Как сделать статическое электричество
Во всех проводимых в этом разделе опытах мы используем статическое электричество. Электричество называют статическим, когда ток, то есть перемещение заряда, отсутствует. Оно образуется за счет трения объектов. Например, шарика и свитера, шарика и волос, шарика и натурального меха. Вместо шарика иногда можно взять гладкий большой кусок янтаря или пластмассовую расческу. Почему мы используем в опытах именно эти предметы? Все предметы состоят из атомов, а в каждом атоме находится поровну протонов и электронов. У протонов заряд - положительный, а у электронов - отрицательный. Когда эти заряды равны, предмет называют нейтральным, или незаряженным. Но есть предметы, например, волосы или шерсть, которые очень легко теряют свои электроны. Если потереть шарик (янтарь, расческу) о такой предмет, часть электронов перейдет с него на шарик, и он приобретет отрицательный статический заряд. Когда мы приближаем отрицательно заряженный шарик к некоторым нейтральным предметам, электроны в этих предметах начинают отталкиваться от электронов шарика и перемещаться на противоположную сторону предмета. Таким образом, верхняя сторона предмета, обращенная к шарику, становится заряженной положительно, и шарик начнет притягивать предмет к себе. Но, если подождать подольше, электроны начнут переходить с шарика на предмет. Таким образом, через некоторое время шарик и притягиваемые им предметы снова станут нейтральными и перестанут притягиваться друг к другу.
Опыт №1. Понятие о электрических зарядах.
Цель: Показать, что в результате контакта между двумя различными предметами возможно разделение электрических разрядов.
1. Воздушный шарик.
2. Шерстяной свитер.
Опыт: Надуем небольшой воздушный шарик. Потрем шарик о шерстяной свитер и попробуем дотронуться шариком до различных предметов в комнате. Получился настоящий фокус!Шарик начинает прилипать буквально ко всем предметам в комнате: к шкафу, к стенке, а самое главное - к ребенку. Почему?
Это объясняется тем, что все предметы имеют определенный электрический заряд. Но есть предметы, например - шерсть, которые очень легко теряют свои электроны. В результате контакта между шариком и шерстяным свитером происходит разделение электрических разрядов. Часть электронов с шерсти перейдет на шарик, и он приобретет отрицательный статический заряд. Когда мы приближаем отрицательно заряженный шарик к некоторым нейтральным предметам, электроны в этих предметах начинают отталкиваться от электронов шарика и перемещаться на противоположную сторону предмета. Таким образом, верхняя сторона предмета, обращенная к шарику, становится заряженной положительно, и шарик начнет притягивать предмет к себе. Но если подождать подольше, электроны начнут переходить с шарика на предмет. Таким образом, через некоторое время шарик и притягиваемые им предметы снова станут нейтральными и перестанут притягиваться друг к другу. Шарик упадет.
Вывод: В результате контакта между двумя различными предметами возможно разделение электрических разрядов.
Опыт №2. Танцующая фольга.
Цель: Показать, что разноименные статические заряды притягиваются друг к другу, а одноименные отталкиваются.
1. Тонкая алюминиевая фольга (обертка от шоколада).
2. Ножницы. 3. Пластмассовая расческа. 4. Бумажное полотенце.
Опыт: Нарежем алюминиевую фольгу (блестящую обертку от шоколада или конфет) очень узкими и длинными полосками. Высыпем полоски фольги на бумажное полотенце. Проведем несколько раз пластмассовой расческой по своим волосам, а затем поднесем ее вплотную к полоскам фольги. Полоски начнут "танцевать". Почему так происходит? Волосы. о которые мы потерли пластмассовую расческу, очень легко теряют свои электроны. Их часть перешла на расческу, и она приобрела отрицательный статический заряд. Когда мы приблизили расческу к полоскам фольги, электроны в ней начали отталкиваться от электронов расчески и перемещаться на противоположную сторону полоски. Таким образом, одна сторона полоски оказалась заряжена положительно, и расческа начала притягивать ее к себе. Другая сторона полоски приобрела отрицательный заряд. легкая полоска фольги, притягиваясь, поднимается в воздух, переворачивается и оказывается повернутой к расческе другой стороной, с отрицательным зарядом. В этот момент она отталкивается от расчески. Процесс притягивания и отталкивания полосок идет непрерывно, создается впечатление, что "фольга танцует".
Вывод: Разноименные статические заряды притягиваются друг к другу, а одноименные отталкиваются.
Опыт №3. Прыгающие рисовые хлопья.
Цель: Показать, что в результате контакта между двумя различными предметами возможно разделение статических электрических разрядов.
1. Чайная ложка хрустящих рисовых хлопьев.
2. Бумажное полотенце.
3. Воздушный шарик.
4. Шерстяной свитер.
Опыт: Постелим на столе бумажное полотенце и насыплем на него рисовые хлопья. Надуем небольшой воздушный шарик. Потрем шарик о шерстяной свитер, затем поднесем его к хлопьям, не касаясь их. Хлопья начинают подпрыгивать и приклеиваться к шарику. Почему? В результате контакта между шариком и шерстяным свитером произошло разделение статических электрических зарядов. Часть электронов с шерсти перешло на шарик, и он приобрел отрицательный электрический заряд. Когда мы поднесли шарик к хлопьям, электроны в них начали отталкиваться от электронов шарика и перемещаться на противоположную сторону. Таким образом, верхняя сторона хлопьев, обращенная к шарику, оказалась заряжена положительно, и шарик начал притягивать легкие хлопья к себе.
Вывод: В результате контакта между двумя различными предметами возможно разделение статических электрических разрядов.
Опыт №4. Способ разделения перемешанных соли и перца.
Цель: Показать, что в результате контакта не во всех предметах возможно разделение статических электрических разрядов.
1. Чайная ложка молотого перца.
2. Чайная ложка соли.
3. Бумажное полотенце.
4. Воздушный шарик.
5. Шерстяной свитер.
Опыт: Расстелим на столе бумажное полотенце. Высыплем на него перец и соль и тщательно их перемешаем. Можно ли теперь разделить соль и перец? Очевидно, что сделать это весьма затруднительно! Надуем небольшой воздушный шарик. Потрем шарик о шерстяной свитер, затем поднесем его к смеси соли и перца. Произойдет чудо! Перец прилипнет к шарику, а соль останется на столе. Это еще один пример действия статического электричества. Когда мы потерли шарик шерстяной тканью, он приобрел отрицательный заряд. Потом мы поднесли шарик к смеси перца с солью, перец начал притягиваться к нему. Это произошло потому, что электроны в перечных пылинках стремились переместиться как можно дальше от шарика. Следовательно, часть перчинок, ближайшая к шарику, приобрела положительный заряд и притянулась отрицательным зарядом шарика. Перец прилип к шарику. Соль не притягивается к шарику, так как в этом веществе электроны перемещаются плохо. Когда мы подносим к соли заряженный шарик, ее электроны все равно остаются на своих местах. Соль со стороны шарика не приобретает заряда, она остается незаряженной или нейтральной. Поэтому соль не прилипает к отрицательно заряженному шарику.
Вывод: В результате контакта не во всех предметах возможно разделение статических электрических разрядов.
Опыт №5. Гибкая вода.
Цель: Показать, что в воде электроны свободно перемещаются.
1. Раковина и водопроводный кран.
2. Воздушный шарик.
3. Шерстяной свитер.
Опыт: Откроем водопроводный кран таким образом, чтобы струя воды была очень тонкой. Надуем небольшой воздушный шарик. Потрем шарик о шерстяной свитер, затем поднесем его к струйке воды. Струя воды отклонится в сторону шарика. Электроны с шерстяного свитера при трении переходят на шарик и придают ему отрицательный заряд. Этот заряд отталкивает от себя электроны, находящиеся в воде, и они перемещаются в ту часть струи, которая дальше всего от шарика. Ближе к шарику в струе воды возникает положительный заряд, и отрицательно заряженный шарик тянет ее к себе. Чтобы перемещение струи было видимым, она должна быть тонкой. Статическое электричество, скапливающееся на шарике, относительно мало, и ему не под силу переместить большое количество воды. Если струйка воды коснется шарика, он потеряет свой заряд. Лишние электроны перейдут в воду; как шарик, так и вода станут электрически нейтральными, поэтому струйка снова потечет ровно.
Вывод: В воде электроны могут свободно перемещаться.
Опыты с электричеством Опыты. Как рассказать детям про электричество без скуки? Конечно посредством опытов! Особенно про неопасное электричество, статическое.
Знакомство дошкольников со статическим электричеством посредством опытно-экспериментальной деятельности Список опытов: 1. Шарики на стене 2. Шарики поссорились 3. Шарики подружились 4. Бумажное конфетти 5. Гибкая вода 6. Электричество в голове.
Получение электричества из воздуха может показаться чем-то из области фантастики. Действительно, на столь смелое заявление оппоненты могут возразить, что в окружающей среде нет мощного источника электрической энергии, и единственное, что имеет право на существование, это солнечные батареи и ветрогенераторы. Однако их мнение не вполне соответствует действительности. Явление статического электричества в воздухе, знакомое практически каждому человеку, означает присутствие электроэнергии в пространстве в незначительном количестве. Научившись накапливать ее и использовать для работы бытовых энергозависимых приборов, человечество совершит прорыв в истории науки и заодно получит в свое распоряжение тысячи киловатт дешевых энергоресурсов с неисчерпаемым запасом.
Опыты Тесла повторили многие специалисты и частные лица — любители из разных стран мира. Чьи-то опыты оказались бесплодными, но некоторым удалось приблизиться к ответу на вопрос, как получать электричество из воздуха как Тесла. В числе разработок – проект изобретателя Стивена Марка. Сконструированный им тороидальный генератор способен накапливать и удерживать значительное количество энергии, которого вполне достаточно для питания слабых источников света и бытовой техники. Работая без дополнительной подзарядки в течение длительного времени, генератор электричества из воздуха стабильно подавал бесплатную энергию на подключенные устройства-потребители, не оказывая негативного влияния на их техническое состояние и работоспособность.
Электричество из воздуха: схемы, прошедшие проверку качества
Сегодня научные журналы и тематические сайты предлагают немало схем и чертежей для электричества из воздуха, пригодных для реализации в домашних условиях. Тем более что есть благоприятные условия для воплощения подобных замыслов. Разветвленная сеть линий электропередач дополнительно насыщает воздух ионами в огромном количестве. И остается только научиться аккумулировать рассеянную энергию и использовать ее для бытовых нужд.
Первый вариант – земля в качестве основания и металлическая пластина, играющая роль антенны. Здесь нет необходимости использовать накопительные или преобразовательные устройства. Энергетический потенциал между землей и антенной может увеличиваться по мере накопления заряда. Действие такой схемы аналогично действию молнии: при накоплении достаточного количества электричества возникает разряд и видимое искрение. Единственная сложность – предсказать его величину в следующий момент времени невозможно. А пустить для бытовых устройств крупный разряд – значит сжечь их в первую же секунду.
В числе достоинств предлагаемого решения:
- Доступность реализации в домашних условиях;
- Минимальную себестоимость благодаря отказу от покупки дорогостоящих устройств и дополнительных приборов. А металлическая пластина с токопроводящими свойствами легко найдется в запасах у любого домашнего мастера.
Однако в предложенном проекте есть и недостатки. О первом сказано выше: это невозможность рассчитать силу заряда хотя бы приблизительно. И еще один момент, касающийся вопросов безопасности: открытый контур способен притягивать грозовой разряд, убийственная мощность которого опасна для жизни.
Схема получения электричества из воздуха по проекту Стивена Марка
Генератор Стивена Марка также доступен для реализации в бытовых условиях. Его работоспособность подтверждает патентование технологии, которой предрекал большое будущее ее изобретатель. Принцип прост: внутри кольцевой конструкции устройства токи и магнитные вихри резонируют, приводя к появлению разряда сравнительно высокой мощности.
Схема получения электричества из воздуха выглядит следующим образом:
- Основание прибора Марка – отрезок фанеры, резина или полиуретан, на которые будут уложены две коллекторные катушки и четыре катушки управления. Последние должны соответствовать следующим параметрам: внутренний и наружный диаметр кольца соответственно 18 и 23 см, ширина 2,5 см, толщина 0,5 см.
- Внутренняя коллекторная катушка наматывается с применением медного провода, в идеале намотка должна быть в три витка.
- Управляющие катушки наматываются одножильными проводами плоской намоткой с зазором между витками не более 15 мм. Для монтажа последней катушки применяют изолированный медный провод, который располагают по всей площади основания.
- Устанавливается конденсатор на 10 микрофарад.
- Выводы катушек соединяются. Для питания подбираются транзисторы, параметры которых учитывают тип проводов и прочие особенности конструкции.
Устройство готово к тестированию и первым пробным подключениям к маломощному энергозависимому устройству.
Несколько полезных советов по технике безопасности
- Непредсказуемость статического электричества требует внимательного конструирования с учетом полярности, правильности подключения и изоляции устройства;
- Испытания лучше проводить в помещении, откуда своевременно удалены легковоспламеняющиеся и взрывоопасные устройства.
Проведите несколько раз воздушным шариком по волосам и они встанут дыбом. Почти все хоть раз так делали или, по крайней мере, видели, как это делают другие. Впервые о статическом электричестве заговорили еще древние Греки, но ученые до сих пор не знают, почему трение определенных материалов вместе создает электрический заряд. Возможно, теперь они близки к разгадке.
В отличие от электрического тока, протекающего через линию электропередачи, статическое электричество остается на месте. Этот тип электричества (также известный как трибоэлектричество) обычно накапливается в материалах, которые не очень хорошо проводят заряд, таких как резина или пластик. Эти изоляторы накапливают статический заряд, и, при трении друг о друга, высвобождают его.
Новое электрическое явление
Недавно исследователи изучили другое электрическое явление, называемое флексоэлектричеством, и задались вопросом, может ли оно объяснить, как трение генерирует статическое электричество. Флексоэлектрический эффект - это самопроизвольное появление электрических полей во время непрерывного, но непоследовательного сгибания или разгибания материала на наноуровне. Пример – флексоэлектричество образуется, если провести пальцами по зубцам пластикового гребешка.
Исследователи обнаружили, что, флексоэлектрический эффект приводит к накоплению статического электричества. Об этом открытии была сделана публикация в журнале Physical Review Letters. В работе также описано, почему изоляторы, сделанные из одинакового материала, все еще генерируют напряжение при трении друг о друга. Это сбило с толку ученых, считавших, что накопление статического заряда может сводиться к присущим различиям между двумя материалами, которые взаимодействуют путем эффекта трения.
Результаты показывают, что пластмассы особенно хорошо генерируют статическое электричество. Это новое знание может помочь инженерам оптимизировать материалы для производства большего статического электричества и использовать его для таких вещей, как переносные зарядные устройства. Результаты также могут помочь повысить безопасность в таких местах, как нефтеперерабатывающие заводы, где даже искра может привести к катастрофическому взрыву.
С проявлениями статического электричества легко столкнуться в повседневной жизни: при быстром снятии свитера, хождении по ковру в шерстяных носках, при использовании автомобиля. Образуемый в быту заряд неприятен, но не опасен для человека, а промышленности же статика может привести в пожару или взрыву.
Что это такое
Со статическим электричеством знакомы все люди. Это совокупность явлений, которые связаны с возникновением, сохранением и свободного накопления электрического заряда. Последний возникает на поверхности диэлектрика, который плохо проводит ток, или на изолированным проводнике, не имеющим доступ к постоянному току.
В Быту со статическим электричеством сталкивались все
Появление статического электричества связано с отсутствием перемещения заряда. Свободно передвигающиеся по проводнику электрические заряды являются электрический током. Если же эти заряды останавливаются в одном месте, это называется статическим электричеством.
В любом веществе положительные и отрицательные частицы атомов находятся в равновесии, их количество равно. При этом отрицательно заряженные электроны могут перемещаться между атомами, формирую положительный или отрицательный заряд. Это способствует формированию статического нестабильного электрического поля.
Статика неприятна, но не опасна
Сколько вольт в статическом напряжении
Сила разряда и характеристика статического напряжения может быть разной. Человек может ощущать разряд свыше 3 тысяч Вольт, увидеть искры можно от 5 тысяч Вольт, накапливать в теле можно до 10 тысяч.
Иногда энергия заряда достигает 1,4 джоулей, чего достаточно для поджигания горючих газов и жидкостей, но это происходит только на производстве.
Как получить
В домашних условиях получить статическое электричество несложно:
- Необходимо надеть сухие чистые носки из шерсти (желательно предварительно нагреть их на батарее) и пройти по нейлоновому ковру, не отрывая ног. Сильно шаркать не стоит, так как разрядка произойдет быстрее, чем нужно. Для получения заряда необходимо прикоснуться к металлическому предмету или человеку;
Важно! При проверке не стоит касаться электроники, так как заряд может повредить чипам — статистически эта причина почти 40% поломок .
Причины возникновения
На молекулярном уровне напряжение возникает при столкновении поверхностей из разных материалов, когда ионы и электроны с поверхностей начинают перераспределяться. Чем больше площади поверхностей и прилагаемые усилия, тем выше степень электризации.
Главная причина возникновения заряда — трение
Существует несколько причин возникновения и накапливания электростатического напряжения:
- Контакт (трение, наматывание, разматывание) 2 различных материалов с последующим отдалением: например, трение шерстяной ткани о резиновый шарик;
- Резкие перепады температур;
- Сухой воздух: при влажности более 80% статическое электричество не образуется, так как вода хорошо проводит ток;
- Наличие радиации, рентгеновских лучей или УФ-излучения;
- Образуется заряд и при работе некоторых бумажных станков: при раскрое или резке;
- Статика может возникнуть перед или во время грозы. Разряд возникает между 2 облаками или между облаком и землей, при попадании молнии в громоотвод электричество уходит в почву.
Наглядный пример статического напряжения — гроза
Область применения
Применять статическую электроэнергия в быту пока что не научились — слишком сложный и опасный процесс получения. Многие приборы, работающие на силе трения, применяются только для показа опытов.
Намного чаще статика применяется на производстве: при покраске поверхностей, очищении от пыли примесей, создании ворса и т.д.
Какая опасность статического напряжения
Главная опасность заключается в неконтролируемом ударе током. В быту это практически неопасно: например, при снятии шерстяного свитера человека ударит током, но сила этого заряда будет крайне мала.
При длительном нахождении в электрическом поле повышенной напряженности у человека могут начаться проблемы со здоровьем: головные боли, нарушение сна, раздражительность, нарушение работы сердечно-сосудистой и нервной систем.
Достаточно сильный разряд может привести к пожару
Намного выше опасность статического напряжения на производстве и при перевозке легковоспламеняемых веществ: при сильном разряде они могут взорваться или загореться. Например, в вентиляции и вытяжке может скопиться пыль из диэлектрического материала, который легко вспыхивает и разгорается из-за постоянной подачи воздуха. При перевозке электричество может скапливаться при перекачке или сливе жидкостей, даже за счет плескания при езде.
Меры безопасности
В бытовых условиях защититься от статики можно при помощи следующих мер:
- Увлажнять воздух и каждый день проветривать комнаты;
- Регулярно проводить влажную уборку, чтобы уменьшить количество пыли, и использовать специальные антистатические щетки;
- По возможности использовать мебель из материалов, снимающих статику: специальный линолеум, дерево;
- Не гладить животных при слишком сухом воздухе, расчесываться деревянными или металлическими щетками — пластик сильно электризуется;
- Использовать для одежды антистатические спреи, шерстяные вещи снимать медленно для уменьшения трения;
- На днище автомобиля необходимо наклеить антистатическую полосу для снижения образования статики.
На производстве снизить электростатическое напряжение можно, уменьшив скорость работы, используя специальные материалы и заземление. Также по ГОСТу энергия накопления заряда на поверхности предметов не должна превышать 40% от наименьшей энергии загорания.
На производстве должны быть приняты меры предосторожности
Статическое электричество многие считают неопасным, хоть и не особо приятным. Однако все зависит от силы заряда: в промышленности или при перевозке большого количества горючих жидкостей накопившийся разряд может быть очень сильным и привести к пожару.
В некоторых джинсах(что то похожее на вельвет, состав посмотреть не получается бирка стерлась) всего за пару елозаний на стуле заряжаюсь статикой, которая весьма неприятно разряжается когда берусь за ручку двери. За 12-ти часовую смену приходится хвататься не один десяток раз, и под конец смены становлюсь очень дерганым. Есть ли какие то способы бороться с этим кроме как не ходить в этих джинсах на работу? Гугленье к моему удивлению ничего не дало.
Я заметил что в городе постоянно электризуюсь.
И на свою печаль купил ноутбук с металлической пластиной вокруг клавиатуры.
При разрядке слышится звук отключения устройства. А вы говорите дверь…
Когда то давно, когда работал сборщиком в комп. фирме, мы часто заряжались от пенопласта в который упакованы корпуса. Безболезненный способ разряда был найден быстро: если касаться проводника не рукой, а отверткой то болезненного эффекта не было.
Если говорить точнее, что бы не было болезненного эффекта необходимо увеличить площадь соприкосновения с проводником. Площадь соприкосновения с заземленным проводником увеличить не получится, разряд пройдет еще до того как вы коснетесь проводника. Необходимо использовать НЕ ЗАЗЕМЛЕННЫЙ проводник с большой площадью соприкосновения, например чайную ложку, отвертку, телефон и т.п. и уже им касаться заземленного проводника (батарея отопления — отличный вариант)
Была похожая проблема с шерстяной одеждой.
Решение простое.
Искра болючая, потому что аоздействует быть может на 0.01мм^2 кожи.
Если разряжаться, скажем, ключем для двери, взяв его просто пальцами — искрі не почувствуете вообще.
Читайте также: