распоряжении программы имеется однородная оперативная память большого объема. В действительности же все коды и данные, используемые программой, хранятся на дисках и только при необходимости загружаются в реальную оперативную память. Понятно, что работа такой «оперативной памяти» происходит значительно медленнее.
Виртуализация оперативной памяти осуществляется совокупностью программных модулей ОС и аппаратных схем процессора и включает решение следующих задач:
· размещение данных в запоминающих устройствах разного типа, например часть кодов программы - в оперативной памяти, а часть - на диске;
· выбор образов процессов или их частей для перемещения из оперативной памяти на диск и обратно;
· перемещение по мере необходимости данных между памятью и диском;
· преобразование виртуальных адресов в физические.
Очень важно то, что все действия по организации совместного использования диска и оперативной памяти - выделение места для перемещаемых фрагментов, настройка адресов, выбор кандидатов на загрузку и выгрузку - осуществляются операционной системой и аппаратурой процессора автоматически, без участия программиста, и никак не сказываются на логике работы приложений.
Виртуализация памяти может быть осуществлена на основе двух различных подходов:
· свопинг (swapping) -образы процессов выгружаются на диск и возвращаются в оперативную память целиком;
· виртуальная память (virtual memory) -между оперативной памятью и диском перемещаются части (сегменты, страницы и т. п.) образов про-цессов.
Свопинг представляет собой частный случай виртуальной памяти и, следовательно, более простой в реализации способ совместного использования оперативной памяти и диска. Однако подкачке свойственна избыточность: когда ОС решает активизировать процесс, для его выполнения, как правило, не требуется загружать в оперативную память все его сегменты полностью - достаточно загрузить небольшую часть кодового сегмента с подлежащей выполнению инструкцией и частью сегментов данных, с которыми работает эта инструкция, а также отвести место под сегмент стека. Аналогично при освобождении памяти для загрузки нового процесса очень часто вовсе не требуется выгружать другой процесс на диск целиком, достаточно вытеснить на диск только часть его образа. Перемещение избыточной информации замедляет работу системы, а также приводит к неэффективному использованию памяти. Кроме того, системы, поддерживающие свопинг, имеют еще один очень существенный недостаток: они не способны загрузить для выполнения процесс, виртуальное адресное пространство которого превышает имеющуюся в наличии свободную память. Именно из-за указанных недостатков свопинг как основной механизм управления памятью почти не используется в современных ОС. На смену ему пришел более совершенный механизм виртуальной памяти, который, как уже было сказано, заключается в том, что при нехватке места в оперативной памяти на диск выгружаются только части образов процессов.
Ключевой проблемой виртуальной памяти, возникающей в результате многократного изменения местоположения в оперативной памяти образов процессов или их частей, является преобразование виртуальных адресов в физические. Решение этой проблемы, в свою очередь, зависит от того, какой способ структуризации виртуального адресного пространства принят в данной системе управления памятью. В настоящее время все множество реализаций виртуальной памяти может быть представлено тремя классами.
· Страничная виртуальная память организует перемещение данных между памятью и диском страницами - частями виртуального адресного пространства, фиксированного и сравнительно небольшого размера.
· Сегментная виртуальная память предусматривает перемещение данных сегментами - частями виртуального адресного пространства произвольного размера, полученными с учетом смыслового значения данных.
· Сегментно-страничная виртуальная память использует двухуровневое деление: виртуальное адресное пространство делится на сегменты, а затем сегменты делятся на страницы. Единицей перемещения данных здесь является страница. Этот способ управления памятью объединяет в себе элементы обоих предыдущих подходов.
Для временного хранения сегментов и страниц на диске отводится либо специальная область, либо специальный файл, которые во многих ОС по традиции продолжают называть областью или файлом свопинга, хотя перемещение информации между оперативной памятью и диском осуществляется уже не в форме полного замещения одного процесса другим, а частями. Другое популярное название этой области - страничный файл (page file, или paging file). Текущий размер страничного файла является важным параметром, оказывающим влияние на возможности операционной системы: чем больше страничный файл, тем больше приложений может одновременно выполнять ОС (при фиксированном размере оперативной памяти). Размер страничного файла в современных ОС является настраиваемым параметром, который выбирается администратором системы для достижения компромисса между уровнем мультипрограммирования и быстродействием системы.
Виртуальное адресное пространство каждого процесса делится на части одинакового, фиксированного для данной системы размера, называемые виртуальными страницами. В общем случае размер виртуального адресного пространства не является кратным размеру страницы, поэтому последняя страница каждого процесса дополняется фиктивной областью.
Вся оперативная память машины также делится на части такого же размера, называемые физическими страницами (или блоками).
Размер страницы обычно выбирается равным степени двойки: 512, 1024 и т.д., это позволяет упростить механизм преобразования адресов.
|
При загрузке процесса часть его виртуальных страниц помещается в оперативную память, а остальные - на диск. Смежные виртуальные страницы не обязательно располагаются в смежных физических страницах. При загрузке операционная система создает для каждого процесса информационную структуру - таблицу страниц, в которой устанавливается соответствие между номерами виртуальных и физических страниц для страниц, загруженных в оперативную память, или делается отметка о том, что виртуальная страница выгружена на диск. Кроме того, в таблице страниц содержится управляющая информация, такая как признак модификации страницы, признак невыгружаемости (выгрузка некоторых страниц может быть запрещена), признак обращения к странице (используется для подсчета числа обращений за определенный период времени) и другие данные, формируемые и используемые механизмом виртуальной памяти.
При активизации очередного процесса в специальный регистр процессора загружается адрес таблицы страниц данного процесса.
При каждом обращении к памяти происходит чтение из таблицы страниц информации о виртуальной странице, к которой произошло обращение. Если данная виртуальная страница находится в оперативной памяти, то выполняется преобразование виртуального адреса в физический. Если же нужная виртуальная страница в данный момент выгружена на диск, то происходит так называемое страничное прерывание. Выполняющийся процесс переводится в состояние ожидания, и активизируется другой процесс из очереди готовых. Параллельно программа обработки страничного прерывания находит на диске требуемую виртуальную страницу и пытается загрузить ее в оперативную память. Если в памяти имеется свободная физическая страница, то загрузка выполняется немедленно, если же свободных страниц нет, то решается вопрос, какую страницу следует выгрузить из оперативной памяти.
В данной ситуации может быть использовано много разных критериев выбора, наиболее популярные из них следующие:
- дольше всего не использовавшаяся страница,
- первая попавшаяся страница,
- страница, к которой в последнее время было меньше всего обращений.
В некоторых системах используется понятие рабочего множества страниц. Рабочее множество определяется для каждого процесса и представляет собой перечень наиболее часто используемых страниц, которые должны постоянно находиться в оперативной памяти и поэтому не подлежат выгрузке.
После того, как выбрана страница, которая должна покинуть оперативную память, анализируется ее признак модификации (из таблицы страниц). Если выталкиваемая страница с момента загрузки была модифицирована, то ее новая версия должна быть переписана на диск. Если нет, то она может быть просто уничтожена, то есть соответствующая физическая страница объявляется свободной.
Рассмотрим механизм преобразования виртуального адреса в физический при страничной организации памяти (рис. 2.15).
Виртуальный адрес при страничном распределении может быть представлен в виде пары (p, s), где p - номер виртуальной страницы процесса (нумерация страниц начинается с 0), а s - смещение в пределах виртуальной страницы. Учитывая, что размер страницы равен 2 в степени к, смещение s может быть получено простым отделением k младших разрядов в двоичной записи виртуального адреса. Оставшиеся старшие разряды представляют собой двоичную запись номера страницы p.
При каждом обращении к оперативной памяти аппаратными средствами выполняются следующие действия:
1. На основании начального адреса таблицы страниц (содержимое регистра адреса таблицы страниц), номера виртуальной страницы (старшие разряды виртуального адреса) и длины записи в таблице страниц (системная константа) определяется адрес нужной записи в таблице.
2. Из этой записи извлекается номер физической страницы.
3. К номеру физической страницы присоединяется смещение (младшие разряды виртуального адреса).
Использование в пункте (3) того факта, что размер страницы равен степени 2, позволяет применить операцию конкатенации (присоединения) вместо более длительной операции сложения, что уменьшает время получения физического адреса, а значит, повышает производительность компьютера.
На производительность системы со страничной организацией памяти влияют временные затраты, связанные с обработкой страничных прерываний и преобразованием виртуального адреса в физический. При часто возникающих страничных прерываниях система может тратить большую часть времени впустую, на свопинг страниц. Чтобы уменьшить частоту страничных прерываний, следовало бы увеличивать размер страницы. Кроме того, увеличение размера страницы уменьшает размер таблицы страниц, а значит уменьшает затраты памяти. С другой стороны, если страница велика, значит велика и фиктивная область в последней виртуальной странице каждой программы. В среднем на каждой программе теряется половина объема страницы, что в сумме при большой странице может составить существенную величину. Время преобразования виртуального адреса в физический в значительной степени определяется временем доступа к таблице страниц. В связи с этим таблицу страниц стремятся размещать в "быстрых" запоминающих устройствах. Это может быть, например, набор специальных регистров или память, использующая для уменьшения времени доступа ассоциативный поиск и кэширование данных.
Страничное распределение памяти может быть реализовано в упрощенном варианте, без выгрузки страниц на диск. В этом случае все виртуальные страницы всех процессов постоянно находятся в оперативной памяти. Такой вариант страничной организации хотя и не предоставляет пользователю виртуальной памяти, но почти исключает фрагментацию за счет того, что программа может загружаться в несмежные области, а также того, что при загрузке виртуальных страниц никогда не образуется остатков.
При страничной организации виртуальное адресное пространство процесса делится механически на равные части. Это не позволяет дифференцировать способы доступа к разным частям программы (сегментам), а это свойство часто бывает очень полезным. Например, можно запретить обращаться с операциями записи и чтения в кодовый сегмент программы, а для сегмента данных разрешить только чтение. Кроме того, разбиение программы на "осмысленные" части делает принципиально возможным разделение одного сегмента несколькими процессами. Например, если два процесса используют одну и ту же математическую подпрограмму, то в оперативную память может быть загружена только одна копия этой подпрограммы.
Рассмотрим, каким образом сегментное распределение памяти реализует эти возможности (рис. 2.16). Виртуальное адресное пространство процесса делится на сегменты, размер которых определяется программистом с учетом смыслового значения содержащейся в них информации. Отдельный сегмент может представлять собой подпрограмму, массив данных и т.п. Иногда сегментация программы выполняется по умолчанию компилятором.
При загрузке процесса часть сегментов помещается в оперативную память (при этом для каждого из этих сегментов операционная система подыскивает подходящий участок свободной памяти), а часть сегментов размещается в дисковой памяти. Сегменты одной программы могут занимать в оперативной памяти несмежные участки. Во время загрузки система создает таблицу сегментов процесса (аналогичную таблице страниц), в которой для каждого сегмента указывается начальный физический адрес сегмента в оперативной памяти, размер сегмента, правила доступа, признак модификации, признак обращения к данному сегменту за последний интервал времени и некоторая другая информация. Если виртуальные адресные пространства нескольких процессов включают один и тот же сегмент, то в таблицах сегментов этих процессов делаются ссылки на один и тот же участок оперативной памяти, в который данный сегмент загружается в единственном экземпляре.
Система с сегментной организацией функционирует аналогично системе со страничной организацией: время от времени происходят прерывания, связанные с отсутствием нужных сегментов в памяти, при необходимости освобождения памяти некоторые сегменты выгружаются, при каждом обращении к оперативной памяти выполняется преобразование виртуального адреса в физический. Кроме того, при обращении к памяти проверяется, разрешен ли доступ требуемого типа к данному сегменту.
Виртуальный адрес при сегментной организации памяти может быть представлен парой (g, s), где g - номер сегмента, а s - смещение в сегменте. Физический адрес получается путем сложения начального физического адреса сегмента, найденного в таблице сегментов по номеру g, и смещения s.
Недостатком данного метода распределения памяти является фрагментация на уровне сегментов и более медленное по сравнению со страничной организацией преобразование адреса.
Как видно из названия, данный метод представляет собой комбинацию страничного и сегментного распределения памяти и, вследствие этого, сочетает в себе достоинства обоих подходов. Виртуальное пространство процесса делится на сегменты, а каждый сегмент в свою очередь делится на виртуальные страницы, которые нумеруются в пределах сегмента. Оперативная память делится на физические страницы. Загрузка процесса выполняется операционной системой постранично, при этом часть страниц размещается в оперативной памяти, а часть на диске. Для каждого сегмента создается своя таблица страниц, структура которой полностью совпадает со структурой таблицы страниц, используемой при страничном распределении. Для каждого процесса создается таблица сегментов, в которой указываются адреса таблиц страниц для всех сегментов данного процесса. Адрес таблицы сегментов загружается в специальный регистр процессора, когда активизируется соответствующий процесс.
Презентацию к данной лекции Вы можете скачать здесь.
Введение
Виртуальная память – распространенная стратегия распределения памяти , используемая во всех современных операционных системах, основанная на идее расширения физической памяти путем размещения расширенной памяти на диске и использования таблиц страниц (или сегментов) для трансляции адресов . В лекции рассмотрены следующие вопросы:
- Мотивировка концепции виртуальной памяти;
- Потребность в страничной организации ;
- Создание процесса и его пространства виртуальной памяти;
- Замена страницы;
- Размещение фреймов;
- Thrashing ;
- Примеры организации виртуальной памяти в различных ОС.
Мотивировка концепции виртуальной памяти
Концепция виртуальной памяти основана на идеях отделения логической памяти пользователя от физической памяти и расширения логической памяти путем хранения ее образа на диске.
При исполнении программы только часть ее кода и данных, к которым происходит обращение, в каждый момент требует размещения в физической памяти. Поэтому, естественно, возникает идея расширить пространство логической памяти, которое может быть реализовано намного большего размера, чем физическая память . Это и есть основной принцип организации виртуальной памяти.
Виртуальная память поддерживает совместное использование одного и того же адресного пространства более чем одним процессом, создание и исполнение облегченных процессов в общем пространстве виртуальной памяти.
Виртуальная память допускает более эффективное создание процесса , чем предшествующие схемы организации памяти и процессов.
Заметим, что концепция виртуальной памяти непосредственно не связана ни со страничной, ни с сегментной стратегиями распределения памяти . Виртуальная память может быть реализована различными способами, например, с помощью:
- страничной организации по требованию (paging on demand);
- сегментной организации по требованию (segmentation on demand).
В приведенных терминах подчеркивается динамический характер управления виртуальной памятью: термин по требованию означает, что страница или сегмент будут размещены в физической памяти только в случае, если к ним реально происходит обращение из программы пользователя. Причем если размер обрабатываемой области виртуальной памяти (например, массива) очень велик – например, 1000 страниц, то в физической памяти будет размещена только та его страница, к которой обращается пользовательская программа .
Принцип управления виртуальной памятью иллюстрируется рис. 18.1.
увеличить изображение
Рис. 18.1. Виртуальная память и физическая память.
Из схемы видно, что виртуальная память , как предполагается, больше, чем физическая память . Взаимодействие между частями виртуальной памяти и физической памяти происходит через отображение памяти – системную таблицу (сегментов, страниц и т.п.). Образ виртуальной памяти процесса хранится на диске.
Страничная организация по требованию
Принцип реализации виртуальной памяти в виде страничной организации по требованию заключается в том, что каждая страница загружается в память , только если она реально требуется при выполнении программы – содержит код или данные, к которым произошло обращение.
Преимущества данного подхода:
- Меньший объем ввода-вывода: В память подкачивается только минимально необходимый объем данных (например, одна страница большого массива, а не весь многостраничный массив);
- Меньший объем памяти: При данном способе расходуется минимально необходимый объем физической памяти;
- Более быстрая реакция системы: Поскольку объем пересылаемых данных меньше, система в среднем быстрее реагирует на каждый запрос к памяти;
- Система может обслуживать большее число пользователей: Ввиду экономии физической памяти и времени обращения, система в состоянии при данном подходе обслуживать большее число пользовательских процессов .
Основные принципы страничной организации по требованию:
- Если страница требуется программе, на нее имеется ссылка из программы.
- Если ссылка на страницу неверна (например, страницы с данным номером не существует), происходит прерывание.
- Если требуемая страница отсутствует в памяти, то она подкачивается в память. Механизм подкачки реализуется через прерывание (page fault – отказ страницы).
рис. 18.2 иллюстрирует размещение виртуальной памяти на диске и ее откачку и подкачку.
Рис. 18.2. Преобразование страничной памяти в непрерывное дисковое пространство.
Из схемы видно, что, с точки зрения каждой программы, пространство ее виртуальной памяти непрерывно. Оно преобразуется в непрерывную область дисковой памяти. С помощью механизма откачки – подкачки в нужный момент страница виртуальной памяти размещается в основной памяти.
С каждым элементом таблицы страниц связывается бит "valid/invalid",однако, в отличие от организации логической памяти, он играет несколько иную роль – он указывает на присутствие или отсутствие страницы в основной памяти. Значение бита равно 1, если страница в памяти, и 0, если страница отсутствует в памяти.
Первоначально для всех элементов таблицы страниц бит valid / invalid полагается равным 0.
Если в процессе трансляции адреса бит " valid / invalid " в таблице страниц оказыется равным 0, то происходит прерывание по отсутствию страницы в памяти (page fault).
На рис. 18.3 приведен пример таблицы страниц , в которой не все страницы присутствуют в основной памяти.
Рис. 18.3. Пример таблицы страниц, в которой не все страницы в памяти.
Читайте также: