Отличие sas от scsi
Жесткий диск – это самый ценный компонент в любом компьютере. Ведь на нем хранится информация, с которой работает компьютер и пользователь, в том случае, если речь идет о персональном компьютере. Человек, каждый раз садясь за компьютер, рассчитывает на то, что сейчас пробежит экран загрузки операционной системы, и он приступит к работе со своими данными, которые выдаст «на гора» из своих недр винчестер. Если же речь идет о жестком диске, или даже об их массиве в составе сервера, то таких пользователей, которые рассчитывают получить доступ к личным, или же рабочим данным, - десятки, сотни и тысячи. И вся их спокойная работа или же отдых и развлечения зависит от этих устройств, которые постоянно хранят в себе данные. Уже из этого сравнения видно, что запросы к жестким дискам домашнего и промышленного класса предъявляются неравнозначные – в первом случае с ним работает один пользователь, во втором – тысячи. Получается, что второй жесткий диск должен быть надежнее, быстрее, устойчивей первого во много раз, ведь с ним работают, на него надеются множество пользователей. В этой статье будут рассмотрены типы используемых в корпоративном секторе жестких дисков и особенности их конструкции, позволяющие добиться высочайшей надежности и производительности.
SAS и SATA диски – такие похожие и такие разные
До недавнего времени, стандарты жестких дисков промышленного класса и бытового, различались значительно, и были несовместимы – SCSI и IDE, в настоящее время ситуация изменилась – на рынке в подавляющем большинстве находятся жесткие диски стандарта SATA и SAS (Serial Attached SCSI). Разъем SAS является универсальным и по форм-фактору и совместим с SATA. Это позволяет напрямую подключать к системе SAS как высокоскоростные, но при этом небольшой емкости, (на момент написания статьи – до 300 Гб) накопители SAS, так и менее скоростные, но в разы более емкие, накопители SATA (на момент написания статьи до 2 Тб). Таким образом, в одной дисковой подсистеме можно объединить жизненно важные приложения, требующих высокой производительности и оперативного доступа к данным, и более экономичные приложения с более низкой стоимостью в пересчете на гигабайт.
Подобная конструктивная совместимость выгодна как производителям задних панелей, так и конечным пользователям, ведь при этом снижаются затраты на оборудование и проектирование.
То есть, к разьемам SAS можно подключить как SAS устройства, так и SATA, а к разъемам SATA подключаются лишь SATA устройства.
SAS и SATA – высокая скорость и большая емкость. Что выбрать?
SAS-диски, пришедшие на смену дискам SCSI полностью унаследовали их основные характеризующие винчестер свойства: скорость вращения шпинделя (15000 rpm) и стандарты объема (36,74,147 и 300 Гб). Тем не менее, сама технология SAS значительно отличается от SCSI. Коротко рассмотрим основные отличия и особенности:Интерфейс SAS использует соединение «точка-точка» — каждое устройство соединено с контроллером выделенным каналом, в отличие от него, SCSI работает по общей шине.
SAS поддерживает большое количество устройств (> 16384), в то время как интерфейс SCSI поддерживает 8, 16, или 32 устройства на шине.
SAS интерфейс поддерживает скорость передачи данных между устройствами на скоростях 1,5; 3; 6 Гб/с, в то время как у интерфейса SCSI скорость шины не выделена на каждое устройство, а делится между ними.
SAS поддерживает подключение более медленных устройств с интерфейсом SATA.
SAS конфигурации значительно легче в монтаже, установке. Такая система проще масштабируется. Кроме того, SAS винчестеры унаследовали надежность жестких дисков SCSI.
При выборе дисковой подсистемы - SAS или SATA нужно руководствоваться тем, какие функции будут выполняться сервером или рабочей станцией. Для этого нужно определиться со следующими вопросами:
1. Какое количество одновременных разноплановых запросов будет обрабатывать диск? Если большое – Ваш однозначный выбор – диски SAS. Так же, если Ваша система будет обслуживать большое количество пользователей - выбирайте SAS.
2. Какое количество информации будет храниться на дисковой подсистеме Вашего сервера или рабочей станции? Если более 1-1,5 Тб – стоит обратить внимание на систему на базе SATA винчестеров.
3. Каков бюджет, выделяемый на покупку сервера или рабочей станции? Следует помнить, что помимо SAS дисков потребуется SAS контроллер, который тоже нужно учитывать.
4. Планируете ли вы, в последствие, рост объема данных, рост производительности или усиление отказоустойчивости системы? Если да, то Вам понадобиться дисковая подсистема на базе SAS, она проще масштабируется и более надежна.
5. Ваш сервер будет работать с критически важными данными и приложениями – Ваш выбор – SAS диски, рассчитанные на тяжелые условия эксплуатации.
Надежная дисковая подсистема, это не только качественные жесткие диски именитого производителя, но и внешний дисковый контроллер. О них пойдет речь в одной из следующих статей. Рассмотрим диски SATA, какие разновидности этих дисков бывают и какие следует использовать при построении серверных систем.
SATA диски: бытовой и промышленный сектор
SATA диски, используемые повсеместно, от бытовой электроники и домашних компьютеров до высокопроизводительных рабочих станций и серверов, различаются на подвиды, есть диски для использования в бытовой технике, с низким тепловыделением, энергопотреблением, и как следствие, заниженной производительностью, есть диски – среднего класса, для домашних компьютеров, и есть диски для высокопроизводительных систем. В этой статье мы рассмотрим класс винчестеров для производительных систем и серверов.
Эксплуатационные характеристики
HDD серверного класса
HDD desktop класса
Скорость вращения
7,200 об/мин (номинальная)
7,200 об/мин (номинальная)
Объем кэша
32 МБ
32 МБ
Среднее время задержки
4,20 мс (номинальное)
6,35 мс (номинальное)
Скорость передачи данных
Чтение из кэша накопителя (Serial ATA)
максимум 3 Гб/с
максимум 3 Гб/с
Физические характеристики
Емкость после форматирования
1 000 204 МБ
1 000 204 МБ
Емкость
1 ТБ
1 ТБ
Интерфейс
SATA 3 Гб/с
SATA 3 Гб/с
Кол-во доступных пользователю секторов
1 953 525 168
1 953 525 168
Габариты
Высота
25,4 мм
25,4 мм
Длина
147 мм
147 мм
Ширина
101,6 мм
101,6 мм
Вес
0,69 кг
0,69 кг
Ударопрочность
Ударопрочность в рабочем состоянии
65G, 2 мс
30G; 2 мс
Ударопрочность в нерабочем состоянии
250G, 2 мс
250G, 2 мс
Температура
В рабочем состоянии
от -0° C до 60° C
от -0° C до 50° C
В нерабочем состоянии
от -40° C до 70° C
от -40° C до 70° C
Влажность
В рабочем состоянии
относительная влажность 5-95%
относительная влажность 5-95%
В нерабочем состоянии
относительная влажность 5-95%
относительная влажность 5-95%
Вибрация
В рабочем состоянии
Линейная
20-300 Гц, 0,75 g (от 0 до пика)
22-330 Гц, 0,75 g (от 0 до пика)
Произвольная
0,004 g/Гц (10 - 300 Гц)
0,005 g/Гц (10 - 300 Гц)
В нерабочем состоянии
Низкая частота
0,05 g/Гц (10 - 300 Гц)
0,05 g/Гц (10 - 300 Гц)
Высокая частота
20-500 Гц, 4,0G (от 0 до пиковой)
20-500 Гц, 4,0G (от 0 до пиковой)
В таблице представлены характеристики жестких дисков одного из ведущих производителей, в одной колонке приведены данные SATA винчестера серверного класса, в другой обычного SATA винчестера.
Из таблицы мы видим, что диски различаются не только по характеристикам быстродействия, но и по характеристикам эксплуатационным, которые напрямую влияют на продолжительность жизни и успешной работы винчестера. Следует обратить внимание на то, что внешне эти жесткие диски отличаются малозначительно. Рассмотрим, какие технологии и особенности позволяют это сделать :
- Усиленный вал (шпиндель) жесткого диска, у некоторых производителей закрепляется с двух концов, что уменьшает влияние внешней вибрации и способствует точному позиционированию блока головок во время операций чтения и записи.
- Применение специальных интеллектуальных технологий, позволяющих учитывать как линейную так и угловую вибрацию, что уменьшает время позиционирования головок и увеличивает производительность дисков до 60%
-Функция устранения ошибок по времени работы в RAID массивах – предотвращает выпадение жестких дисков из RAID, что является характерной особенностью обычных жестких дисков.
- Корректировка высоты полета головок в совокупности с технологией предотвращения соприкосновения с поверхностью пластин, что приводит к значительному увеличению срока жизни диска.
- Широкий спектр функций самодиагностики, позволяющих заранее предсказать тот момент, когда жесткий диск выйдет из строя, и предупредить об этом пользователя, что позволяет успеть сохранить информацию на резервный накопитель.
-Функции, позволяющие снизить показатель невосстановимых ошибок чтения, что увеличивает надежность серверного жесткого диска, по сравнению с обычными жесткими дисками.
Говоря о практической стороне вопроса, можно уверенно утверждать, что специализированные жесткие диски в серверах «ведут себя» намного лучше. В техническую службу происходит в разы меньше обращений по нестабильности работы RAID массивов и отказам жестких дисков. Поддержка производителем серверного сегмента винчестеров происходит намного оперативнее, чем обычных жестких дисков, в связи с тем, что приоритетным направлением работы любого производителя систем хранения данных является промышленный сектор. Ведь именно в нем находят применение самые передовые технологии, стоящие на страже Вашей информации.
Аналог SAS дисков:
Заказать сборку сервера на базе SAS или аналогом SAS жеских дисков Вы можете в нашей компании "Статус" в Санкт-Петербурге, также, купить или заказать SAS жеские диски в Санкт-Петербурге Вы можете:
Каково будущее SCSI на рынке? Будет ли эта технология вытеснена SATA или SAS?
В этой статье мы заглянем в будущее интерфейса SCSI и рассмотрим некоторые преимущества и недостатки интерфейсов SCSI, SAS и SATA.
На самом деле, вопрос является немного более сложным, чем простая замена SCSI на SATA и SAS. Традиционный параллельный SCSI является испытанным и проверенным интерфейсом, используемым давно. В настоящее время, SCSI предлагает очень быструю скорость передачи данных в 320 Мегабайт в секунду (Mб/сек), используя современный интерфейс Ultra320 SCSI. Кроме того, SCSI предлагает большой выбор возможностей, среди которых Command-Tag Queuing (метод оптимизирования I/O команд для увеличения производительности). Жесткие диски SCSI отличаются надежностью; на коротком расстоянии можно создать последовательную цепь из 15 устройств, подключенную к каналу SCSI. Эти особенности делают SCSI замечательным выбором для производительных десктопов и рабочих станций, вплоть до серверов предприятий, по настоящее время.
Жесткие диски SAS используют набор команд SCSI и обладают схожей надежностью и производительностью, как и SCSI диски, однако используют последовательную версию интерфейса SCSI, со скоростью 300 Mб/сек. И хотя это немного медленнее, чем SCSI с 320 Mб/сек, интерфейс SAS способен поддерживать до 128 устройств на бОльших расстояниях, чем Ultra320, и может расширяться до 16000 устройств на канал. Жесткие диски SAS предлагают такую же надежность и скорости вращения (10000-15000), как и диски SCSI.
Диски SATA являются немного другими. Там, где SCSI и SAS диски уделяют внимание производительности и надежности, диски SATA жертвуют ими в пользу существенного увеличения емкости и снижения стоимости. К примеру, диск SATA в настоящий момент достиг емкости в 1 терабайт (ТБ). SATA используется там, где нужна максимальная емкость, например, для резервного копирования данных или архивирования. Сейчас SATA предлагает соединения точка-точка со скоростью до 300 Mб/сек, и легко опережает традиционный параллельный интерфейс АТА, со скоростью 150 Mб/сек.
Итак, что же случится с SCSI? Работает он прекрасно. Проблема с традиционным SCSI заключается в том, что просто подходит к окончанию его срок эксплуатации. Параллельный интерфейс SCSI, обладающий скоростью в 320 Mб/сек, не сможет работать значительно быстрее на существующих в настоящий момент длинах SCSI кабелей. Для сравнения, диски SАТА достигнут скорости в 600 Mб/сек в ближайшем будущем, SAS имеют планы для достижению 1200 Mб/сек. Диски SАТА могут, кроме того, работать с интерфейсом SAS, таким образом эти диски могут использоваться одновременно в некоторых системах хранения. Потенциал к увеличению расширяемости и производительности передачи данных гораздо превышает имеющийся у SCSI. Но SCSI не уйдет со сцены в ближайшее время. Мы будем видеть SCSI в малых и средних серверах еще несколько лет. Так как аппаратные средства обновляются, SCSI будет систематически заменяться дисками SAS/SATA, для получения большей скорости и удобства соединения.
В: Что такое SCSI?
О: Ответу на этот вопрос посвящен раздел [ SCSI Основы ].
В: Что такое SAS, что лучше SCSI или SAS и чем они отличаются?
О: Ответу на этот вопрос посвящен раздел [ SAS или SCSI ].
В: Что такое eSATA?
О: eSATA это Интерфейс SATA , предназначенный для подключения внешних устройств SATA . Он предоставляет канал с пропускной способностью 3 Гбит/с, что исключит задержки при нехватке пропускной способности, характерные для современных устройств внешнего хранения данных.
В: Что такое Unified Serial?
О: Все контроллеры Unified Serial позволяют подключать диски SATA и SAS , используя Интерфейс типа "точка-точка". При этом используется расширенный набор команд SCSI , обеспечивающий мощное управление данными, обработку ошибок и производительность.
Гибкость, обеспечиваемая поддержкой дисков SATA и SAS , дает компаниям возможность просто стандартизировать инфраструктуру ввода-вывода как для первичного хранения критически важных данных, так и для вторичного хранения, в зависимости от того, какие диски установлены – SATA или SAS . Клиенты могут стандартизировать свою инфраструктуру за счет использования унифицированных контроллеров ввода-вывода и систем хранения и, тем самым, уменьшить затраты на обучение и обслуживание.
По материалам с сайта компании Adaptec » .
В: Можно ли использовать SATA диски с SAS контроллерами?
О: Да, можно, при этом на одном контроллере можно одновременно использовать как SAS , так и SATA диски. Это позволяет уже сейчас начать переход на технологию SAS за умеренные деньги.
В: Можно ли использовать SAS диски с SATA контроллерами?
О: Нет.
В: Можно ли подключить SAS диски к контроллеру без использования hotswap корзины?
О: Да, можно. Для этого нужно использовать специальный кабель с разъемом SFF-8482 со стороны дисков. Разъем на другом конце кабеля определяется SAS контроллером.
В: В чем разница между SCSI-1, SCSI-2, Fast, Wide,Ultra Wide и Ultra2 SCSI?
О: Основное отличие заключается в наборе SCSI команд и ширине шины (соответственно - в скорости).
-
-1 5MB/Sec 8 bit SCSI шина -2 5MB/Sec 8 bit SCSI шина -2 Fast 10MB/Sec 8 bit SCSI шина -2 Fast Wide 20MB/Sec 16 bit SCSI шина Ultra 20MB/Sec 8 bit SCSI шина Ultra Wide 40MB/Sec 16 bit SCSI шина
- Ultra2 Wide 80MB/sec 16 bit SCSI шина
- Ultra160 160MB/sec 16 bit SCSI шина
- Ultra320 320MB/sec 16 bit SCSI шина
В: Когда нужно использовать Low Voltage Differential (LVD) контроллер?
О: В случае если:
- Необходима высокая скорость передачи данных - 80 - 320 МБ/с
- В окружающем пространстве очень высок уровень электромагнитных шумов, влияющих на передачу данных. Режим LVD обеспечивает намного большую помехоустойчивость, чем Single Ended (SE) SCSI
- Необходимо обеспечить значительное удаление SCSI устройств от компьютера. LVD устройства могут быть удалены от SCSI контроллера на расстояние до 12 метров (это максимально допустимая длина LVD SCSI кабеля.
В: Что такое SCSI terminator и зачем он нужен?
О: SCSI Terminator это небольшое электронное устройство, которое должно располагаться на обоих концах SCSI шины и их (терминаторов) должно быть именно два на каждую SCSI шину. Чаще всего первым SCSI Terminator -ом служит контроллер SCSI (как правило, эту функцию можно "выключить" в BIOS контроллера, а по умолчанию она включена), а вторым - терминатор подключенный к последнему (от SCSI контроллера) разъему SCSI кабеля.
Некоторые SCSI устройства (устаревшие диски, дисководы, стримеры) имеют встроенный терминатор, который можно включить соответствующей перемычкой на устройстве. В этом случае, надо следить за тем, чтобы устройство с включенным терминатором располагалось в самом конце SCSI шины.
В: А у меня и без SCSI terminator-а все работает, может сойдет и так?
О: До поры до времени может и сойдет, особенно если у вас всего один диск и он используется не слишком интенсивно. Но при увеличении количества устройств на SCSI шине, или при увеличении нагрузки на нее, вы, в конце концов, рискуете потерять данные, так что, не стоит на этом экономить.
В: Что такое SCSI ID и зачем он нужен?
О: SCSI ID это уникальный (в пределах одной SCSI шины) идентификатор (номер) SCSI устройства. Он нужен для обеспечения адресации к устройствам на SCSI шине.
Назначается SCSI ID либо автоматически (например, если используются HotSwap корзины для дисков, поддерживающие такую функцию), либо путем ручной установки соответствующих перемычек на SCSI устройствах. SCSI ID никак не связан с физическим порядком расположения устройств на SCSI шине (например, SCSI контроллер, как правило, имеет значение SCSI ID по умолчанию равным 7-ми, хотя чаще всего, но не всегда, располагается в начале SCSI шины), важно только чтобы на одной SCSI шине не было устройств с одинаковыми SCSI ID .
Значения SCSI ID могут быть:
- от 0 до 15 (всего 16) для Wide (W) и UltraWide ( UW , U2W , U160 , U320 ) SCSI шины;
- от 0 до 7 (всего 8) для Narrow (U, U2 ) SCSI шины;
В: Что будет если подключить к одному и тому же SCSI каналу два устройства с одинаковыми SCSI ID?
О: Ничего хорошего. В лучшем случае SCSI контроллер распознает одно из таких устройств, но правильно работать с ним все равно не сможет, в худшем - не "увидит" ни одного из этих устройств. Ни контроллер, ни диски повреждены не будут, но риск испортить данные на SCSI дисках остается.
Следует учитывать, что подавляющее большинство контроллеров никак не сообщает о возникновении такой ошибки, так что, при подключении новых устройств к SCSI шине, надо обращать внимание на соблюдение уникальности SCSI ID .
Обратите внимание на то, что сам SCSI контроллер так же имеет SCSI ID (как правило, он равен 7-ми, и может быть изменен в BIOS-е контроллера), так что не стоит назначать дискам такой же SCSI ID .
В: Что такое SAF-TE?
О: SAF-TE - SCSI Accessed Fault-Tolerant Enclosure (Доступный через SCSI шину Отказоустойчивый Корпус) - "открытые" технические требования, разработанные для обеспечения всестороннего и стандартизированного метода контроля и вывода информации о состоянии дисководов, источников питания и систем охлаждения, используемых в серверах высокой надежности и подсистемах хранения данных. Технические требования независимы от аппаратного обеспечения ввода - вывода, операционных систем и платформы сервера, потому что сам корпус представляется как просто еще одно устройство на SCSI шине. SAF-TE технические требования были приняты многими ведущими изготовителями серверов, устройств хранения данных и RAID контроллеров. Изделия, удовлетворяющие спецификации SAF-TE уменьшают стоимость затрат на контроль состояния корпусов, упрощают работу администратора сети, выдают аварийные уведомление и информацию о состоянии оборудования.
В прошлой части цикла «Введение в SSD» мы рассказали про историю появления дисков. Вторая часть расскажет про интерфейсы взаимодействия с накопителями.
Общение между процессором и периферийными устройствами происходит в соответствии с заранее определенными соглашениями, называемыми интерфейсами. Эти соглашения регламентируют физический и программный уровень взаимодействия.
Интерфейс — совокупность средств, методов и правил взаимодействия между элементами системы.
Физическая реализация интерфейса влияет на следующие параметры:
- пропускная способность канала связи;
- максимальное количество одновременно подключенных устройств;
- количество возникающих ошибок.
Параллельные и последовательные порты
По способу обмена данными порты ввода-вывода делятся на два типа:
Последовательные порты — противоположность параллельным. Отправка данных происходит по одному биту за раз, что сокращает общее количество сигнальных линий, но усложняет контроллер ввода-вывода. Контроллер передатчика получает машинное слово за раз и должен передавать по одному биту, а контроллер приемника в свою очередь должен получать биты и сохранять в том же порядке.
Small Computer Systems Interface (SCSI) появился в далеком 1978 году и был изначально разработан, чтобы объединять устройства различного профиля в единую систему. Спецификация SCSI-1 предусматривала подключение до 8 устройств (вместе с контроллером), таких как:
- сканеры;
- ленточные накопители (стримеры);
- оптические приводы;
- дисковые накопители и прочие устройства.
Изначально SCSI имел название Shugart Associates System Interface (SASI), но стандартизирующий комитет не одобрил бы название в честь компании и после дня мозгового штурма появилось название Small Computer Systems Interface (SCSI). «Отец» SCSI, Ларри Баучер (Larry Boucher) подразумевал, что аббревиатура будет произноситься как «sexy», но Дал Аллан (Dal Allan) прочитал «sсuzzy» («скази»). Впоследствии произношение «скази» прочно закрепилось за этим стандартом.
В терминологии SCSI подключаемые устройства делятся на два типа:
Используемая топология «общая шина» накладывает ряд ограничений:
- на концах шины необходимы специальные устройства — терминаторы;
- пропускная способность шины делится между всеми устройствами;
- максимальное количество одновременно подключенных устройств ограничено.
Устройства на шине идентифицируются по уникальному номеру, называемому SCSI Target ID. Каждый SCSI-юнит в системе представлен минимум одним логическим устройством, адресация которого происходит по уникальному в пределах физического устройства номеру Logical Unit Number (LUN).
Команды в SCSI отправляются в виде блоков описания команды (Command Descriptor Block, CDB), состоящих из кода операции и параметров команды. В стандарте описано более 200 команд, разделенных в четыре категории:
- Mandatory — должны поддерживаться устройством;
- Optional — могут быть реализованы;
- Vendor-specific — используются конкретным производителем;
- Obsolete — устаревшие команды.
- TEST UNIT READY — проверка готовности устройства;
- REQUEST SENSE — запрашивает код ошибки предыдущей команды;
- INQUIRY — запрос основных характеристик устройства.
Дальнейшее усовершенствование SCSI (спецификации SCSI-2 и Ultra SCSI) расширило список используемых команд и увеличило количество подключаемых устройств до 16-ти, а скорость обмена данными по шине до 640 МБ/c. Так как SCSI — параллельный интерфейс, повышение частоты обмена данными было сопряжено с уменьшением максимальной длины кабеля и приводило к неудобству в использовании.
Начиная со стандарта Ultra-3 SCSI появилась поддержка «горячего подключения» — подключение устройств при включенном питании.
Первым известным SSD диском с интерфейсом SCSI можно считать M-Systems FFD-350, выпущенный в 1995 году. Диск имел высокую стоимость и не имел широкой распространенности.
В настоящее время параллельный SCSI не является популярным интерфейсом подключения дисков, но набор команд до сих пор активно используется в интерфейсах USB и SAS.
ATA / PATA
Интерфейс ATA (Advanced Technology Attachment), так же известный как PATA (Parallel ATA) был разработан компанией Western Digital в 1986 году. Маркетинговое название стандарта IDE (англ. Integrated Drive Electronics — «электроника, встроенная в привод») подчеркивало важное нововведение: контроллер привода был встроен в привод, а не на отдельной плате расширения.
Решение разместить контроллер внутри привода решило сразу несколько проблем. Во-первых, уменьшилось расстояние от накопителя до контроллера, что положительным образом повлияло на характеристики накопителя. Во-вторых, встроенный контроллер был «заточен» только под определенный тип привода и, соответственно, был дешевле.
ATA, как и SCSI, использует параллельный способ ввода-вывода, что отражается на используемых кабелях. Для подключения дисков с использованием интерфейса IDE необходимы 40-жильные кабели, также именуемые шлейфами. В более поздних спецификациях используются 80-жильные шлейфы: более половины из которых — заземления для уменьшения интерференции на высоких частотах.
На шлейфе ATA присутствует от двух до четырех разъемов, один из которых подключается в материнскую плату, а остальные — в накопители. При подключении двух устройств одним шлейфом, одно из них должно быть сконфигурировано как Master, а второе — как Slave. Третье устройство может быть подключено исключительно в режиме «только чтение».
Положение перемычки задает роль конкретного устройства. Термины Master и Slave по отношению к устройствам не совсем корректны, так как относительно контроллера все подключенные устройства — Slaves.
Особенным нововведением в ATA-3 считается появление Self-Monitoring, Analysis and Reporting Technology (S.M.A.R.T.). Пять компаний (IBM, Seagate, Quantum, Conner и Western Digital) объединили усилия и стандартизировали технологию оценки состояния накопителей.
Поддержка твердотельных накопителей появилась с четвертой версии стандарта, выпущенной в 1998 году. Эта версия стандарта обеспечивала скорость обмена данными до 33.3 МБ/с.
Стандарт выдвигает жесткие требования к шлейфам ATA:
- шлейф обязательно должен быть плоским;
- максимальная длина шлейфа 18 дюймов (45.7 сантиметров).
Стандарт Serial ATA (SATA) был представлен 7 января 2003 года и решал проблемы своего предшественника следующими изменениями:
- параллельный порт заменен последовательным;
- широкий 80-жильный шлейф заменен 7-жильным;
- топология «общая шина» заменена на подключение «точка-точка».
Шестнадцать сигнальных линий для передачи данных в ATA были заменены на две витые пары: одна для передачи, вторая для приема. Коннекторы SATA спроектированы для большей устойчивости к множественным переподключениям, а спецификация SATA 1.0 сделала возможным «горячее подключение» (Hot Plug).
Некоторые пины на дисках короче, чем все остальные. Это сделано для поддержки «горячей замены» (Hot Swap). В процессе замены устройство «теряет» и «находит» линии в заранее определенном порядке.
Чуть более, чем через год, в апреле 2004-го, вышла вторая версия спецификации SATA. Помимо ускорения до 3 Гбит/с в SATA 2.0 ввели технологию Native Command Queuing (NCQ). Устройства с поддержкой NCQ способны самостоятельно организовывать порядок выполнения поступивших команд для достижения максимальной производительности.
Последующие три года SATA Working Group работала над улучшением существующей спецификации и в версии 2.6 появились компактные коннекторы Slimline и micro SATA (uSATA). Эти коннекторы являются уменьшенной копией оригинального коннектора SATA и разработаны для оптических приводов и маленьких дисков в ноутбуках.
Несмотря на то, что пропускной способности второго поколения SATA хватало для жестких дисков, твердотельные накопители требовали большего. В мае 2009 года вышла третья версия спецификации SATA с увеличенной до 6 Гбит/с пропускной способностью.
Особое внимание твердотельным накопителям уделили в редакции SATA 3.1. Появился коннектор Mini-SATA (mSATA), предназначенный для подключения твердотельных накопителей в ноутбуках. В отличие от Slimline и uSATA новый коннектор был похож на PCIe Mini, хотя и не был электрически совместим с PCIe. Помимо нового коннектора SATA 3.1 мог похвастаться возможностью ставить команды TRIM в очередь с командами чтения и записи.
Команда TRIM уведомляет твердотельный накопитель о блоках данных, которые не несут полезной нагрузки. До SATA 3.1 выполнение этой команды приводило к сбросу кэшей и приостановке операций ввода-вывода с последующим выполнением команды TRIM. Такой подход ухудшал производительность диска при операциях удаления.
Спецификация SATA не успевала за бурным ростом скорости доступа к твердотельным накопителям, что привело к появлению в 2013 году компромисса под названием SATA Express в стандарте SATA 3.2. Вместо того, чтобы снова удвоить пропускную способность SATA, разработчики задействовали широко распространенную шину PCIe, чья скорость превышает 6 Гбит/с. Диски с поддержкой SATA Express приобрели собственный форм-фактор под названием M.2.
«Конкурирующий» с ATA стандарт SCSI тоже не стоял на месте и всего через год после появления Serial ATA, в 2004, переродился в последовательный интерфейс. Имя новому интерфейсу — Serial Attached SCSI (SAS).
Несмотря на то, что SAS унаследовал набор команд SCSI, изменения были значительные:
- последовательный интерфейс;
- 29-ти жильный кабель с питанием;
- подключение «точка-точка»
Максимальное количество одновременно подключенных устройств в SAS-домене по спецификации превышает 16 тысяч, а вместо SCSI ID для адресации используется идентификатор World-Wide Name (WWN).
WWN — уникальный идентификатор длиной 16 байт, аналог MAC-адреса для SAS-устройств.
Несмотря на схожесть разъемов SAS и SATA, эти стандарты не являются полностью совместимыми. Тем не менее, SATA-диск может быть подключен в SAS-коннектор, но не наоборот. Совместимость между SATA-дисками и SAS-доменом обеспечивается при помощи протокола SATA Tunneling Protocol (STP).
Первая версия стандарта SAS-1 имеет пропускную способность 3 Гбит/с, а самая современная, SAS-4, улучшила этот показатель в 7 раз: 22,5 Гбит/с.
Peripheral Component Interconnect Express (PCI Express, PCIe) — последовательный интерфейс для передачи данных, появившийся в 2002 году. Разработка была начата компанией Intel, а впоследствии передана специальной организации — PCI Special Interest Group.
Последовательный интерфейс PCIe не был исключением и стал логическим продолжением параллельного PCI, который предназначен для подключения карт расширения.
PCI Express значительно отличается от SATA и SAS. Интерфейс PCIe имеет переменное количество линий. Количество линий равно степеням двойки и колеблется в диапазоне от 1 до 16.
Термин «линия» в PCIe обозначает не конкретную сигнальную линию, а отдельный полнодуплексный канал связи, состоящий из следующих сигнальных линий:
- прием+ и прием-;
- передача+ и передача-;
- четыре жилы заземления.
«Аппетиты» твердотельных накопителей растут очень быстро. И SATA, и SAS не успевают увеличивать свою пропускную способность, чтобы «угнаться» за SSD, что привело к появлению SSD-дисков с подключением по PCIe.
Хотя PCIe Add-In карты прикручиваются винтом, PCIe поддерживает «горячую замену». Короткие пины PRSNT (англ. present — присутствовать) позволяют удостовериться, что карта полностью установлена в слот.
Твердотельные накопители, подключаемые по PCIe регламентируются отдельным стандартом Non-Volatile Memory Host Controller Interface Specification и воплощены в множестве форм-факторов, но о них мы расскажем в следующей части.
Удаленные накопители
При создании больших хранилищ данных появилась потребность в протоколах, позволяющих подключить накопители, расположенные вне сервера. Первым решением в этой области был Internet SCSI (iSCSI), разработанный компаниями IBM и Cisco в 1998 году.
Идея протокола iSCSI проста: команды SCSI «оборачиваются» в пакеты TCP/IP и передаются в сеть. Несмотря на удаленное подключение, для клиентов создается иллюзия, что накопитель подключен локально. Сеть хранения данных (Storage Area Network, SAN), основанная на iSCSI, может быть построена на существующей сетевой инфраструктуре. Использование iSCSI значительно снижает затраты на организацию SAN.
У iSCSI существует «премиальный» вариант — Fibre Channel Protocol (FCP). SAN с использованием FCP строится на выделенных волоконно-оптических линиях связи. Такой подход требует дополнительного оптического сетевого оборудования, но отличается стабильностью и высокой пропускной способностью.
Существует множество протоколов для отправки команд SCSI по компьютерным сетям. Тем не менее, есть только один стандарт, решающий противоположную задачу и позволяющий отправлять IP-пакеты по шине SCSI — IP-over-SCSI.
Большинство протоколов для организации SAN используют набор команд SCSI для управления накопителями, но есть и исключения, например, простой ATA over Ethernet (AoE). Протокол AoE отправляет ATA-команды в Ethernet-пакетах, но в системе накопители отображаются как SCSI.
С появлением накопителей NVM Express протоколы iSCSI и FCP перестали удовлетворять быстро растущим требованиям твердотельных накопителей. Появилось два решения:
- вынос шины PCI Express за пределы сервера;
- создание протокола NVMe over Fabrics.
Протокол NVMe over Fabrics стал хорошей альтернативой iSCSI и FCP. В NVMe-oF используются волоконно-оптическая линии связи и набор команд NVM Express.
Стандарты iSCSI и NVMe-oF решают задачу подключения удаленных дисков как локальные, а компания Intel пошла другой дорогой и максимально приблизила локальный диск к процессору. Выбор пал на DIMM-слоты, в которые подключается оперативная память. Максимальная пропускная способность канала DDR4 составляет 25 ГБ/с, что значительно превышает скорость шины PCIe. Так появился твердотельный накопитель Intel® Optane™ DC Persistent Memory.
Для подключения накопителя в DIMM слоты был изобретен протокол DDR-T, физически и электрически совместимый с DDR4, но требующий специального контроллера, который видит разницу между планкой памяти и накопителем. Скорость доступа к накопителю меньше, чем к оперативной памяти, но больше, чем к NVMe.
Протокол DDR-T доступен только с процессорами Intel® поколения Cascade Lake или новее.
Заключение
Почти все интерфейсы прошли долгий путь развития от последовательного до параллельного способа передачи данных. Скорости твердотельных накопителей стремительно растут, еще вчера твердотельные накопители были в диковинку, а сегодня NVMe уже не вызывает особого удивления.
Пришло время признать очевидный факт: стандарт SCSI, даже в виде самых современных реализаций вроде Ultra320 SCSI, исчерпал свои возможности. По крайней мере, дальнейшее масштабирование его производительности если теоретически и возможно, то будет обходиться весьма недешево. Ситуация, сложившаяся с этим весьма почитаемым стандартом, особенно удручающе выглядит на фоне бурного развития всей компьютерной техники и архитектуры и топологии систем хранения данных в частности.
Два ключевых фактора, которые подталкивают производителей совершенствовать интерфейсы винчестеров - это растущая производительность систем хранения данных при большом количестве обслуживаемых транзакций и скорость выборки данных из крупных библиотек. Разумеется, "свято место пусто не бывает", и появление интерфейсов вроде оптического FCAL или последовательного SATA в какой-то степени позволило избавиться от "узких мест" и внести разнообразие в список архитектур систем хранения данных. Однако, привыкшие к возможностям SCSI пользователи по-прежнему остаются поклонниками этого стандарта. Тем более, что в его развитие вложены очень и очень большие деньги.
Вот такие предпосылки сложились к моменту зарождения нового индустриального стандарта, названного последовательно-подключенный SCSI - Serial-Attached SCSI, или просто SAS.
Ради справедливости стоит отметить, что новый стандарт появился не вдруг и не сразу: официальному анонсу технологии SAS, состоявшейся 28 января 2004 года предшествовала серьезная работа команды разработчиков из разных компаний и промышленных групп - SCSI Trade Association (STA) и International Committee for Information Technology Standards (INCITS), под эгидой American National Standards Institute (ANSI). Впервые о новом стандарте заговорили в декабре 2001 года, когда совет директоров SCSI Trade Association (STA) проголосовал за определение спецификаций Serial Attached SCSI. Далее 2 мая 2002 года разработка стандарта была передана созданному специально для поддержки, развития и продвижения SAS комитету T10 при INCITS (InterNational Committee for Information Technology Standards), а первые черновые спецификации SAS были опубликованы в середине 2003 года.
Итак, самое главное, на что стоит опираться при попытке сформулировать определение стандарта SAS: Serial-Attached SCSI является логичным и естественным последовательным расширением технологии параллельного интерфейса SCSI, используемого для подключения периферии к компьютерам.
От этого, для начала, и оттолкнемся.
Назначение SAS
Для определения назначения стандарта SAS и его места среди современных периферийных интерфейсов обратимся к формулировкам, изложенным в "FAQ по Serial Attached SCSI" на сайте T10.
Интерфейс Serial Attached SCSI является продуктом логической эволюции современных интерфейсов и разработан для применения в промышленных центрах сбора и хранения данных. Стандарт SAS опирается на электрические и физические характеристики интерфейса Serial ATA, обеспечивает масштабируемость, производительность, надежность и управляемость данных в серверах и подсистемах хранения данных. Архитектурная схожесть с SATA не мешает SAS обладать наиболее востребованными чертами SCSI, в то же время избавляясь от его недостатков: крупных разъемов, малой длины соединительных кабелей, ограниченной производительности и адресации.
В широком смысле понимания SAS - это своеобразный полнодуплексный SATA с поддержкой двух портов, больших возможностей адресации, расширенной надежностью, производительностью и логической совместимостью со SCSI. Интерфейс Serial ATA, с другой стороны, можно рассматривать как упрощенное подмножество Serial Attached SCSI для работы в простых системах без критических требований к надежности и производительности. Это совсем не значит, что устройства Serial Attached SCSI не могут использоваться в обычных рабочих станциях и настольных ПК, необходимо лишь наличие соответствующего хост-адаптера.
По сути, Serial Attached SCSI - это SCSI, но не с привычной параллельной, а с point-to-point (точка-точка) последовательной архитектурой, с непосредственным подключением контроллера к накопителям. SAS поддерживает до 128 накопителей различных типов и размеров, совместно подключенных более тонкими и длинными (нежели в случае SCSI) кабелями. В то время как интерфейс SCSI "проталкивает" по своим проводам данные со скоростью порядка 20 МБ/с, а полудуплексный SATA первого поколения - 1.5 ГБ/с в одном направлении в единицу времени, полнодуплексный сигнальный последовательный интерфейс SAS с поддержкой "горячего" подключения в нынешней реализации обеспечивает обмен данными на скорости до 3.0 Гб/с на порт.
Ключевым отличием SAS от SCSI является возможность подключения SAS-накопителей одновременно к двум различным портам, каждый из которых представляет различные домены SAS. Можете себе представить, насколько значительным образом это отражается на надежности хранения данных и отказоустойчивости системы. К тому же, "коммутаторная" природа архитектуры SAS позволяет в теории подключать "покаскадно" тысячи накопителей (до 16384 приводов без снижения производительности!), что делает масштабируемость таких систем теоретически неограниченной. Основные отличия технологий SCSI и SAS приведены в таблице ниже.
Спецификации разъемов и кабелей SAS
Одной из ключевых особенностей интерфейса SAS при его разработке была определена возможность значительного наращивания скорости обмена данными. Разрабатываемые сейчас спецификации следующего поколения SAS подразумевают обмен данными со скоростью до 6.0 ГБ/с при полной совместимости с первым поколением SAS-устройств. Следующее за этим поколение всерьез пока не рассматривалось, но поговаривают о возможности достижения скорости обмена данными до 12 ГБ/с.
Интересно отметить, что при разработке спецификаций SAS рабочая группа сразу же приняла во внимание необходимость определения параметров разъемов и кабелей не только для внутренних, но и для внешних подключений, аналогичных современным SCSI-вариантам вроде "сервер - JBOD система". Для интерфейса SATA принятие таких спецификаций было отложено "на потом", и, как результат, разработка External SATA до сих пор еще не закончена.
Что касается внешних SAS-подключений, за основу было принято предложение компании Infiniband, где внешние разъемы и кабельная система рассчитаны на 4 устройства и в то же время обеспечивают производительность первого поколения внешних SAS-соединений на уровне 1.2 ГБ/с в каждом направлении, то есть до 2400 МБ/с в полнодуплексном режиме! Согласитесь, более чем впечатляюще для внешнего интерфейса.
Системная топология SAS
Использование конфигураций класса "точка-точка" позволяет получить высокую пропускную способность, однако, обратной стороной медали является организация специфической топологии, где при взаимодействии инициирующих (хост) устройств и периферии подразумевается поддержка более чем двух устройств "в связке". При разработке стандарта SAS в спецификации сразу же было заложено существование недорогих экспандеров, позволяющих создавать системы с количеством инициирующих хостов более одного, с поддержкой более чем одного периферийного устройства.
Еще одна важная цель, которую ставили перед собой разработчики нового стандарта - уйти от ограничения классического SCSI, подразумевающего не более 16 устройств в одной цепочке. В результате каждая SAS-система при применении соответствующего количества экспандеров способна поддерживать адресацию до 16256 устройств в едином SAS-домене. Обязательно стоит отметить гибкость конфигурации SAS-экспандеров: их спецификации подразумевают создание гетерогенных систем, где в качестве периферийных накопителей могут уживаться как SAS, так и SATA устройства. Согласитесь, очень удобно, особенно, при формировании бюджетных систем хранения данных или устройств с закладываемым на перспективу масштабированием.
Иллюстрация к принципу организации SAS домена
максимальной емкости
Обратите внимание на иллюстрацию выше: темно-зеленый модуль в центре представляет собой тот самый экспандер-коммутатор (fanout expander). Такой "коммутационный" экспандер может присутствовать в одном SAS-домене в единичном количестве и объединять собой до 128 SAS-устройств. Однако, не стоит под SAS-устройствами понимать исключительно жесткие диски, поскольку здесь подразумевается любая возможная комбинация из так называемых "периферийных экспандеров" (edge expanders, светло-зеленые модули), инициирующих устройств и собственно накопителей. Периферийные экспандеры, в свою очередь, могут также поддерживать до 128 SAS-устройств, однако, к ним можно подключить уже не более одного дополнительного экспандера. Голубыми модулями на схеме отмечены инициаторы (хосты), а коричневыми цилиндрами - SAS или SATA приводы.
Протоколы SAS
Создание новой топологии и новых интерфейсов привело к созданию совершенно нового определения методики адресации всех возможных портов в SAS-домене. С параллельным SCSI, конечно же, все проще, поскольку адресация всех устройств домена предопределена на аппаратном уровне.
В результате рабочей группой по развитию протокола SAS было принято решение выбрать в качестве идентификаторов уникальные в глобальном плане 64-битные имена - WWN (WorldWide Name) для всех типов SAS-устройств. Опять же, ничего нового под Луной, именно такая адресация давно используется при наименовании Fibre Channel устройств.
Таким образом, в момент включения питания все устройства, объединенные в единое SAS-пространство, обмениваются друг с другом своими WWN, и только после этого комплект SAS-устройств становится "осмысленной" SAS-системой. Добавление в SAS-систему нового устройства (под добавлением в этом случае подразумевается как раз "горячее подключение") или его изъятие из системы приводит к появлению извещения, которое оповещает о событии все инициаторы и позволяет подстроить систему под новую конфигурацию. На экспандеры, в свою очередь, ложится обязанность "выдачи" WWN всем SATA-устройствам системы, как в случае ее включения, так и в случае "горячего" подключения нового устройства. По завершению процесса инициализации системы, SATA устройства взаимодействуют с помощью SATA протоколов, для SAS-устройств используется SAS-протокол, описанный в других SCSI-стандартах типа SPI (SCSI Parallel Interface).
Дальше все проще: обмен командами, данными, статусами и другой информацией между SAS-устройствами производится пакетами, спецификации которых очень схожи на характеристики пакетов для обмена информацией при работе с параллельными SCSI или Fibre Channel устройствами. Формат пакетов данных SAS, называемых "фреймами", особенно схож со спецификациями Fibre Channel: каждый из них состоит из блоков командных дескрипторов - CDB (command descriptor block) и других SCSI-конструкций, определяемых другими стандартами SCSI, вроде SCSI Primary Command Set или SCSI Block Command. Вот Вам еще одна выгода от стандарта SAS: использование SCSI-подобного протокола и архитектуры позволяет объединять SAS-конструкции с другими системами хранения и обработки данных с архитектурой Infiniband, iSCSI или Fibre Channel, которые, по сути, также являются SCSI-объектами.
Протокол SAS содержит четыре традиционных уровня: физический (phy layer), коммуникационный (link layer), уровень портов (port layer) и транспортный уровень (transport layer). Объединение четырех уровней в каждом порте SAS означает, что программы и драйверы, используемые для работы с параллельными портами SCSI, могут с равным успехом использоваться и для обслуживания портов SAS, лишь с незначительной модификацией.
Уровни приложений, включающие драйверы и собственно приложения, создают специфические задания для транспортного уровня, который, в свою очередь, инкапсулирует команды, данные, статусы и пр. в SAS-фреймы и перепоручает их передачу уровню портов. Разумеется, транспортный уровень также отвечает за прием SAS-фреймов и с уровря портов, дизассемблирование принятых фреймов и передачу контента уровню приложений.
Уровень портов SAS отвечает за обмен пакетами данных с коммуникационным уровнем (link layer) в порядке установления соединений, а также за выбор физического уровня, с помощью которого будет осуществляться передача пакетов одновременно на несколько устройств. Под физическим уровнем SAS подразумевается соответствующее аппаратное окружение - трансиверы и модули кодирования, которые подключаются к физическому интерфейсу SAS и отправляют сигналы по проводным цепям.
Кстати, напомню, на физическом уровне соединения в случае последовательного интерфейса SAS представляют собой полнодуплексные дифференциальные пары цепей, которые также могут объединяться для увеличения производительности (ну прямо как PCI Express) в "широкие" порты. Соответственно, каждое устройство может иметь более одного порта, и каждый из них может быть сконфигурирован как "узкий" или "широкий". Интерфейсы хостов и экспандеров могут быть составлены из нескольких портов, при этом адрес каждого хоста доступен каждому периферийному устройству, а пропускная способность при этом суммируется. Организация множества путей прохождения данных за счет наличия "широких" портов подразумевает параллельное исполнение команд и соответствующее снижение потерь времени на ожидание очереди.
Заключение
Изложенный материал представляет собой лишь краткое введение в принципы построения архитектуры интерфейса SAS и особенности реализации этого стандарта. Более детальное рассмотрение спецификаций интерфейса потребует, по всей видимости, выпуска целого цикла статей на эту тему. Не исключено, что именно так оно и будет, благо, начало массового внедрения интерфейса уже не за горами, и количество прикладных вопросов по реализации SAS-систем со временем только вырастет.
Главное определение SAS, которое, по-моему, не стоит забывать - новый последовательный интерфейс Serial Attached SCSI был разработан для нужд широкого списка систем хранения данных корпоративного уровня, однако, все же он представляет собой интерфейс "близкого действия" и ни в коем случае не призван заменить собой какие-либо сетевые интерфейсы, не надо "покупаться" на схожую реализацию архитектуры "точка-точка".
При всей своей "заточенности" для работы в крупных и чуть ли не бесконечно масштабируемых системах хранения данных, интерфейс Serial Attached SCSI подразумевает полную совместимость с относительно недорогими накопителями Serial ATA, что позволяет конструировать вполне доступные системы даже в масштабе малых предприятий. В то же время поддержка 2-портовых Serial Attached SCSI приводов позволяет обеспечить производительность уровня, который и не снился нынешним системам на SCSI-приводах.
Для тех, кто готов самостоятельно окунуться в изучение особенностей Serial Attached SCSI, мы приводим в заключение список сайтов, где расположены учебные и стандартообразующие документы.
ресурсы сайта компании Adaptec
ресурсы сайта компании Maxtor
ресурсы сайта компании Seagate
Serial Attached SCSI –
SCSI Architecture Model – 3 (SAM-3)
SCSI Primary Commands – 3 (SPC-3)
SCSI Block Commands – 2 (SBC-2)
SCSI Stream Commands – 2 (SSC-2)
SCSI Enclosure Services – 2 (SES-2)
SFF 8482 (internal backplane/drive)
SFF 8470 (external 4-wide)
SFF 8223, 8224, 8225 (2.5", 3.5", 5.25" form factors)
SFF 8484 (internal 4-wide)
Serial ATA II: Extensions to Serial ATA 1.0
Serial ATA II: Port Multiplier
Serial ATA II: Port Selector
Serial ATA II: Cables and Connectors Volume 1
International Committee for Information Technology Standards
T11 (стандарты Fibre Channel)
SCSI Trade Association
SNIA (Storage Networking Industry Association)
Читайте также: