Какой нужен компьютер для фотограмметрии
Многих пользователей фотограмметрических программных продуктов давно интересуют вопросы выбора аппаратного обеспечения для быстрой и надёжной обработки большого количества аэрофотоснимков.
Возвращаясь к задуманному тестированию, скажем, что для себя целью мы поставили определить наиболее оптимальную комплектацию рабочей станции, при этом относительно бюджетную, но достаточно мощную. Критериями теста были выбраны скорость обработки определенного объёма данных (первичный критерий) и стоимость компьютеров (вторичный критерий с меньшим весом). Кроме общего теста вычислительной техники с различными характеристиками, нам очень хотелось протестировать видеокарту Quadro P5000, так как такие карты принято считать наиболее мощными и, следовательно, максимально пригодными для обработки большого массива данных.
Технические характеристики выбранных для тестирования компьютеров и их примерная стоимость приведены в таблице 1.
Комплектация | Компьютер №1 | Компьютер №2 | Компьютер №3 |
Процессор | Intel i9 10900K | Intel i9 10900K | AMD Ryzen 9 3900X |
Графический процессор | Quadro P5000 | GeForce GTX 2080 Ti | GeForce GTX 2080 Ti |
Оперативная память | 128 | 128 | 128 |
Материнская плата | MSI | MSI | Gigabyte X570 UD |
Стоимость | >500 тысяч | >400 тысяч | ≈400 тысяч |
Из опыта общения с пользователями предлагаемых нами программных продуктов нам известно о том, что многие операторы задаются вопросом: почему разработчики программы Bentley ContextCapture рекомендуют именно процессоры Intel, в то время как существует возможность подобрать процессор AMD, параметры которого будут аналогичными.
Условия, общие для всех:
- на компьютерах установлена операционная система Windows 10 и необходимые драйверы видеокарт;
- из настольных программ установлена только ContextCapture версии 10.16.0.75;
- съёмка производилась в ноябре 2019 года, её площадь составила 1,963 км²;
- камера – DJI Phantom 4 Pro;
- количество фотоснимков – 1137;
- размер каждого снимка – 5472х3648;
- высота съёмки – 150 метров;
- координаты центров снимков – вычисленные (рисунок 1);
- опорные точки отсутствуют.
При аэротриангуляции выставлялись следующие настройки (рисунки 2 и 3).
Для настроек реконструкции (рисунок 4) границы реконструкции были определены в системе координат WGS 84/UTM 35N.
Деление на тайлы было рассчитано адаптивной мозаикой в зависимости размера оперативной памяти компьютера. В данном тесте было взято 25% от размера памяти – 32 Гб.
Все остальные настройки реконструкции были сохранены по умолчанию.
В настройках построении модели (рисунок 5) был выбран формат формата *.3mx – внутренний формат Bentley Systems для моделей реальности.
Система координат была выбрана местная, для которой был заранее подготовлен файл системы координат формата *.prj.
Все остальные настройки построения модели были сохранены по умолчанию.
В результате теста были получены следующие результаты
Компьютер №1 | Компьютер №2 | Компьютер №3 | |
Время выполнения аэротриангуляции | 18’48” | 17’43” | 19’44” |
Время построения модели | 7 h 05’ | 6 h 20’ | 7 h 56’ |
Результаты теста показали, что комплектация компьютера «процессор Intel+ видеокарта 2080» производит расчёт и построение модели несколько быстрее компьютеров с остальными комплектациями.
Разница между скоростью подсчета модели в комплектациях «процессор Intel+ видеокарта 2080» и «процессор AMD +2080» составила 1 час 36 минут , что, по меркам обработки больших массивов данных, является небольшой. Выявленный факт позволяет говорить о том, что при желании выполнить сборку недорогого компьютера приемлем выбор процессора AMD, который будет не сильно уступать Intel, но все же уступать если задача стоит сделать работу быстро. Цель выбора машин с максимальными возможными характеристикам обусловлена именно скоростью обработки. Чем мощнее машина, тем раньше результат и т.д.
Также тест рабочих станций с одинаковой комплектацией, исключая установленную видеокарту, показал небольшое отставание компьютера с графическим процессором Quadro P5000 от остальных компьютеров при том, что цена этой комплектации выше остальных на 20%. В этом случае мы готовы согласиться с разработчиками программного обеспечения Bentley ContextCapture и рекомендуем видеокарту NVIDIA Geforce 2080 Ti и процессоры Intel.
В своём предыдущем небольшом обзоре я кратко рассмотрел современное состояние ИИ в играх. В той области всё довольно грустно и серьёзных прорывов в ближайшее время ожидать определённо не стоит. Но ИИ сегодня используется практически везде, и было бы несправедливо говорить, что, при создании игр используются только примитивные и устаревшие алгоритмы. Наоборот, компьютерные игры — одна из передовых отраслей в использовании ИИ для моделирования всего и вся.
И тут стоит сделать небольшое отступление и поговорить о такой области науки и техники как фотограмметрия. Это немолодая наука, зародившаяся ещё в середине XIX века и полноценно развившаяся уже в XX. Когда люди получили возможность всегда носить с собой относительно лёгкий фотоаппарат, который может быстро делать фотографии, многие стали активно фотографировать не только других людей, но и пейзажи. И многие специалисты во многих отраслях пришли к одной и той же мысли. Если люди способны воспринимать размер, объём и местоположение различных объектов в окружающем мире своими глазами и переносить всё это на географические карты, то почему бы не автоматизировать процесс составления карт с помощью фотографий? Почему бы, к примеру, не составлять карты по аэрофотосъёмке? И тут всё завертелось. Активно начало развиваться направление алгоритмов транслирующих фотографии ландшафтов в различные форматы карт. На данный момент практически все карты местности построены с использованием этих алгоритмов. Люди уже не сидят и вручную не рисуют их, а лишь обрабатывают многоспектральные аэрофотоснимки и снимки со спутников.
Самое интересное произошло уже в начале XXI века. Компьютеры получили широкое распространение и стали использоваться для самых разных задач, появилась цифровая фотография и 3D моделирование. И тут, опять же, очень многие люди подумали — а зачем делать модели вручную, если можно переносить их с фотографий? Не сказать, что эта идея с ходу получила мощное развитие, но сейчас, уже спустя два десятилетия, многие игровые студии уже используют достижения в этой области.
Себастьян ван Элвердинге, один из разработчиков Forza Horizon 3, рассказывает как при разработке игры использовалась фотограмметрия для создания фотореалистичных текстур. И даже приводит пример подобной работы, на движке Unreal Engine 4.
Разработчики перезапуска Modern Warfare рассказывают, как использовали фотограмметрию уже не только для текстурирования, но и для создания полноценных 3D моделей.
Разработчики Flight Simulator 2020 рассказывают, как использовали фотограмметрию для создания всего игрового мира, на основе реальных снимков Земли. И этот игровой мир по размерам не уступает реальному миру.
Даже игровая индустрия СНГ не обошла стороной эти перспективные технологии.
Но раз всё так хорошо, почему эти технологии не используются повсеместно? Ответ, к сожалению, в ресурсоёмкости данных технологий. Infinity Ward потребовалось создать целый стенд с 200 фотоаппаратами и специальным ПО, что бы можно было формировать 3D модели с достаточным уровнем детализации. A Microsoft подключило к разработке свои архивы космических снимков Земли и вычислительные мощности Azure, что бы построить игровой мир. Даже не все разработчики AAA-игр могут позволить себе подобное.
Тем не менее, создание текстур уже, во многом, базируется именно на фотограмметрии. И существует множество программ для создания моделей по фотографиям, в том числе и по фотографиям со смартфона. Безусловно, качество таких моделей всё ещё оставляет желать лучшего. Но, учитывая скорость развития в отрасли, уже в ближайшем будущем можно ожидать существенного повышения их качества и широкого распространения в среде разработчиков игр.
И именно тут и выступает на сцену ИИ. Классические алгоритмы фотограмметрии имеют определённое ограничение — они работают с пикселями. Эти алгоритмы не воспринимают объекты на фотографиях именно как объекты. Они, по конкретным переходам светотени, определяют границы объектов, характер их материала и прочие геометрические особенности. Естественно, это не самый лучший подход и 3D модели, полученные таким образом, почти всегда требуют ручной постобработки. Не говоря уже о том, что они предъявляют серьёзные требования к качеству освещения, при фотосъёмке, и к самой фототехнике.
Но совсем иначе фотографии обрабатывает ИИ. Говоря, к примеру, о всё тех же искусственных нейронных сетях (ИНС), мы говорим о моделях «обученных» на огромном массиве разнообразных фотографий. Такие модели распознают на фотографиях именно объекты. Они уже «знают», что такое дерево и могут отличить его от собаки.
Именно на базе ИНС и разрабатываются новые алгоритмы фотограмметрии. Как в России, так и на западе. Системы, на базе ИНС, могут не только строить более чёткие 3D модели. Они менее требовательны к качеству фотографий, так что уже не потребуется строить отдельную комнату для фотографирования объектов. И смоделировать можно уже будет довольно крупные объекты. К тому же? ИНС универсальны, как и во всех других областях. Одну и ту же архитектуру можно будет использовать для моделирования совершенно разных объектов и не придётся каждый раз заново писать новую программу. А уже обученная ИНС для своей работы не будет требовать мощного железа. Такая сеть сможет запускаться и на персональных компьютерах, и на слабых облачных серверах.
Подводя итог, можно сказать, что область автоматической и автоматизированной генерации текстур и 3D моделей уже не просто активно развивается, но и используется в отрасли создания компьютерных игр. В ближайшее время уже стоит ожидать широкого распространения этих технологий. И, во многом, это распространение будет возможно благодаря ИИ. Однако, стоит ли ожидать, что компьютер заменит всех 3D-художников и эта профессия пропадёт? В ответе на данный вопрос стоит не забывать главного недостатка фотограмметрии — она может смоделировать только то, что сфотографировано. Эти технологии не позволят смоделировать эльфийский город или инопланетную расу по вполне очевидным причинам. К тому же, несмотря на возраст этой научно-технической области, до сих пор никуда не делась профессия картографов. Она просто видоизменилась. Вместо того, что бы лично кататься по миру, эти люди занимаются постобработкой и анализом смоделированных карт. Так и с 3D моделированием — даже самые лучшие и точные модели потребуют постобработки. А, в случае необходимости, модификация уже готовых моделей гораздо менее затратна, чем повторный процесс построения такой модели по модифицированному оригиналу.
Но сможет ли современный ИИ генерировать игровой мир или какие то его части полностью самостоятельно, без необходимости в оригинале из реального мира? Может ли современный ИИ создать в игровом мире то, что до этого никогда не существовало в реальном? На это я могу смело сказать, что да, он уже это может. Но этот вопрос уже для отдельной статьи.
Компьютерную графику можно условно разделить на трехмерную и двухмерную. Трехмерная состоит из каркаса и текстуры, а также иногда из заданных физических свойств. Двухмерная графика – это обычные картинки. Чтобы обрабатывать 3D-сцены, нужен мощный компьютер. Для обычной 2D-графики большая мощность не нужна. Здесь гораздо важнее наличие правильного монитора, а лучше двух..
Типы 2D-графики
- Векторная – такие изображения хранятся в виде геометрических фигур, прямых, точек и окружностей. Удобство данного типа графики в том, что с ней проще работать в дальнейшем: не теряется качество при увеличении, можно легко редактировать после создания. Это сырье для создания растровых изображений.
- Растровая – самый популярный тип изображений, именно на таком принципе строится картинка на мониторе. Представляет собой набор пикселей, распределенный по строкам и столбцам. Редактировать такое изображение гораздо сложнее, но оно гораздо меньше весит. Все картинки, которые вы видите в Интернете, – это растровая графика.
- Фрактал – это сборное изображение, оно состоит из маленьких кусочков, которые можно двигать и редактировать по отдельности. Ярким примером являются многослойные картинки из графического редактора – например, Photoshop.
Создание всех типов изображений не очень затратно для ресурсов ПК. Наиболее требовательный процесс – это обработка фотографий: чем выше разрешение, тем больше времени нужно. Если компьютер со слабым процессором, возникнут трудности при накладывании фильтров. Визуализация, в зависимости от компьютера и поставленной задачи, может занять 30 секунд или несколько минут.
Популярные приложения для 2D графики
Десять лет назад мир 2D- графики между собой делили два титана – Photoshop и Corel DRAW. Теперь у этих редакторов появилось много конкурентов. В нашем списке – самые популярные приложения, на которых делается большинство картинок. Одни из них используются для обработки изображений, другие – для рисования, третьи – для создания векторной графики.
Достоинство этой программы в том, что, в отличие от остальных в этом списке, она бесплатна. Отлично подойдет новичкам, так как содержит богатый набор предустановленных кистей, фильтров, градиентов и других инструментов. Работает с графическими планшетами.
Adobe Photoshop
Самая популярная программа для редактирования изображений, ее название стало нарицательным. Разрабатывалась как платформа для ретуширования и обработки фотографий, что понятно из названия. В ней тоже можно рисовать, но для этих целей лучше выбрать другое приложение Adobe – Illustrator. Так как это программы одного разработчика, то они легко взаимодействуют друг с другом.
Adobe Illustrator
Рассчитано на работу с векторной графикой. В нем можно создавать новые рисунки с нуля и делать текстуры. Это очень удобно, если вы занимаетесь еще и 3D-моделированием. Доступно взаимодействие с другими продуктами Adobe, например, After Effect.
Autodesk SketchBook Pro
Инструмент с очень богатым функционалом. SketchBook Pro рассчитан на рисование, тут можно создать эскиз и отдельно его раскрасить. Учитывая уровень компании Autodesk, неудивительно, что в программу заложено огромное количество возможностей. Чтобы раскрыть все ее прелести, потребуется графический планшет, желательно с функцией чувствительности нажима.
Corel Painter
Еще одно приложение для рисования от не менее именитого разработчика. Оно имитирует все инструменты художника. Можно смешивать цвета, выбирать фломастеры, карандаши, кисти, типами краски и так далее.
Corel DRAW
Мощная платформа для создания векторной графики. За почти 30 лет существования программа обросла всевозможными плагинами и дополнениями. Это универсальный инструмент для работы с изображениями.
3D-графика
Работа с трехмерными проекциями подразумевает мощное железо. Самой емкой частью процесса создания сцены является рендеринг, для него нужно больше всего ресурсов. Для работы с большими проектами потребуется мощный компьютер с большим запасом оперативной памяти.
Рендеринг – это визуализация, в которую входит наложение текстуры на каркас и применение эффектов. После этого компьютер «фотографирует» созданную сцену и выдает вам изображение.
Какой нужен компьютер для работы с графикой
Для обычного рисования мощное железо не требуется. Средний компьютер с легкостью справляется с обработкой фотографий, но чаще всего двухмерная графика идет рука об руку с трехмерной. Подробнее о том, как выбрать компьютер для 3Д-графики и моделирования, читайте тут. Перед тем, как выбрать ПК, взглянем на системные требования к программам, которые позволяют работать с 2D-графикой.
Системные требования
Через тире указаны средние и максимальные требования.
Процессор | Оперативная память | Видеокарта | Место на диске | |
---|---|---|---|---|
GIMP | одноядерный, от 700 MHz | 512 MB | 64 MB памяти и поддержка 3D | 100 MB |
Adobe Photoshop | двухъядерный, от 2,0 GHz | 2–8 GB | от 512 MB памяти с поддержкой OpenGL 2.0 | 3,1 GB |
Adobe Illustrator | двухъядерный, от 2,0 GHz | 2–8 GB | 1–2 GB памяти с поддержкой OpenGL 4.0 | 2 GB |
Autodesk SketchBook Pro | двухъядерный, от 2,5–2,9 GHz | 4 GB | от 256 MB с поддержкой OpenGL 2.0 | 4 GB |
Corel Painter | четырехъядерный, от 2,0 GHz | 2-8 GB | 1 GB памяти с поддержкой OpenGL 3.2 | 1 GB |
Corel DRAW | 2–4 ядра, от 2,0 GHz | 2 GB | 1 GB памяти с поддержкой OpenGL 3.2 | 1 GB |
Как выбрать компьютер для графики
Как видите, программы не требовательны. Самый трудоемкий для компьютера процесс обработки фотографий – это применение фильтров. Обычные рисунки и векторная графика – маленького размера, и с ними проще работать. Например, зеркальные фотоаппараты Nicon и Canon имеют 24 мегапикселя, это своеобразный стандарт. Изображения получаются размером 6000х4000 пикселей. И это не предел.
Чтобы применить фильтр к такому гиганту, нужна стабильная работа процессора. На слабом компьютере это может занять несколько минут. Но если вы соберетесь рендерить трехмерную сцену на слабом ПК, то процесс может занять несколько дней и даже неделю.
Теперь обозначим, какими должны быть компьютеры для графики и дизайна 2019 года выпуска.
Какой нужен процессор?
Если вы не планируете работать с трехмерной графикой, то вам подойдет камушек начального уровня, например, Intel Core i3–8100 или Intel® Core™ i5-8400. Это четырех и шестиядерные процессоры с хорошей частотой 3,6 и 2,8 GHz. Такой мощности с лихвой хватит для работы с изображениями.
Если вы собираете профессиональную графическую станцию для работы с трехмерными объектами и рисования, то процессор должен быть мощнее – хотя бы 4 ядра с той же частотой. Компьютеры для графики, начиная с 2019 года, должны быть оборудованы камушком Intel Core i5–9600K, это решение начального уровня для профессиональной станции.
Для активной работы с тяжелыми трехмерными сценами нужен мощный процессор. Особого внимания заслуживает Intel Core i9-9820X – процессор с особой серверной мощностью. На данный момент это одно из топовых решений от компании Intel, мощнее только серверные процессоры Xeon. Intel Core i9-9820X имеет 10 ядер и 20 потоков с тактовой частотой 3300 MHz. Топовый Xeon работает на частоте до 4,0 GHz и имеет 28 ядер с 56 потоками.
Какая нужна видеокарта?
Если вы новичок и выбираете машину только для рисования, то подойдет любая видеокарта. Практически все они поддерживают несколько мониторов. Оптимальным вариантом для рисования будет новенькая NVIDIA GeForce 1060. Более продвинутое решение – NVIDIA GeForce RTX 2060 или 2070. На них еще и поиграть можно будет.
Новая RTX серия имеет в архитектуре дополнительные ядра CUDA, которые увеличивают вычислительную мощность. Они позволяют быстрее и эффективнее производить рендеринг изображений, видео и трехмерных сцен. Эта технология позволяет сделать из игровой видеокарты профессиональную для обработки изображений.
Для профессионалов в области графики создана серия NVIDIA Quadro. Эти видеокарты нужны для работы с тяжелыми трехмерными сценами и считаются самыми технологически продвинутыми в мире. В таблице представлены их краткие технические характеристики. Это профессиональное оборудование, рассчитанное на сверхвысокие нагрузки.
С выходом игровых карточек RTX серии добавились в модельный ряд также QUADRO RTX. Их основное отличие от обычных P и GV серий в том, что они имеют еще больше ядер CUDA. NVIDIA пошла тем же путем, что и раньше. Они выпустили полный модельный ряд карточек – от самых простых до самый тяжелых.
QUADRO P1000 | QUADRO P2000 | QUADRO P4000 | QUADRO P5000 | QUADRO GV100 | RTX 4000 | RTX 5000 | RTX 6000 | RTX 8000 | |
---|---|---|---|---|---|---|---|---|---|
Видеопамять (GB) | 4 | 5 | 8 | 16 | 32 | 8 | 16 | 24 | 48 |
Тип видеопамяти | GDDR5 | GDDR5 | GDDR5 | GDDR5X | HBM2 | GDDR6 | GDDR6 | GDDR6 | GDDR6 |
Ядер CUDA | 640 | 1024 | 1792 | 2560 | 5120 | 2304 | 3072 | 4608 | 4608 |
FP32 Performance (TFLOPS) | 1.894 | 3.0 | 5.3 | 8,9 | 14,8 | 7,1 | 11,2 | 16,3 | 16,3 |
Потребляемая мощность (W) | 47 | 75 | 105 | 180 | 250 | 160 | 265 | 295 | 295 |
Кол-во разъемов для мониторов | 4 | 4 | 4 | 5 | 4 | 4 | 4 | 4 | 4 |
- Видеопамять нужна для развертки в ней текстур во время рендеринга. Рендеринг на видеокартах гораздо быстрее, однако ограничен количеством памяти. По этой причине рендеринг чаще ложится на плечи процессора, ведь расширить оперативную память проще и дешевле.
- Тип видеопамяти определяет скорость загрузки и выгрузки данных. Чем новее технология, тем выше производительность.
- Количество ядер CUDA. Эта технология позволяет выполнять вычисления с революционной скоростью. Благодаря ей уже несколько лет можно рендерить на видеокарте, что значительно экономит время. Количеством ядер определяется мощность и скорость вычисления задач. Технология только сейчас добралась до игрового модельного ряда и заиграла новыми красками в профессиональных карточках.
- FP32 Performance – это синтетический показатель обрабатываемой информации в секунду. Чем больше – тем лучше.
- Потребляемая мощность – это количество ватт, которое использует видеокарта во время работы. Чем больше число, тем мощнее нужны блок питания и система охлаждения.
Главный показатель здесь – количество памяти. Занимаясь 3D графикой, вы должны определить задачи, которые собираетесь выполнять. Если вам предстоит работа с большими сценами, в которых используются текстуры высокого разрешения, то нужна видеокарта с большим количеством памяти. В этом плане NVIDIA Quadro RTX 8000 бьет все рекорды. Вы сможете загрузить в нее сцену объемом до 48 GB.
Вместо NVIDIA Quadro часто используют NVIDIA GeForce RTX 2070. Это альтернативное решение, если компьютер для графики и дизайна будет использоваться и для игр. Она дешевле линейки Quadro, обладает хорошим запасом памяти, однако производительность ее в рендеринге ниже. Зато 2070 более универсальна, в играх покажет больший прирост мощности.
Сколько нужно оперативной памяти
Если вы собираетесь заниматься только двухмерной графикой и рисованием, то вам хватит 4 GB. Но лучше ставить 8 GB – это минимум на компьютере для работы с графикой 2019 года выпуска.
Для работы с трехмерными объектами нужно много памяти. Тут, как и с видеокартами, важны ваши задачи. 3D-модели бывают разные: если собираетесь делать игровые объекты, то хватит и 8 GB, а если планируете создавать трехмерную реалистичную графику с последующим превращением ее в видео, то нужно не менее 32 GB, а то и все 64.
Чтобы ускорить работу, нужно распределить память по слотам. Например, 2х8 GB работают медленнее, чем 4х4 GB. Поэтому нужна материнская плата с максимально большим количеством слотов под оперативную память. Количество оперативной памяти может быть ограничено процессором, выбирайте подходящую модель.
Нужен ли SSD для работы с графикой?
Для работы с двухмерной графикой SSD не обязателен, но сложно представить современный компьютер без этого помощника. В идеале лучше применять тандем из трех жестких дисков – 2хSSD и HDD.
SSD обычно имеют меньшую емкость, их нужно использовать для установки системы, программ и игр, а на HDD записывать файлы для длительного хранения. Второй твердотельный нужен под кеш программ обработки 3D сцен и последующей их конвертацией в видео, это если вы ними занимаетесь.
Компьютеры для графики 2019 года обладают сверхбыстрым SSD форм-фактора M.2. Такие накопители до 5 раз быстрее обычных SSD SATA. Самым продвинутым в этом плане является Samsung PRO и Kingston A1000. Это самый быстрые накопители на рынке.
Как выбрать монитор
Графические станции для 3D графики не могут раскрыть свой потенциал без хорошего монитора. Самый важный показатель – цветопередача. Есть несколько типов матриц, но самая лучшая дли рисования работы с графикой – IPS. Они немного дороже остальных, характеризуются большей задержкой, но идеальны для редактирования изображений.
Если вы профессионально занимаетесь графическим дизайном, то обязательно возьмите два или больше мониторов. Так вы сможете работать в нескольких программах сразу, быстро переключаясь между окнами. Все ваши работы будут на виду.
Монитор должен быть большой и с максимальным разрешением. Самый минимум – Full HD, но в идеале – 4К или 2К. Если два монитора с таким большим разрешением – для вас роскошь, то можно взять основной с высоким разрешением и дополнительный с меньшим.
Компьютеры для графики
Профессиональные графические станции
Попробовать рисовать можно на обычных машинах, предназначенных для дома или офиса. Если хотите развиваться в этой сфере, лучше купить специальные компьютеры для графики и дизайна.
HYPERPC NANO PRO 1 оборудован мощным процессором Intel® Core™ i5-11400(F). Достаточно мощная видеокарта позволит работать со сценами весом до 8 GB – главная особенность сборки. Это профессиональный компьютер для графики 3D начального уровня.
HYPERPC NANO PRO 3 немного мощнее своего собрата, тут более производительные процессор и видеокарта. Камушек Intel® Core™ i7-11700(F). Видеокарта ASUS GeForce RTX 3070 Ti справится со сценами весом до 8 GB. Оба ПК оборудованы быстрым SSD M.2 и ёмким HHD.
Если хотите купить топовый компьютер для графики, выбирайте HYPEPRC LUMEN PRO 2. Эта рабочая станция оборудована мощным процессором AMD Ryzen 5 5600X. Он справится с рендерингом самых сложных сцен. Большое количество оперативной памяти, это не ограничит вас в качестве используемых текстур. Видеокарта позволит рендерить сцены весом до 8 GB.
HYPEPRC LUMEN PRO 4 – одна из лучших сборок для графического дизайна от HYPERPC. Процессор Intel® Core™ i7-11700(F). Изюминкой сборки является профессиональная инженерная видеокарта Palit GeForce RTX 3080 Ti. Огромное количество видеопамяти позволят вам отказаться от рендеринга на процессоре. Оба топовых системных блока работают на двух накопителях – SSD 2TB HYPERPC PRO M.2 и 6TB Seagate. Сверхскоростное хранилище ускоряет работу с трехмерными моделями в несколько раз.
В моих предыдущих статьях я всегда пропускал введение в фотограмметрию, потому что существует множество ознакомительных инструкций. Однако недавно я заметил, что большинство из них не рассматривает подробно, как нужно правильно снимать изображения. Поэтому я решил создать собственное руководство обо всём, что знаю в фотограмметрии.
Эта статья предназначена для следующих категорий пользователей:
- Тех, кто никогда не использовал фотограмметрию или 3D-сканирование.
- Тех, кто уже пользовался фотограмметрией, читал вводные инструкции и хочет улучшить качество сканирования.
- Тех, кто уже всё это знает, но хочет проверить, не пропустил ли чего-нибудь.
Выражаю особую благодарность Югославу Пендичу (Jugoslav Pendić) за редактирование и дополнение этой статьи. Ещё я благодарю команду, занимающуюся 3D-сканированием, за ликвидацию пробелов в моих знаниях.
Что такое фотограмметрия?
Если вы читаете эту статью, то, надеюсь, вы уже знаете, что такое фотограмметрия. Если вкратце, то это процесс создания 3D-моделей из нескольких изображений одного объекта, сфотографированного с разных углов.
Хотя эта техника совсем не нова, она намного старее современного процесса, и она широко использовалась в картографии и геодезии. Она стала более популярной благодаря доступности из-за увеличения мощности компьютеров, что позволило ей распространиться в другие области, такие как видеоэффекты и разработка игр.
Если вы хотите быстро ознакомиться с началами фотограмметрии, рекомендую изучить следующие материалы:
-
, короткие видео Джеймса Кэнди (James Candy). , Бертран Бенуа (Bertrand Benoit). .
Программное обеспечение
Существует множество программ для фотограмметрии, которые можно использовать для обработки снятых изображений. Обычно все они дают достаточно хорошие результаты. Однако одни приложения могут иметь преимущества в некоторых областях. Но всё-таки стоит заметить, что хотя правила съёмки фотографий и одинаковы для всего ПО, существуют специфические для разных приложений рекомендации, потому что каждая программа обрабатывает данные по-своему. Эти рекомендации позволяют полностью использовать возможности ПО, и я советую потратить время на ознакомление с ними.
Например, из-за медленности вычислений в Agisoft вы можете стремиться записать в одно изображение как можно деталей. А Reality Capture стремится отфильтровывать эти фоновые детали, потому что они могут вносить шум. Однако Reality Capture быстрее, поэтому для неё можно просто сделать больше фотографий.
И ещё одно примечание: все описания основаны на моём личном опыте работы с этим ПО, который может отличаться от вашего. Рекомендую изучить эти варианты ПО (или другие) и самостоятельно сделать выбор.
Компьютер
Требования к компьютеру зависят от выбранного ПО, однако с помощью исследований и экспериментов я выяснил, что для большинства пакетов рекомендуемыми минимальными требованиями являются следующие:
-
Процессор: рекомендую core i7 с не менее чем 4 физическими ядрами. Xeon — это хорошо, но многие пакеты, например, Reality Capture предпочитают количеству ядер их скорость. Рекомендуется компьютер с одним процессором.
Оборудование
При работе с фотограмметрией обычно используются следующие инструменты:
- Камера: это самое очевидное, невозможно делать снимки без камеры. Идеальный выбор — камера с самыми чёткими снимками (например, Nikon 810, Canon 5D), разрешение тоже важно, но не так сильно. Можно делать потрясающие сканы даже цифровой «зеркалкой» за 300$, просто нужно больше снимков. На самом деле появляется всё больше достойных сканов, сделанных на телефонную камеру. При возможности всегда стоит снимать в RAW, постпроцессинг с небольшим удалением шума и повышением резкости поможет увеличить разрешение. Вот пример скана, сделанного Милошем Лукачем (Milos Lukac) с помощью Canon 550D и Reality Capture.
- Объектив: используйте объектив с постоянным фокусным расстоянием, чем чётче, тем лучше. Если у камеры объектив с переменным фокусным расстоянием и вы хотите использовать его, то выберите верхний или нижний предел и сохраняйте его на протяжении всей съёмки.
-
ISO как можно ниже, предпочтительно не выше 400.
В качестве высокоточного устройства позиционирования используется мобильное устройство DGPS (differential GPS) или тахеометр. Это в основном относится к использованию дронов для разметки рельефа и в геодезии. Три точки — это самый минимум, возможно, вам понадобится больше. Они располагаются таким образом, чтобы точки равномерно распределялись по всей документируемой области, а несколько находилось в центре. Этого очень сложно добиться на месте съёмки, и обычно такой подход используется в проектах с большим финансированием. Определение масштаба здесь не является проблемой, но позиционирование при геодезических работах означает, что из окончательного результата получаются планы, анализы или средства контроля. Т.е. обычно они будут использоваться в рабочем пространстве GIS.
Инструкции
В этом разделе содержатся общие советы по правильной съёмке изображения и о том, на что стоит обратить внимание.
Во-первых, прочитайте великолепную статью Искусство фотограмметрии: как делать снимки, в ней очень хорошо всё объяснено.
Во-вторых, вот общие советы, полученные с форумов по Reality Capture, от 3D Scanning User Group и из личного опыта.
- Не ограничивайте количество изображений, Reality Capture может осилить любое число. (Agisoft тоже сможет их обработать, но для этого потребуется большая вычислительная мощность.)
- Используйте максимально доступное разрешение.
- Каждая точка поверхности сцены должна быть чётко видна по крайней мере на двух высококачественных изображениях. Здесь работает правило «чем больше, тем лучше», и нужно стремиться хотя бы к трём изображениям, потому что для получения результатов большинство программ использует расчёт триангуляции. В Agisoft совершенно точно нужно больше трёх для уменьшения шума.
- Всегда перемещайтесь при съёмке. Стоя на одной точке, вы получите только панораму, которая ничем не поможет созданию 3D-модели, и даже внесёт в скан ошибки. Перемещайтесь вокруг объекта по кругу, стремясь к 80% наложения между фотографиями.
- Не меняйте точку обзора больше чем на 30 градусов.
- Начните со съёмки всего объекта, двигайтесь вокруг него, а затем фокусируйтесь на деталях. Приближайтесь не резко, а постепенно.
- Завершайте маршруты. При съёмке таких объектов как статуи, здания и подобных им нужно всегда двигаться вокург и заканчивать в том же месте, откуда начали.
- Не останавливайтесь на одном обходе, сделайте несколько с различной высоты.
- Поворачивайте камеру (горизонтальное и вертикальное перемещение обеспечивает лучшую калибровку).
- Доверяйте своим инстинктам, экспериментируйте и не бойтесь нарушать правила, если это нужно.
В-четвёртых, всегда следует с самого начала определяться с целевых разрешением. На самом деле, вам может понадобиться не такое большое разрешение, как вы думаете, что сэкономит время обработки. Разрешение зависит от параметров обработки, разрешения изображений и количества фотографий. Всё это можно и нужно иметь в виду. При сканировании камней для игры, чтобы получить модели высокого разрешения может хватить 20 снимков, в особенности если поверх отсканированной тестуры наложить процедурную текстуру с деталями. Если вы сканируете замок, вам тоже может не понадобиться большое разрешение. Просто отсканируйте замок в низком разрешении, выберите ключевые повторяющиеся элементы и отсканируйте их в высоком разрешении. Затем сгенерируйте остальное. Может возникнуть и противоположная ситуация: потребуется 500 снимков для сканирования одного камешка.
Чаще всего вам не понадобится режим Ultra High Settings в Agisoft или High settings в Reality Capture.
Практика
Теперь, когда вы кое-что знаете о фотограмметрии, вот несколько интересных примеров, которые стоит попробовать:
- Отсканируйте камень, это лёгкая мишень и хорошая задача для начала. Постарайтесь сделать как можно меньше снимков для реконструкции полной сетки, а потом начните добавлять изображения для увеличения разрешения деталей.
- Отсканируйте статую: статуя похожа на камень с интересными вогнутыми формами, которые немного повысят сложность работы.
- Отсканируйте ботинок. Не знаю, зачем все так делают. Возможно, это какой-то ритуал инициации, или что-то подобное.
- Отсканируйте узкий тоннель или лестничные проёмы. Сложность здесь в том, что у вас не будет достаточно пространства для перемещения и съёмки с разных углов. Хитрость в том, чтобы пересечь туннель, делая один снимок того, что перед вами при каждом шаге вперёд.
- Отсканируйте интерьер. У Valve есть интересный подход, который вы можете попробовать.
- Отсканируйте здание или даже замок, попробуйте сделать это с дроном и без него. Можно вскарабкаться на здание или воспользоваться длинным шестом с камерой. Подсказка.
- Отсканируйте отражающую поверхность. Изучите это видео студии ten24 по 3D-сканированию отражающих объектов с помощью фотограмметрии.
- Отсканируйте голову одной камерой. Это сложно, постарайтесь не двигаться, или попробуйте использовать поворотный стол.
- Отсканируйте насекомое. Есть хороший пример отсканированного 2cgvfx насекомого.
- Отсканируйте рельеф. Изучите ещё один подход Valve, но я крайне рекомендую исследовать подход с пролётом дрона по надиру.
Другие способы сканирования
Следует знать, что фотограмметрия — не решение всех задач. Существуют другие способы сканирования, в некоторых случаях срабатывающие лучше.
- Лидар — это геодезический способ измерения расстояния до цели подсветкой цели лазером. Лидар может быть быстрее в сборе 3D-данных, и он определённо эффективнее при сканировании растительности и полей, хотя этот способ и довольно дорогой. Лидар-сканнер тяжёлый, поэтому сложно будет прикрепить его к дрону, хотя некоторым компаниям удалось создать собственных дронов. Вот короткое видео, опубликованное Capturing Reality, в котором используется Reality Capture для комбинирования данных лазера с фотографиями для создания точной модели. Также в видео рассматриваются преимущества обоих способов.
- David Laserscanner — это гораздо более дешёвая самодельная альтернатива, в которой для измерения и сканирования объекта тоже используется лазер. Её можно применять для сканирования мелких и средних объектов (например, катеров). Стоит заметить, что владельцем этого ПО недавно стала HP.
- Сканер Artec — это ручной лазерный сканер, обеспечивающий хорошие результаты. Можно использовать для сканирования мелких предметов.
- Microsoft Kinect тоже можно использовать для сканирования объектов и людей, но у него довольно низкое разрешение.
- RTI — это вычислительный фотографический способ, снимающий форму поверхности объекта и позволяющий интерактивно изменять освещение объекта с любого направления. RTI также позволяет выполнять математическое усовершенствование формы поверхности объекта и цветовых атрибутов.
Заключение
Приступайте к работе, не сомневайтесь, постоянно практикуйтесь и пробуйте сканировать любым доступным оборудованием.
Если вы прочитали эту статью и все остальные, на которые я ссылался, и теперь не знаете, что ещё можно изучить, то прочитайте мою статью "Процесс создания готовых игровых текстур и ресурсов с помощью фотограмметрии". Также можно прочитать другие мои статьи на веб-сайте моей игры World Void на странице Devlog.
Если у вас есть вопросы, или вы считаете, что я что-то упустил, то свяжитесь со мной в Твиттере: @JosephRAzzam.
Трёхмерное моделирование — перспективная отрасль, которая с каждым годом всё больше набирает обороты. Иллюстрация, дизайн интерьеров, анимация, реклама, постпродакшн и геймдев — спрос на 3D-дизайнеров стабилен, а стоимость их услуг весьма высока. При этом попасть в индустрию вполне реально: образовательные платформы предлагают самые разные курсы, рассчитанные на слушателей с любым уровнем подготовки. Поэтому при наличии времени и бюджета овладеть навыками трёхмерного моделирования не проблема.
Для того чтобы полноценно работать и успешно монетизировать свои знания, дизайнеру-трёхмерщику нужен компьютер. Очень хороший и дорогой, потому что обычный домашний/офисный десктоп и уж тем более ноутбук для этого абсолютно не подходят. Почему? Да потому что трёхмерка очень требовательна к железу: ни одному офисному процессу, никакой компьютерной игре не нужны такие вычислительные мощности, которые необходимы программам 3D-моделирования и рендер-движкам.
Например, постпродакшн легендарного «Аватара» студии Weta Digital потребовал полного обновления дата-центра: для выполнения заказа Джеймса Кэмерона существующих мощностей одного из самых именитых производителей трёхмерных спецэффектов просто не хватило. На создание и рендер первых 11 кадров ушёл целый год, и только после того, как в дата-центре появились 34 стойки с новейшими серверами HP Proliant, процесс производства удалось ускорить до 200 кадров в день. Совокупная мощность вычислительного массива составила 40 000 процессорных ядер, которым в общей сложности пришлось обработать петабайт (миллион гигабайт) информации.
Конечно, в обычной работе 3D-дизайнер вполне может обойтись без сверхмощных серверов, но производительный компьютер в любом случае понадобится. И, скорее всего, собирать его придётся самостоятельно. Если этот процесс вас не привлекает, имеет смысл проскроллить статью — в конце есть решение для тех, кто предпочитает тратить время на творчество, а не на самостоятельную сборку ПК. Всем остальным расскажем об основных нюансах, которые необходимо учитывать при выборе и покупке комплектующих.
Прежде чем сложить воедино все детали этого пазла, обратим внимание на три важных момента.
1. Область деятельности
Трёхмерный дизайн безбрежен и многогранен, и требования к технике в разных областях 3D очень разные, поэтому, прежде чем приступать к сборке компьютера, необходимо чёткое представление о том, какие задачи он будет выполнять. Например, проектирование для трёхмерной печати обходится практически без рендеринга — самого ресурсозатратного процесса в 3D — значит, оно не потребует мощного и дорогого железа. Для дизайна интерьеров придётся собрать более производительную машину, а тем, кто хочет заниматься анимацией и трёхмерными спецэффектами, нужно быть готовыми к покупке топовых (и самых дорогих) комплектующих.
2. Программы для работы
Ещё один довольно существенный ориентир в вопросах сборки компьютера для работы — системные требования программ. Их можно найти на официальных сайтах разработчиков (и убедиться в том, что эти показатели могут значительно отличаться). Как правило, производители указывают минимальные и рекомендованные параметры: стоит ли говорить, что на первые ориентироваться не стоит?
3. Актуальные комплектующие
Время — это то, что работает против вас. Компьютеры стремительно устаревают, а технологии, наоборот, развиваются всё быстрее и требуют всё больше вычислительных мощностей. То, что сегодня считается производительной машиной, завтра окажется просто хорошей, а послезавтра настоятельно потребует апгрейда. Поэтому собирать рабочую станцию необходимо с запасом мощности, чтобы хватило надолго. Как правило, хорошие машины работают около 3-6 лет, потом может потребоваться замена железа на более актуальное или просто новое (как в случае с твердотельными накопителями, у которых совсем небольшой ресурс).
А теперь вернёмся к комплектующим. Что выбрать?
Процессор — центральный элемент рабочей станции, который отвечает за все вычислительные процессы (в том числе и просчёты во время рендеринга). При выборе стоит обратить внимание на две основные характеристики: количество ядер (этот показатель определяет возможность выполнять несколько задач одновременно) и тактовую частоту (отвечает за быстродействие системы). Ещё один важный параметр CPU — многопоточность. Многопоточные ядра позволяют повысить производительность системы за счёт одновременной обработки двух потоков одним ядром.
Если говорить о процессорах Intel, бюджетным решением станут восьмиядерники из семейства Core i7, оптимальным — из Core i9, а те пользователи, которые не ограничены в средствах или планируют утереть нос «Аватару», могут обратить внимание на линейку Intel® Xeon®. Впрочем, многоядерные многопоточные процессоры AMD Threadripper™ тоже прекрасно подходят для 3D (и при этом стоят дешевле).
Хороший графический процессор или видеокарта — это настоящая инвестиция в будущее. Классические движки (такие как V-Ray или Mental Ray), использующие для просчёта только мощности центрального процессора, постепенно уступают новому поколению рендеров, работающих на вычислительных мощностях видеокарт. Главное преимущество GPU-движков — скорость: они за несколько секунд справляются с просчётом сцены, на которую рендер на CPU потратит 10-15 минут. Такой подход позволяет рендерить трёхмерную модель фактически в реальном времени, что значительно ускоряет работу дизайнера и повышает её качество.
Лидер и технологический локомотив в области GPU — это, конечно же, NVIDIA®. Последнее поколение видеокарт на базе архитектуры NVIDIA® Turing™ с технологией трассировки лучей RTX™ и тензорными ядрами предоставило массу новых возможностей не только геймерам, но и графическим дизайнерам. Для представителей творческих профессий NVIDIA® предлагает специальную линейку GPU Quadro® RTX™, позволяющую использовать возможности трассировки лучей, искусственного интеллекта и продвинутого шейдинга с аппаратным ускорением. Octane, Redshift, Cycles, Furry Ball, V-Ray RT — все популярные GPU-движки в паре с Quadro® в десятки раз ускоряют процесс рендеринга, повышают продуктивность, облегчают работу, позволяют создавать невероятно сложный и эффектный контент и, как следствие, повышают ценность специалиста на рынке 3D-графики.
Единственные минус линейки Quadro® — это цена. Впрочем, ассортимент GPU NVIDIA® достаточно широк, чтобы подобрать для сборки более бюджетную видеокарту — многие игровые модели неплохо показывают себя и в рендеринге. Подойдут линейки RTX™ и GTX™, а чтобы не запутаться в ассортименте, необходимо обращать внимание на четырёхзначный индекс модели. Первые две цифры (или одна у более старых карточек) указывают на поколение, вторые две — на характеристики производительности. Для 3D подходят модели десятого и двадцатого поколений с индексом производительности 60, 70 или 80. Из видеокарт подороже можно выбрать, например, NVIDIA® GeForce® RTX™ 2070, а если бюджет ограничен, стоит остановиться на NVIDIA® GeForce® GTX™ 1070 или 1060. Производительность у RTX™, само собой, будет больше, чем у GTX™, но все эти модели позволят использовать в работе GPU-движки и оценить преимущества рендера на мощностях видеокарты.
При выборе оперативной памяти правило простое: чем больше, тем лучше. Если бюджет ограничен, можно начать с 16 Гб, но при этом обязательно предусмотреть возможность расширения памяти в будущем (выбрать материнскую плату с достаточным количеством слотов). 24-32 Гб — оптимальная цифра, а самые сложные процессы могут потребовать и больше оперативки.
HDD и SSD
Для трёхмерной графики крайне важно быстродействие системы, поэтому без твердотельного накопителя не обойтись: на него устанавливают операционку и программы. Но SSD-хранилища недолговечны: количество циклов перезаписи на них ограничено, поэтому все рабочие проекты лучше хранить на старых добрых жёстких дисках — более медленных, но при этом более надёжных. Для SSD 240 Гб — это минимум, а объём HDD ограничен только бюджетом. Графические проекты требуют много места: пара-тройка терабайт довольно быстро забьется рабочими файлами, поэтому сэкономить на накопителях вряд ли получится.
Если планируется интенсивная работа с большой нагрузкой на HDD, есть смысл купить два одинаковых жёстких диска и настроить зеркальный RAID-массив. В этом случае один из дисков будет доступен для записи, а второй станет точной копией первого. Такая система позволяет в случае отказа одного из дисков, во-первых, не потерять данные, во-вторых — сохранить работоспособность системы и не прерывать работу над текущим проектом в ожидании новых комплектующих.
Материнская плата
Материнка — это фундамент вашей будущей рабочей станции, который объединит разрозненные детали в единую систему. Главное правило при ее выборе — берите с запасом! Плата должна быть масштабируемой: поддерживать установку дополнительных планок памяти, жёстких дисков, новых видеокарт и т. д.
Итак, с основными комплектующими мы определились. Осталось разместить их на материнской плате, добавить блок питания и систему охлаждения, сложить всё в красивый корпус, установить операционную систему и программы для работы… Сложно? К счастью, можно обойтись и без этого, просто купив готовый компьютер. Правда, до недавнего времени мощные сборки, подходящие для трёхмерной графики, встречались в магазинах электроники крайне редко. Но всё поменялось с появлением у Acer линейки профессиональных компьютеров для создателей контента Concept D.
Включи и работай
Эти компьютеры изначально создавались с целью удовлетворить специфические потребности представителей творческой индустрии, в том числе и дизайнеров-трёхмерщиков. Линейка включает в себя сразу три готовых десктопа: ConceptD 500, ConceptD 700 и ConceptD 900. Все комплектующие в них идеально подходят для графики и не конфликтуют друг с другом (чего нельзя исключить при самостоятельной сборке). Чтобы начать работу, десктоп достаточно просто достать из коробки и включить.
Даже младшая модель в линейке настольных ПК ConceptD 500 обладает весьма впечатляющими характеристиками. Она собрана на базе восьмиядерного 16-поточного процессора Intel®Core™ i9 и имеет на борту видеокарту NVIDIA® Quadro® RTX™ 4000. Concept D 700 — мощнее: он оснащен процессором Intel® Xeon® и дополнительным модулем памяти Optane™, который ещё больше увеличивает быстродействие системы. Старшая же модель ConceptD 900 — это настоящий монстр, производительная графическая станция, способная «вывезти» абсолютно любой, даже самый сложный проект. У неё целых два процессора Intel® Xeon® Gold 6148, которые в сумме дают 40 ядер и 80 потоков, и один из самых производительных GPU — NVIDIA® Quadro® RTX™ 6000.
Все рабочие станции ConceptD обеспечивают возможность апгрейда и расширения, так что каждая из них станет надёжным рабочим инструментом на долгие годы. Лэптопы линейки не только производительные, но и очень красивые: две младшие модели могут похвастаться элегантным белым корпусом с отделкой из дерева и алюминия, а старшая «упакована» в строгий чёрный корпус с эффектной вентиляционной решёткой.
Процессор 9900KS самый сомнительный в линейке Intel. Не стоит за него переплачивать, достаточно 9900K. Видеопамять минимум это 8Гб. Про 4Гб можно забыть сразу. А вот в необходимости оперативки 32 Гб, для "чайников" сомневаюсь, у "чайников" не будет таких задач в обозримом будущем - 16Гб за глаза.Покупать материнку с прицелом на дальнейший апгрейд - это правило практически не работает, потому что через года3-4, собравшись апргрейдить систему - захочется новый проц, а сокет на вашей материнке, за 4 года устареет к тому времени. Так что придется вам брать новую мать, новый проц, возможно новую память. В общем совет конечно хороший, но на практике он не работает. Просто переплатите в пустую. Рейд массивы чайникам тоже не понадобятся, у них не те задачи. Обычного бэкапа на второй винчестер более чем достаточно. Не стоит покупать HDD со скоростью вращения шпинделя больше чем 5500, чем быстрее вращается шпиндель, тем быстрее ваш диск полетит. Во время работы в 3д, вы не заметите прироста скорости если будете использовать скоростные и дорогущие HDD, а переплатите раза в 2 легко. Оптимально брать HDD от производителя WD например, тихие и живучие. Единственное что надо купить с прицелом на будущее это системный блок - он должен быть вместительным, с большим количеством посадочных мест под HDD, желательно формфактора АТХ, посмотреть чтобы в него влезла длинная видеокарта. Ну и на блоке питания я бы тоже не советовал экономить, вам же не нужны перезагрузки во время работы.
Да и не забудьте про кулер процессора, он должен обеспечивать приличное охлаждение процессора, во время долгих рендеров. Для процессора 9900K я бы посоветовал Noctua NH-D15. Пфф, берём с алика двухпроцессорную Kllisre X99, затариваемся 16гб оперативы от TANBASSH, затем 2 процессора e5-2678v3 по 12 ядер 24 потока каждый + снеговики к ним, БП с магазина, какой-нибудь Deepcool GamerStorm DQ650-M 650W и чтобы картинка была, да поиграть можно было GTX 970 за 8к. Радуемся :) А 16 оперативы не мало? На алике серверные плашки на 8гб продаются по косарю.
e.ov Процессор 9900KS самый сомнительный в линейке Intel. Не стоит за него переплачивать, достаточно 9900K. Видеопамять минимум это 8Гб. Про 4Гб можно забыть сразу. А вот в необходимости оперативки 32 Гб, для "чайников" сомневаюсь, у "чайников" не будет таких задач в обозримом будущем - 16Гб за глаза.x99 с алика я бы кроме как для ноды брать не стал. 970 печка хоть и хороша (у самого такая) но уже не тащит. если надо 1440 то извольте. Да и e5-2678v3 с его несчастными 3.3 турбо в однопотоке это печаль. Заголовок о компе для моделинга.. статью вообще писал человек далёкий от мира cg.
Покупать материнку с прицелом на дальнейший апгрейд - это правило практически не работает, потому что через года3-4, собравшись апргрейдить систему - захочется новый проц, а сокет на вашей материнке, за 4 года устареет к тому времени. Так что придется вам брать новую мать, новый проц, возможно новую память. В общем совет конечно хороший, но на практике он не работает. Просто переплатите в пустую. Рейд массивы чайникам тоже не понадобятся, у них не те задачи. Обычного бэкапа на второй винчестер более чем достаточно. Не стоит покупать HDD со скоростью вращения шпинделя больше чем 5500, чем быстрее вращается шпиндель, тем быстрее ваш диск полетит. Во время работы в 3д, вы не заметите прироста скорости если будете использовать скоростные и дорогущие HDD, а переплатите раза в 2 легко. Оптимально брать HDD от производителя WD например, тихие и живучие. Единственное что надо купить с прицелом на будущее это системный блок - он должен быть вместительным, с большим количеством посадочных мест под HDD, желательно формфактора АТХ, посмотреть чтобы в него влезла длинная видеокарта. Ну и на блоке питания я бы тоже не советовал экономить, вам же не нужны перезагрузки во время работы.
Да и не забудьте про кулер процессора, он должен обеспечивать приличное охлаждение процессора, во время долгих рендеров. Для процессора 9900K я бы посоветовал Noctua NH-D15.
можно взять бу за 25-30+оперативы до 32/64 гигов.
Можно системку и новую купить.
1.вы только модельер. Комп любое 4-6 ядерное нечто с оперативкой от 32гб. Видео для крупных мешей уровня 1050
1.2 вы моделер+шейдинг. Все тоже самое+видео 2060/1070+ саб прожорлив бывает.
2 рендер. Тут можно рендерить процем и забить на видюху, можно видюхой/некоторые поддерживают гибридный рендер. Или просто сидеть с ноутом даже и рендерить удаленно на ферме.
Интел сейчас вообще в плане цена/качество очень проигрывает амд. Для архивиза вполне хватит 3700х.
В целом слишком много факторов, чтобы рекомендовать что то конкретное. Разный софт, разные масштабы производства, разные цели и задачи. Интерьер/экстерьер в статике вообще на 3600 вполне замечательно можно делать. 3950х и анимацию порнндит на ура согласен зря быканул. Но всеравно низкие частоты под хорошие проц и видеокарту это плохо. По поводу пункта "Все комплектующие в них идеально подходят для графики и не конфликтуют друг с другом (чего нельзя исключить при самостоятельной сборке)." - проблема разве еще актуальна? Возможно мне как специалисту какие-то вещи кажутся банальными или из-за "замыленности" глаз не заметными, но что за конфликты имеются ввиду? По сути если ты не напутал с сокетом и подобрал БП достаточный по мощности - всё будет работать, я не прав? "Как правило, хорошие машины работают около 3-6 лет, потом может
потребоваться замена железа на более актуальное или просто новое (как в
случае с твердотельными накопителями, у которых совсем небольшой
ресурс)."
Да когда вы эту дичь нести перестанете?))) Знатоки железа.
"дизайнеру-трёхмерщику нужен компьютер. Очень хороший и дорогой, потому что обычный домашний/офисный десктоп и уж тем более ноутбук для этого абсолютно не подходят."
Хе. Пользуюсь Blender на эппл ноуте 4-летней давности без всяких крутых видюх и процессоров. 4 ядра, 16гб оперативки. Летает как ястреб.
Читайте также: