Рассчитайте количество адресуемых ячеек памяти если разрядность шины адреса 8
С точки зрения пользования компьютером и интернетом для работы, учебы или других целей защита информации подразделяется на четыре основных категории: защита доступа к ПК, защита от нелегального пользования программами, защита данных на дисках, защита информации в сети. Для удобства понимания аспектов, способов, нюансов касающихся данной темы рассмотрим каждую из категорий в отдельности.
1. Защита доступа к личному компьютеру необходимая вещь, которую следует освоить каждому, кто так или иначе связан с работой за компьютером, в особенности, если работа ведется с важной информацией. Как известно защита доступа связанна непосредственно с установлением пароля, который в последствие будет запрашивать компьютер перед тем как запустить систему. Такой пароль устанавливается в BIOS Setupe. Такая защита гарантирует то, что пользователь не знающий пароль не сможет воспользоваться данным ПК, так как система WINDOWS просто не запустится, если в верная комбинация не будет введена. Тем не менее, есть определенный риск, ведь при утрате пароля восстановить доступ к данным пользователю будет крайне нелегко.
2. Защита программ. На сегодняшний день эта проблема весьма обсуждаема, ведь нелегальное копирование и использование программ получило широкое распространение. Данное явление не только обесценивает труд программистов, но и способствует снабжению огромного количества пользователей некачественными программами, зачастую вредящими нормальной работе ПК.
Во избежание негативных последствий связанных с нелегальным распространением программ было разработано несколько способов защиты. Самым продуктивным из них стала специальная защита в виде программного ключа, размещенного на CD-ROM. В результате его размещении я скопированная программа не может быть установлена.
3. Защита данных на дисках. В большинстве случаев данный способ защиты информации является несколько более удобным, нежели первый, виду того, что не требует установки пароля на весь компьютер в целом, а используется локально для необходимой папки, диска или любого другого файла. К диску или папке может быть ограничен доступ как полностью, так и частично.
Однако информация охраняется так же не только от несанкционированного доступа, но и от непредвиденной поломки системы. На этот случай к жесткому диску подключают специальные RAID-контролеры, с помощью которых информация сохраняется на нескольких дисках одновременно.
4. Информация в Интернете. Защита информации в интернете, так же немаловажная сторона защиты информации в целом. Главным образом, это косвенно касается данных ПК, к которым можно получить несанкционированный доступ, в случае, если компьютер подключен к интернету. На сегодняшний день для этого разработано не один а несколько способов. Чтобы этого не допустить устанавливается специальная программа, которая служит неким барьером между интернетом и локальной сетью. Данный брандмауэр ведет контроль за всеми операциями и передачей данных, выявляя среди них наиболее подозрительные.
В веек развития технологий и все больше растущей ценности информации следует всегда помнить о способах ее защиты и качественно их применять.
В 1945 году математик Джон Фон Нейман чётко сформулировал общие принципы функционирования цифровых вычислительных устройств.
Принципы фон Неймана
Цифровое вычислительное устройства должно работать по следующим принципам:
1. Принцип двоичного кодирования.
Согласно этому принципу, вся информация, поступающая в ЭВМ, кодируется с помощью двоичных сигналов.
2. Принцип программного управления.
Из него следует, что программа состоит из набора команд, которые выполняются процессором автоматически друг за другом в определенной последовательности.
3. Принцип однородности памяти:
— программы и данные хранятся в одной и той же памяти, то есть компьютеру всё равно, что содержится в данной ячейке памяти — число, текст или команда;
— над командами выполняются такие же операции, как и над данными;
— команды одной программы могут быть результатом исполнения команд другой программы;
4. Принцип адресации:
— структурно основная память состоит из пронумерованных ячеек, причем процессору в произвольный момент доступна любая ячейка. Двоичные коды команд и данных разделяются на единицы информации, называемые словами, и хранятся в ячейках памяти, а для доступа к ним используются номера соответствующих ячеек — адреса.
— АЛУ в любой момент времени доступна любая ячейка.
Компьютеры, построенные на этих принципах, называются фон-неймановскими.
Цифровое вычислительное устройство должно содержать:
— АЛУ (арифметическо-логическое устройство), которое должно выполнять арифметические и логические операции;
— УУ (устройство управления), которое организует процесс выполнения программ;
В современных компьютерах арифметическо-логическое устройство и устройство управления объединены в центральный процессор;
— ЗУ (запоминающее устройство или память), которое хранит программы и данные;
— ВУ (внешние устройства), которые служат для ввода и вывода информации.
Компьютерная память.
Внешняя память. (Внешние запоминающие устройства - ВЗУ)
Внешняя память предназначена для долговременного и энергонезависимого хранения программ и данных (память, реализованная в виде внешних, относительно материнской платы, устройств с разными принципами хранения информации и типами носителя).
Устройство, которое обеспечивает запись/считывание информации, называется накопителем, или дисководом, а хранится информация на носителях (например, DVD - дисках)
Устройства внешней памяти:
накопители на жестких магнитных дисках (НЖМД), английское название - HDD - Hard Disk Drive)
оптические диски - CD, DVD, Blue-Ray
Flash - память,
Твердотельные накопители (англ. - SSD solid-state drive)
Единицей хранения информации во внешней памяти является файл – последовательность байтов, записанная в устройство внешней памяти и имеющая имя. Обмен информации между оперативной памятью и внешней осуществляется файлами.
Внутренняя память
Оперативная память (ОП) предназначена для временного хранения выполняемых программ и данных, обрабатываемых этими программами. Это энергозависимая память. Физически реализуется в модулях ОЗУ (оперативных запоминающих устройствах) различного типа. При выключении электропитания вся информация в оперативной памяти исчезает.
Занесение информации в память и её извлечение, производится по адресам. Каждый байт ОП имеет свой индивидуальный адрес (порядковый номер).
Адрес – число, которое идентифицирует ячейки памяти (регистры). ОП состоит из большого количества ячеек, в каждой из которых хранится определенный объем информации. ОП непосредственно связана с процессором. Возможности ПК во многом зависят от объёма ОП.
Кеш память - очень быстрая память малого объема служит для увеличения производительности компьютера, согласования работы устройств различной скорости. Это энергозависимая память.
Постоянное запоминающее устройство (ПЗУ) – энергонезависимая память для хранения программ управления работой и тестирования устройств ПК. Важнейшая микросхема ПЗУ – модуль BIOS (Basic Input/Output System – базовая система ввода/вывода), в котором хранятся программы автоматического тестирования устройств после включения компьютера и загрузки ОС в оперативную память. Это неразрушимая память, которая не изменяется при выключении питания.
CMOS (Complementary Metal-Oxide Semiconductor) - память с невысоким быстродействием и минимальным энергопотреблением от батарейки. Используется для хранения информации о конфигурации и составе оборудования компьютера, о режимах его работы. Содержимое изменяется программой, находящейся в BIOS (Basic Input Output System).
Видеопамять — это внутренняя оперативная память, отведённая для хранения данных, которые используются для формирования изображения на экране монитора.
Регистр процессора — блок ячеек памяти, образующий сверхбыструю оперативную память (СОЗУ) внутри процессора; используется самим процессором и большей частью недоступен программисту.
Внутренняя память компьютера
Дискретность -
Внутренняя память состоит из частиц – битов
В одном бите памяти хранится один бит информации
Адресуемость
Байт памяти – наименьшая адресуемая часть внутренней памяти ( 1 байт = 8 бит )
Все байты пронумерованы, начиная от 0
Номер байта – адрес байта памяти
Процессор обращается к памяти по адресам
Основные характеристики ПК
Производительность (быстродействие) ПК – возможность компьютера обрабатывать большие объёмы информации. Определяется быстродействием процессора, объёмом ОП и скоростью доступа к ней (современный ПК обрабатывает информацию со скоростью в сотни миллионов операций в секунду).
Производительность (быстродействие) процессора – количество элементарных операций выполняемых за 1 секунду.
Тактовая частота процессора (частота синхронизации) - число тактов процессора в секунду, а такт – промежуток времени (микросекунды) за который выполняется элементарная операция (например сложение). Таким образом Тактовая частота - это число вырабатываемых за секунду импульсов, синхронизирующих работу узлов компьютера. Именно ТЧ определяет быстродействие компьютера. Задается ТЧ специальной микросхемой «генератор тактовой частота», который вырабатывает периодические импульсы. На выполнение процессором каждой операции отводится определенное количество тактов. Частота измеряется в герцах (1/сек). Превышение порога тактовой частоты приводит к возникновению ошибок процессора и др. устройств. Поэтому существуют фиксированные величины тактовых частот для каждого типа процессоров, например: 2,8 ; 3,0 ГГц и тд.
Время доступа - Быстродействие модулей ОП, это период времени, необходимый для считывание min порции информации из ячеек памяти или записи в память. Современные модули обладают скоростью доступа свыше 10нс (1нс=10 -9 с).
Объем памяти (ёмкость) – max объем информации, который может храниться в ней. Скорость обмена информации – скорость записи/считывания на носитель, которая определяется скоростью вращения и перемещения этого носителя в устройстве
Магистрально-модульный принцип построения компьютера.
В основу архитектуры современных персональных компьютеров положен магистрально-модульный принцип. Модульный принцип позволяет потребителю самому комплектовать нужную ему конфигурацию компьютера и производить при необходимости ее модернизацию. Модульная организация компьютера опирается на магистральный (шинный) принцип обмена информацией между устройствами.
Магистраль (системная шина) включает в себя три многоразрядные шины: шину данных, шину адреса и шину управления, которые представляют собой многопроводные линии.
К магистрали подключаются процессор и оперативная память, а также, с помощью специальных согласующих устройств - контроллеров (контроллер клавиатуры, контроллер дисководов, видеоадаптер и т.д.), остальные устройства ввода, вывода и хранения информации. Необходимость использования контроллеров вызвана тем, что функциональные и технические параметры компонентов компьютера могут существенно различаться, например, их быстродействие. Так, процессор может проводить сотни миллионов операций в секунду, тогда как пользователь может вводить с клавиатуры, в лучшем случае 2-3 знака в секунду. Контроллер клавиатуры как раз и обеспечивает согласование скорости ввода информации со скоростью ее обработки.
Шина данных. По этой шине данные передаются между различными устройствами. Например, считанные из оперативной памяти данные могут быть переданы процессору для обработки, а затем полученные данные могут быть отправлены обратно в оперативную память для хранения. Таким образом, данные по шине данных могут передаваться от устройства к устройству в любом направлении. Разрядность шины данных определяется разрядностью процессора, то есть количеством двоичных разрядов, которые могут обрабатываться или передаваться процессором одновременно. Разрядность процессоров постоянно увеличивается по мере развития компьютерной техники.
Шина адреса. Выбор устройства или ячейки памяти, куда пересылаются или откуда считываются данные по шине данных, производит процессор. Каждое устройство или ячейка оперативной памяти имеет свой адрес. Адрес передается по адресной шине, причем сигналы по ней передаются в одном направлении - от процессора к оперативной памяти и устройствам (однонаправленная шина). Разрядность шины адреса определяет объем адресуемой памяти (адресное пространство), то есть количество однобайтовых ячеек оперативной памяти, которые могут иметь уникальные адреса. Количество адресуемых ячеек памяти можно рассчитать по формуле:N = 2 I , где I - разрядность шины адреса. Разрядность шины адреса постоянно увеличивалась и в современных персональных компьютерах составляет 36 бит. Таким образом, максимально возможное количество адресуемых ячеек памяти равно: N = 2 36 = 68719476736.
Шина управления. По шине управления передаются сигналы, определяющие характер обмена информацией по магистрали. Сигналы управления показывают, какую операцию - считывание или запись информации из памяти - нужно производить, синхронизируют обмен информацией между устройствами и так далее.
На главную страницу
Все информационные, фото, видео материалы на официальном сайте образовательной организации размещены с согласия сотрудников, родителей (законных представителей) учащихся.
В случае, если Вам нежелательно размещение на сайте "изображения гражданина (ребенка) полученного при съемке, которая проводится в местах, открытых для свободного посещения, или на публичных мероприятиях" убедительная просьба прислать ссылку на изображение администратору сайта по адресу Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра. и изображение будет удалено.
Читайте также: