Необходимо решить на компьютере задачу вычисления значения функции y f x
Прежде чем перейти к разбору решения задач с функциями обязательно прочитайте урок «Что такое функция в математике».
В этом уроке мы разберем, как решать основные типы задач на функцию и графики функций.
Как получить значение функции
Рассмотрим задание. Функция задана формулой « y = 2x − 1 »
- Вычислить « y » при « x = 15 »
- Найти значение « x », при котором значение « y » равно « −19 ».
Для того, чтобы вычислить « y » при « x = 15 » достаточно подставить в функцию вместо « x » необходимое числовое значение.
Запись решения выглядит следующим образом.
Для того, чтобы найти « x » по известному « y », необходимо подставить вместо « y » в формулу функции числовое значение.
То есть теперь наоборот, для поиска « x » мы подставляем в функцию « y = 2x − 1 » вместо « y » число « −19 » .
Мы получили линейное уравнение с неизвестным « x », которое решается по правилам решения линейных уравнений.
Запомните!Не забывайте про правило переноса в уравнениях.
При переносе из левой части уравнения в правую (и наоборот) буква или число меняет знак на противоположный .
Как и при решении линейного уравнения, чтобы найти неизвестное, сейчас требуется умножить и левую, и правую часть на « −1 » для смены знака.
Теперь разделим и левую, и правую часть на « 2 », чтобы найти « x » .
Как проверить верно ли равенство для функции
Рассмотрим задание. Функция задана формулой « f(x) = 2 − 5x ».
Верно ли равенство « f(−2) = −18 »?
Чтобы проверить верно ли равенство, нужно подставить в функцию « f(x) = 2 − 5x » числовое значение « x = −2 » и сопоставить с тем, что получится при расчетах.
Когда подставляете отрицательное число вместо « x », обязательно заключайте его в скобки.
Не забывайте использовать правило знаков.
Неправильно
Правильно
С помощью расчетов мы получили « f(−2) = 12 ».
Это означает, что « f(−2) = −18 » для функции « f(x) = 2 − 5x » не является верным равенством.
Как проверить, что точка принадлежит графику функции
Рассмотрим функцию « y = x 2 −5x + 6 »
Требуется выяснить, принадлежит ли графику этой функции точка с координатами (1; 2) .
Для этой задачи нет необходимости, строить график заданной функции.
Запомните!Чтобы определить, принадлежит ли точка функции, достаточно подставить её координаты в функцию (координату по оси « Ox » вместо « x » и координату по оси « Oy » вместо « y »).
Если получится верное равенство , значит, точка принадлежит функции.
Вернемся к нашему заданию. Подставим в функцию « y = x 2 − 5x + 6 » координаты точки (1; 2) .
Вместо « x » подставим « 1 ». Вместо « y » подставим « 2 ».
У нас получилось верное равенство, значит, точка с координатами (1; 2) принадлежит заданной функции.
Теперь проверим точку с координатами (0; 1) . Принадлежит ли она
функции « y = x 2 − 5x + 6 »?
Вместо « x » подставим « 0 ». Вместо « y » подставим « 1 ».
В этом случае мы не получили верное равенство. Это означает, что точка с координатами (0; 1) не принадлежит функции « y = x 2 − 5x + 6 »
Как получить координаты точки функции
С любого графика функции можно снять координаты точки. Затем необходимо убедиться, что при подстановке координат в формулу функции получается верное равенство.
Рассмотрим функцию « y(x) = −2x + 1 ». Её график мы уже строили в предыдущем уроке.
Найдем на графике функции « y(x) = −2x + 1 », чему равен « y » при x = 2 .
Для этого из значения « 2 » на оси « Ox » проведем перпендикуляр к графику функции. Из точки пересечения перпендикуляра и графика функции проведем еще один перпендикуляр к оси « Oy ».
Полученное значение « −3 » на оси « Oy » и будет искомым значением « y ».
Убедимся, что мы правильно сняли координаты точки для x = 2
в функции « y(x) = −2x + 1 ».
Для этого мы подставим x = 2 в формулу функции « y(x) = −2x + 1 ». Если мы правильно провели перпендикуляр, мы также должны получить в итоге y = −3 .
При расчетах мы также получили y = −3 .
Значит, мы правильно получили координаты с графика функции.
Все полученные координаты точки с графика функции обязательно проверяйте подстановкой значений « x » в функцию.
При подстановке числового значения « x » в функцию в результате должно получиться то же значение « y », которое вы получили на графике.
При получении координат точек с графика функции высока вероятность, что вы ошибетесь, т.к. проведение перпендикуляра к осям выполняется «на глазок».
Читайте также: