Поляризатор дисплея что это
Напоминаем, что попытки повторить действия автора могут привести к потере гарантии на оборудование и даже к выходу его из строя. Материал приведен исключительно в ознакомительных целях. Если же вы собираетесь воспроизводить действия, описанные ниже, настоятельно советуем внимательно прочитать статью до конца хотя бы один раз. Редакция 3DNews не несет никакой ответственности за любые возможные последствия.
Всё новое, как известно, — это хорошо забытое старое. Уже не в первый раз «откопали стюардессу» на известном ресурсе Instructables. Вот та самая статья, в которой подробно и с иллюстрациями описан процесс издевательств над старым монитором. Те, кому лень напрягать мозг для понимания англоязычного текста, могут прочитать перевод этого материала на «Хабрахабре». Судя по дикой популярности как оригинала, так и перевода, аудитория всерьёз заинтересовалась этой темой. В общем-то, описываемый рецепт вполне очевиден — стоит только поинтересоваться внутренним устройством ЖК-дисплеев.
В упрощённом варианте у нас имеется такой «бутерброд»: подсветка в том или ином виде (слой 6 на картинке ниже), поляризационный фильтр с горизонтальной плоскостью поляризации (слой 5), ЖК-матрица (слои 2,3,4) и ещё один поляризационный фильтр (слой 1), но с уже вертикальной плоскостью поляризации.
В реальной жизни этот «бутерброд» несколько сложнее, но нам это сейчас не так важно. А важны только два момента. Во-первых, из-за разной ориентации плоскостей поляризации обоих фильтров даже при включенной подсветке (и отсутствии входного видеосигнала) мы увидим лишь слабое свечение экрана, так как свет через фильтры практически не будет проходить. А это значит, что если убрать передний фильтр, то ничего хорошего мы на экране не узрим, кроме сильно бьющей в глаза подсветки. Во-вторых, никто не мешает разместить один из фильтров, например, в очках. В результате, надев очки, вы сможете видеть всё, что происходит на дисплее. А для посторонних вы будете выглядеть как странный человек в солнцезащитных очках, который зачем-то пялится в ослепительно белый экран.
Изучив теорию, перейдём к практике. Дабы не повторять оригинал, опишем лишь некоторые важные нюансы. Тем, кто ещё не прочитал исходный материал, настоятельно рекомендуется пройти по ссылкам в первом абзаце и ознакомиться с ним. Для эксперимента был выбран старый, побитый жизнью в прямом и переносном смысле, монитор LG. Первым делом надо отключить устройство от сети и разобрать его корпус.
В нашем случае всё оказалось очень просто. Передняя рамка легко подделась плоской отвёрткой и была тут же снята с немногочисленных защёлок. Сам дисплей с блоком питания и прочей электроникой крепился двумя болтами к задней стенке. Обратите внимание, что различные части монитора могут быть скреплены небольшими шлейфами или пучками проводов. Так что будьте аккуратнее и не делайте резких движений при извлечении их из корпуса.
Теперь нам надо отделить поляризационный фильтр. Как правило, он выполнен в виде плёнки, которая прикрывает экран спереди. На самом деле, таких плёнок может быть несколько, например встречается антибликовое, матовое, защитное или ещё какое-нибудь покрытие. Плёночки эти могут быть полностью приклеены к матрице, приклеены только по краям, прикреплены скотчем, а то и просто прижаты внешней рамкой.
В нашем случае фортуна дважды повернулась известно каким местом. Во-первых, фильтр был полностью приклеен к матрице, а во-вторых — он, судя по всему, оказался единым целым с матовым покрытием. По крайней мере, разделить на слои отодранную плёнку не удалось. Основная проблема была в низкой прозрачности этой плёнки — хоть что-то увидеть можно было, лишь плотно прижав её к экрану. Таким образом, изготовить очки из неё не вышло и пришлось на скорую руку искать альтернативные варианты.
Для отделения фильтра можно (воспользовавшись рекомендацией автора исходной статьи) аккуратно надрезать его канцелярским ножом вдоль краёв. Можно также снять прижимную рамку и подцепить край плёнки тем же ножом. В любом случае снимать её надо предельно аккуратно и очень медленно, а также слегка придерживать экран рукой, но при этом не давить на него слишком сильно. В зависимости от использованного клея и размера экрана процесс снятия может легко растянуться на полчаса или даже больше. Сама плёнка имеет все шансы порваться или погнуться и уж наверняка окажется после данной операции в скрученном виде.
А вот теперь начинается самая муторная часть — очистка экрана и плёнки от клея. В этом деле поможет растворитель для краски (надо было видеть лицо завхоза, расстающегося с бутылкой уайт-спирита), бумажные полотенца или много ненужных тряпок, либо что-нибудь, чем можно попытаться соскоблить остатки клея. Опять же действовать надо аккуратно. Во-первых, с растворителем необходимо работать в хорошо вентилируемом помещении, а ещё лучше на открытом воздухе и со средствами защиты. Будьте осторожны — растворитель не должен вытечь за края экрана! Во-вторых, на дисплей лучше лишний раз не давить.
После очистки надо подождать, пока выветрятся остатки растворителя, а уж потом собирать монитор и включать его в сеть. Также надо запомнить ориентацию снятого поляризационного фильтра — например, нанести маркером небольшую стрелочку в углу. В поляризационных свойствах снятой плёнки легко убедиться, поднеся её к любому другому экрану и повертев. Ну или приложив к её «родному» дисплею.
Увы, «антишпионские» возможности подтвердились не в полной мере, что, впрочем, совершенно логично. Очень размытое и блеклое изображение всё же едва-едва, но заметно. Особенно если на экран смотреть под углом. Всех деталей неожиданно подкравшийся сзади начальник не увидит, но вот отличить годовой отчёт от творчества Марины Энн Хэнцис (есть мнение, что у журналистов — производство, рутина, а вот у Марины — творчество. — прим. ред.) сможет наверняка. Можно, конечно, попробовать поиграться с яркостью экрана.
Но отрицательный результат — тоже результат! Раз уж изготовить очки по рецепту исходной статьи не удалось, то пришлось подыскать для них хоть какую-то замену. В недрах редакции были найдены простенькие пассивные очки LG, оставшиеся то ли от телевизора, то ли после какого-то кинопоказа. Отличались они тем, что для каждого глаза у них была своя ориентация поляризационного фильтра. В принципе, имея две пары таких очков, можно сделать одни, но с «правильной» ориентацией для обоих глаз. Похожие очки используются и в некоторых стереокинотеатрах, так что можно воспользоваться и ими, но тут уж как повезёт.
Очки NVIDIA 3D Vision
У разных мониторов плоскости поляризации фильтров могут быть разными. Например, у редакционных MacBook Air и Sony VAIO они оказались перпендикулярны друг другу. Любопытно, что наилучший результат был получен при использовании нашего «антишпионского» дисплея вместе с очками NVIDIA 3D Vision (выключенными, конечно) — картинка вышла наиболее насыщенной и с правильной цветопередачей. Но на них же сильнее всего заметен и ключевой недостаток подобных решений: малейший наклон головы влево или вправо резко ухудшает качество картинки. Лучше всего этот эффект продемонстрирован на коротеньком видео ниже.
Итак, подведём итоги. Имея старый ненужный монитор и один свободный вечер, вы легко можете самостоятельно сделать такую же штуку. С учётом недостатков (потенциальная возможность узнать, что же творится на экране, и необходимость всё время держать голову прямо) практическая ценность «шпионского» монитора стремится к нулю. Зато будет чем удивить коллег или друзей. Главное, будьте аккуратны и соблюдайте меры предосторожности — тогда всё у вас получится. Удачи!
Содержание
Нет, с аппаратом все в порядке. Стоит снять очки и изображение возвращается на место, но разглядеть что-либо через любимый полароид невозможно. Даже если выкрутить яркость на максимум, дисплей выглядит темным, фиолетовым или даже совершенно черным. Этому доставляющему неудобства эффекту подвержены самые разные электронные устройства: смартфоны, планшеты, ноутбуки, мониторы и даже банкоматы и аппараты по продаже билетов.
Виноват поляризационный фильтр.
Что такое поляризация?
Наверняка вы слышали о поляризованных солнцезащитных очках, если сами не пользуетесь сами продукцией Polaroid. А задумывались ли вы, что в них особенного, как работает и где еще применяется эффект поляризации?
Вероятно, для вас станет сюрпризом, что поляризационные фильтры встроены практически в каждый дисплей. Убедиться в этом несложно: достаточно надеть хорошие солнцезащитные очки и повертеть в руках смартфон или взглянуть на монитор под углом. Но то, как поляризация связана с эффектом «черного зеркала», возникающего в эти моменты, не понять без дополнительных объяснений.
Ученый расскажет вам, что свет имеет корпускулярно-волновую природу, но это довольно сложная и запутанная концепция. Для объяснения того, что такое поляризационный фильтр и зачем он нужен, достаточно упрощенного объяснения, не подразумевающего серьезной лекции по физике.
Свет проявляет одновременно и свойства потока частиц, и свойства волны. Для наших целей, можно представить, будто он состоит из отдельных фотонов, которые движутся в пространстве колеблясь, будто на гребне волны. Вектор этого изгиба как-то расположен в пространстве. Исходящий от солнца естественный свет раскаленных докрасна тел и других естественных источников состоит из хаотично расположенных волн, в которых не прослеживается закономерностей. Встречаясь с различными отражающими поверхностями, световые волны начинают колебаться более упорядоченно, обычно горизонтально. Таковы, например, блики на поверхности озера или кузове автомобиля.
Что такое поляризационный фильтр?
Поляризационные фильтры поглощают световые волны, которые колеблются вдоль определенной оси, а остальной свет пропускают без препятствий. Еще до того, как явление было описано учеными, в качестве поляризационных фильтров использовали тонкие пластины турмалина. У нас нет достоверных доказательств, но некоторые историки считают, что викинги использовали их для навигации. «Солнечные камни» помогали разглядеть светило сквозь туман и тучи, чтобы определить направление.
Подходящие минералы-поляризаторы, бывшие тогда большой редкостью и высоко ценившиеся, больше не используются в таком качестве. Еще с конца XX века благодаря химии производство линейных поляризаторов, в том числе и для солнечных очков, сильно удешевилось. Сегодня для изготовления поляризационных фильтров применяют пленки на основе особых кристаллов. Обычно в их основе — герапатит или другие сложные соединения йода.
Фильтры поляризующих солнцезащитных очков поглощают горизонтально-ориентированные волны. Изображение становится темнее, но, поскольку через фильтр продолжают проникать вертикально-ориентированные волны, вы по-прежнему можете видеть, а блики уже не так беспокоят.
В некоторых солнцезащитных линзах напротив — поляризационные фильтры блокируют все световые волны, за исключением тех, что ориентированы вертикально. Кроме того, хорошие солнцезащитные очки защищают сетчатку глаза от ультрафиолетовых лучей, так что носить их — хорошая идея.
Поляризация и гаджеты
Проблема в том, что в экранах ваших гаджетов тоже есть поляризационные фильтры. Они — неотъемлемая часть некоторых разновидностей матриц, где такие слои используются для формирования изображения и регулировки яркости, а также выступают в роли антибликовых фильтров. Так, большинство матриц LCD-мониторов подсвечиваются поляризованным светом.
Работают они так же, как и фильтры в солнцезащитных очках, отсекая свет, ориентированный, например, вертикально, и пропуская горизонтальные волны. Беда в том, что когда вы смотрите на такой экран в очках, которые отсекают горизонтальные волны, линзы задержат свет, исходящий от экрана полностью.
Другими словами, если экран излучает горизонтально-ориентированный свет, а ваши солнцезащитные очки блокируют все, кроме вертикально-ориентированного света, фотоны не достигнут глаза, а вы будете созерцать очень темное или полностью черное изображение.
У некоторых устройств этот эффект более выражен, чем у других. Как правило, прослеживается зависимость и, чем раньше выпущен смартфон и чем меньше его стоимость, тем вероятнее вы столкнетесь с описанной проблемой.
Во многих гаджетах высокого класса эту проблему успешно обходят, например, располагая поляризационные слои под углом в 45 градусов. Так вы не заметите поляризационных фильтров, даже если будете вглядываться в экран в очках. Примером могут служить нынешние поколения iPhone, iPad и смартфонов Google Pixel. К счастью, даже если экран, на который вы смотрите, полностью черный, снимать солнцезащитные очки не обязательно, достаточно повернуть устройство на 90 градусов. Поляризационный фильтр дисплея и поляризационный фильтр в очках совпадут по ориентации, и свет сможет добраться до ваших глаз. Проблемы возникнут только в случае с мониторами ПК, многие из которых не поворачиваются в портретный режим.
Вместо заключения
Теперь вы знаете об еще одной маленькой тайне производителей современной электроники. Я продолжу раскрывать их в серии статей из цикла: «как это работает». Пока еще продолжение не вышло, можете поэкспериментировать самостоятельно и выяснить, у экранов каких из ваших устройств есть поляризационные фильтры, и как они расположены. Только не забудьте рассказать о своих открытиях в комментариях.
Поляризационная пленка является одной из важных составляющих любого современного гаджета. Она пропускает только одну волну лучей в одной плоскости, ограничивая распределение светового потока. Пленку, напоминающую обычный пластик с затемнением, располагают под стеклом девайса. Матрица передает изображение, которое под ее воздействием изменяется. Если бы поляризатора не было, то человеческий глаз не смог бы разобрать картинку, и ему представилось лишь яркое белое свечение на экране.
Что такое поляризационная пленка?
Поляризационная пленка – это полимерный материал, изготавливаемый из поливинилена. Ее работа базируется на свойстве магнитных волн, при попадании их на пленку пропускается только та часть дневного света, которая параллельна оси поляризатора.
Пленка выполняет следующие функции:
- ограничивает поток света;
- значительно понижает яркость свечения;
- рассеивает лучи света;
- затемняет зеркальную поверхность изделия или экран;
- не допускает прямое попадание солнечных лучей.
ИНТЕРЕСНО! Изготавливается изделие из поливинилена с добавлением фосфорно-вольфрамовой кислоты. Во время производства оно растягивается в несколько раз и обжигается при 120-140 0 в течение 15 минут. Способ отличается простотой, экологичностью и экономичностью. Поляризационную пленку возможно заменить своими руками в домашних условиях на любых бытовых приборах или технике.
Где применяется
Поляризационное стекло применяется в оптике. Такие очки защищают глаза от вредного ультрафиолетового излучения и слепящих солнечных бликов. Уникальные свойства изделия обусловлены жидкокристаллической пленкой, которая размещена между стеклом и пластиком. Она рассеивает УФ свет, который препятствует обзору.
Пленку-поляризатор также используют в различных областях производства:
- для покрытия лобового стекла и зеркал заднего вида для обеспечения безопасности и защиты от ослепления другого транспорта, который едет навстречу;
- при сборке ЖК экранов телевизоров ее используют для повышения контрастности картинки. Если комбинировать применение активной пленки и специальных очков с поляриаторами, то возможно увидеть объемное изображение;
- используется поляризационная пленка для монитора, электронных устройств с дисплеями, калькуляторов.
Если скрестить несколько изделий, то они смогут быть фильтрами с изменяемой прозрачностью. Они способны во много раз понизить яркость световых лучей. По сравнению с призмами, обладают большим обзором и высоким качеством.
Виды поляризационной пленки
Существует три основных вида поляризующей пленки. Зависит это от используемых при изготовлении компонентов:
- с содержанием дихроичных правителей;
- поливиниленовых звеньев;
- полииодных комплексов.
Решетки могут также различаться в зависимости от способа поляризации:
Универсальная поляризационная пленка является важным предметом для здоровья и безопасности человека. Сфера применения в современном мире изделия поистине широка. Его используют не только в передовых электронных технологиях, но для обеспечения защиты глаз от воздействия прямых солнечных лучей и яркого света. Чтобы отличить поляризатор от обычного пластика, нужно знать о конструктивных особенностях материала и критериях качества.
Посмотрите видео про замену поляризационной пленки на телефоне Samsung своими руками:
Многие люди слышали о таком полезном покрытии, как пленка поляризационная. Однако далеко не каждый знает о ее свойствах и сфере применения. Сегодня, благодаря возможности совершать покупки через онлайн-сервисы, приобрести поляризационную пленку как в Москве, так и в Новосибирске, Красноярске и других городах России не составит труда. Главное - перед покупкой узнать все ее свойства, чтобы уметь правильно ее использовать в самых разных целях.
Свойства пленки
Понятие поляризации подразумевает ограничение световых волн путем пропуска их через особую решетку. Расстояние между нитями такой решетки равно длине световых лучей. Это позволяет пропускать одну волну в определенной плоскости.
Пленка поляризационная пропускает только ту часть светового потока, которая параллельна его оси. Такое покрытие создают двумя способами. Первый подразумевает напыление на полимерную основу металлических полос. Второй метод использует технологию йодно-поливиниловых пленок. Оба метода широко применяются в самых разных целях.
При помощи представленного изделия можно ограничить световой поток, понизить яркость, рассеивать лучи, затемнить зеркальные и экранные поверхности, а также защититься от попадания прямых солнечных лучей.
Применение
Множество направлений имеет использование такого покрытия, как пленка поляризационная. Новосибирск, Уфа, Екатеринбург и другие города России применяют ее в одних и тех же целях.
Многие водители выбирают солнцезащитные очки, линзы которых покрыты поляризационной пленкой. Да и обычному потребителю подобные изобретения пришлись по душе из-за комфорта обозрения в солнечную погоду.
В автомобильной сфере поляризационные пленки применяют для тонировки стекол, зеркал заднего вида, лобового стекла. Это помогает защититься от бликов встречного транспорта или яркого солнца.
Поляризационная пленка для монитора и других ЖК-дисплеев давно полюбилась пользователям. Это позволяет увеличить контрастность изображения. Для экранов и мониторов поляризационная пленка в сочетании со специальными стереоочками создаст эффект объемности картинки.
Для фильтров линз также применяют представленную технику. Даже окна домов защищают поляризационной пленкой во избежание слепящего света в помещении, попадающего извне.
Как создается пленка
Представленное изделие производят из поливинилена. Для этого применяют поливиниловый спирт (ПВС).
В состав продукта может также добавляться фосфорно-вольфрамовая кислота.
В процессе производства первоначальную заготовку растягивают в 5-7 раз. Затем изделие обжигают при температуре около 140 градусов.
Такая технология придает требуемые качества такому покрытию, как пленка поляризационная. Для чего нужно растягивание? Это позволяет выстроить молекулярную ориентацию компонентов.
Тепловая обработка продлевает долговечность изделия, делая его устойчивым к теплу и влаге. Оборудование может обладать самыми разными показателями, для чего поляризационная пленка обрабатывается представленным методом.
Виды пленок
В зависимости от компонентов, использующихся для производства ПВС-пленки, существует 3 ее разновидности. Это может быть изделие, содержащее дихроичные правители, поливиниленовые звенья или полииодные комплексы.
По способу поляризации различают механические и электрические решетки.
Чтобы увеличить или уменьшить поляризацию механическим способом, нити решетки смещаются относительно друг друга. Элементы перемещаются механически, и двигается пленка поляризационная. Как тонировать стекла, высчитывают производители, применяя правильный угол смещения поверхностей.
Электрическая поляризация считается более перспективным методом, так как она не требует механических составляющих. Свет в таком изделии проходит через поляризатор и жидкие кристаллы. При подключении тока они поворачиваются по направлению его протекания. Так образуются нити решетки, пропускающей световой поток.
Поляризация для автомобиля
Применяя поляризационную пленку для авто, следует ответственно подойти к этому вопросу. Неправильная поляризация может стать причиной ДТП из-за недостаточно хорошей видимости для водителя.
Поляризационная пленка на лобовое стекло наносится для устранения попадания бликов от встречного транспорта в глаза водителю.
Очень полезна представленная технология для поляризации салонных зеркал заднего вида. Случается, что фары едущего сзади автомобиля яркой вспышкой освещают их. Если водитель в этот момент посмотрит в зеркало, его может ослепить. Понадобится время, пока владелец авто сможет снова видеть идеально. А эти несколько секунд ему придется ехать почти вслепую. Пленка поможет ограничить поток слепящих лучей от фар и сохранить способность водителя видеть дорогу четко.
Поляризационная пленка для авто применяется также для тонировки стекол на дверях и сзади.
Пленка для экранов электронных устройств
Чтобы производительность человека, работающего на компьютере, была максимальной, следует обеспечить комфорт его деятельности.
Работать на любом оборудовании с дисплеем удобно, когда данные на его экране видит только пользователь. Очень неприятно, когда окружающие любопытно заглядывают в интерфейс устройства.
Для защиты информации применяют поляризационную пленку. Она крепится на экран при помощи клеящей основы. При желании ее можно снять или надевать на экран планшета или смартфона, только находясь в поездке.
Поляризационная пленка для монитора ограничивает прохождение световых лучей, которые проходят под углом больше 60 градусов.
Представленные изделия обладают влагостойкостью и выдерживают температурные перепады. Сама пленка способна защитить экран от механических повреждений и царапин, так как поликарбонат - довольно прочный материал.
Для каждого устройства выпускают пленки определенного формата.
Поляризационные очки
Пленка поляризационная для очков помогает защитить глаза от ослепляющего света, который излучают машины, оборудование. Блики, исходящие от различных поверхностей, способны не только ухудшить видимость деталей, но и ослепить, нарушить здоровье глаз.
Поэтому в самых различных сферах деятельности зрение защищают очки с поляризационной пленкой. Она находится внутри линзы.
Обычные солнцезащитные очки не убирают блики, исходящие от поверхности воды, снега, зеркал. Для этого их сочетают с таким покрытием, как пленка поляризационная. В Красноярске, Сочи, Москве и других городах нашей страны множество водителей, рабочих самых разных профессий и простых граждан пользуются такими очками для сохранения здоровья глаз.
Поляризационные очки уменьшают напряжение зрения. Глаза меньше устают. Контрастность и четкость изображения увеличиваются. А также такое изделие повышает безопасность труда работников определенных профессий. Особенно пришлись по душе поляризационные очки водителям.
Изготовление поляризационных линз
Среди существующих технологий изготовления поляризационных линз самой старой является применение минерального стекла.
Ныне этот метод используют крайне редко. Чаще применяют технологию ламинирования органическими веществами (CR-39). Пленка поляризационная вставляется между двумя полотнами линзы. Это помогает избежать расслаивания.
Однако самой новой и перспективной методикой является размещение пленки на переднем стекле. Поляризатор обрабатывается для улучшения его устойчивости к повреждениям, истиранию. Это позволяет изделию максимально качественно выполнять свои поляризационные свойства. Защитное покрытие пленки увеличивает ее стойкость к ударам.
Пленка для окон
Для хорошего самочувствия человека в помещении имеет значение уровень освещенности, его интенсивность и естественность. Комфортный свет полезен для здоровья глаз и даже состояния нервной системы.
Яркое солнце, врывающееся в комнату, будит ранним утром, а днем в таком помещении становится невыносимо жарко. Чтобы не завешивать окна портьерами или жалюзи, существует особый способ. Тонировка стекол решает проблему очень яркого природного освещения.
Пленка поляризационная для окон сокращает солнечную энергию на 65 % без ухудшения светопроницаемости. Такое покрытие создает определенную защиту от теплопроводности стекол, что помогает поддерживать комфортный микроклимат в помещении.
Поляризатор усиливает устойчивость стекла к механическим повреждениям, царапинам.
Как сделать пленку для монитора
Обычно LCD-мониторы производитель поставляет с поляризационной пленкой. Она может быть приклеена к монитору или просто плотно прижата планками.
В случае необходимости заменить это изделие необходимо обратить внимание на технологию такого процесса.
Приобретать пленку нужно по размеру предыдущего варианта. Старая пленка демонтируется. При необходимости клей снимается растворителем. Меняя поляризационную пленку своими руками, нужно следить, чтоб растворитель не попал на пластиковые элементы монитора.
Полностью очистив основание, следует смонтировать новое покрытие.
Поляризационная пленка своими руками должна быть правильно позиционирована. Имеет значение, где находится лицевая и обратная сторона. Так же как и важно сохранить правильное положение сторон. Далее части монитора собирают воедино.
Проверка поляризации
Чтобы убедиться в правильном действии поляризатора, существует несколько способов.
Можно вместо второй пленки воспользоваться экраном монитора, телефона или планшета. При повороте пленки на 90 градусов изображение должно стать значительно темнее.
Рассмотрев весь спектр изделий, в которых используется пленка поляризационная, можно осознать важность этого изделия для здоровья человека, а также его безопасности. Понимая принцип ее устройства и критерии качества, будет легко отличить поляризатор от обычного материала.
Поляризация используется во многих областях, наиболее известное применение из которых – это разделение стереопары в 3Д фильмах у некоторых телевизоров и в кинотеатрах, это круговая поляризация. При фотосъемке применяют поляризационные фильтры, чтобы избавиться от паразитных бликов за счет эффекта, когда свет приобретает поляризацию при отражении. Но о том, с какой поляризацией фотоны излучаем мы и объекты вокруг нас, информации почти нет. На просторах интернета вы практически не найдёте информации и примеров того, как выглядит истинное собственное поляризованное излучение объектов.
В данной статье мы постараемся показать вам поляризацию в тепловизинном диапазоне, и это пока первая и единственная статья на эту тему в рунете (по крайней мере, мы не смогли пока найти ничего похожего).
Итак, приступим…
В нашем распоряжении была электроника ранее разработанного тепловизора VLM640, которая позволяла обеспечить чувствительность болометрического сенсора лучше 20мК, и был переданный производителем поляризационный сенсор. Уникальность последнего состоит в том, что в группе из четырех пикселей на каждый пиксель нанесен поляризатор (каким образом нанесено? даже не пытайтесь спрашивать у нас, у производителя выпытать не удалось). Поляризация каждого фильтра отличается на 45 градусов. Итого у нас углы поляризации: 0-180, 45-225, 90-270, 135-315 градусов.
Обработка массива данных с сенсора — задача не в полной мере тривиальная. Если изначально мы её решали «в лоб», то последняя версия обработки более похожа на алгоритм дебайеризации, когда в обработке каждого пикселя участвуют больше четырех окрестных пикселей. Но, к сожалению, следует отметить, что если по яркости (температуре) результирующее изображение имеет разрешение 640х512 элементов, то по углам поляризации всё же в два раза хуже.
В результирующих видео присутствуют три изображения (слева направо): видео с обычного тепловизора, восстановленные углы поляризации, комплексированное изображение, где яркость — это тепловое излучение, а цвет — угол поляризации.
Собственно, результат лучше один раз увидеть, чем сто раз прочитать, поэтому мы специально для статьи записали показательные видео.
Видео с пластиковым плафоном демонстрирует, как поляризация позволяет отобразить поверхностную структуру объекта. Если бы на поверхности гладкого объекта были дефекты, то их можно было бы обнаружить из-за дефекта поляризации.
Крашеный металлический контейнер
Плоские объекты излучают достаточно просто, но каждая грань под разным углом поляризации. В видимом диапазоне или тепловизионном диапазоне по одному кадру нельзя было бы сказать об угле грани. С учетом поляризации излучения это становится возможным.
Металлическая пластина
Чистая металлическая пластина — сложный объект, она не хочет излучать, а пытается отразить тепло от других объектов. По центру маркером нанесен квадрат, эта часть (пластиковая) излучает чуть лучше.
Лед в стакане
Довольно интересно смотрится лёд. В общем, поляризация подчёркивает поверхностные дефекты, даже незначительные. Есть подозрение, что поляризация могла бы помочь в распознавании трещин во льду. Но пока ещё только осень, пока не так холодно, льда нет, и мы не имеем возможности проверить предположение на практике =).
И отдельный кадр реального изображения с улицы.
Небольшой хабр-абзац в виде спасибо нашему программисту.Изначально мы видео записывали и обрабатывали в матлабе. Такой математический «рендеринг» требовал много времени и не позволял оценить видео в реальном времени. Попытка перенести обработку в реальном времени на ПК позволила получить частоту отображения 4 кадра в секунду, а при добавлении в обработку пост-фильтра частота кадров упала до одного в секунду. Единственный выход — перенос обработки в directx на шейдеры, нельзя сказать, что всё прошло гладко, но для нас всё равно кажется удивительным, что даже встроенная видеокарта принимает и обрабатывает 50 кадров в секунду. Илья — железячники тебе респектуют =)
ps: если кто-то из уважаемого habr-сообщества подскажет, возможно ли (и как) забрать обратно видео из шейдера, чтобы сохранить в avi — были бы очень признательны. "
Результаты и выводы:
Пока мы можем сказать, что поляризация позволяет рассказать о поверхности объекта.
Есть предположения (по результатам общения с производителем детекторов, коллегами на выставках и очень скудной информации в интернете), что эффект оценки поляризации излучающих и отражающих объектов можно использовать в следующих областях:
- Отличие собственного излучения от отражения (например, теплой машины от блика солнца в луже или от песка/камня)
- Поиск замаскированных объектов
- Поиск масляных пятен на поверхности воды
- Поиск дефектов
- Снятие 3D геометрии объекта
- Обнаружение теплого объекта (тонущего человека) на поверхности воды, отделив солнечные блики от собственного излучения объекта.
Возможно, после прочтения статьи у вас появится идея, что было бы интересно заснять — напишите в комментариях, обсудим и постараемся реализовать.
Мы надеемся, что данная статья была интересна, и нам удалось рассказать и показать что-то новое, с чем раньше не приходилось сталкиваться. Хотелось бы выразить спасибо Алексею, который разработал математический аппарат обработки изображения и подготовил видео, Илье, который перенес почти всю обработку на шейдеры, коллективу НПК Фотоника за предоставленную возможность поработать с уникальным детектором, все же «Видеть невидимое» — это по меньшей мере интересно и захватывающе.
Читайте также: