Как сделать ребра жесткости на листовом металле своими руками
В конструкциях из листового материала (оболочковых, тонкостенных профилях, резервуарах, облицовках, панелях, крышках) необходимо учитывать не только деформации, вызываемые рабочими усилиями, но и деформации, возникающие при сварке, механической обработке, соединении и затяжке сборных элементов. Следует считаться и с возможностью случайных повреждений стенок при транспортировке, монтаже и неосторожном обращении в эксплуатации. В сильно нагруженных оболочковых конструкциях первостепенное значение имеет предупреждение потери устойчивости оболочек
Основные приемы увеличения жесткости: разгрузка от изгиба, замена напряжений изгиба напряжениями сжатия-растяжения, введение связей между участками наибольших деформаций, увеличение сечений и моментов инерции на опасных участках, введение усиливающих элементов в местах сосредоточения нагрузок и на участках перелома силового потока, применение конических и сводчатых форм
Отсеки
Радиальную жесткость цилиндрических тонкостенных деталей больших, размеров увеличивают с помощью кольцевых поясов жесткости, наружных (рис. а) или внутренних (рис. 6)
Более жестки и прочны отсеки 1 с двойными стенками. Для увеличения радиальной жесткости целесообразно стенки отсека связывать между собой сваркой пуклевок 2 на стенках отсека или вваркой трубок 3
Лучшие результаты дает введение кольцевых поясов жесткости 4 — 7. Аналогичное действие оказывает разделение отсека на несколько отсеков 8, 9 меньшей длины. Роль поясов жесткости в данном случае выполняют стыки отсеков. Введение в отсеки конусов 10 и сводчатых элементов 11, 12 увеличивает не только радиальную, но и продольную жесткость
Отсеки, усиленные коническими элементами
Продольную жесткость отсекам придают с помощью связей 1—3, расположенных вдоль образующих или выполнением отсека из нескольких сегментов 4. Наибольшей жесткостью и прочностью обладают гофровые 5 и сотовые 6 конструкции
Спиральные и зигзагообразные ребра (правый рисунок) увеличивают наряду с продольной и поперечной жесткостью также жесткость на кручение; их изготовление однако труднее, чем прямых продольных ребер
Двойные отсеки соединяют с помощью наружных (рис. а) и внутренних (рис. б) фланцев. Последние обеспечивают большую жесткость и значительно снижают радиальные размеры конструкций
При установке болтов изнутри необходимо предусматривать во внутренней стенке отверстия, достаточные для ввода, установки и завертывания болтов
Повышение жесткости конических оболочковых деталей
Конические отсеки (рис. а) усиливают, вводя кольцевые пояса жесткости 1, 2, 3, выполняя отсеки двустенными 4 и придавая стенкам сводчатые формы (рис б). На рис. в показана конструкция двустенной сферической консольной детали
Оболочковые конструкции с пространственными решетками
Наиболее высокую жесткость оболочковым системам можно придать заполнением пространства между оболочками равномерно распределенными элементами жесткости, связывающими все их участки и превращающими систему в пространственную решетку, работающую как одно целое
Применяют две основные конструкции: пенопластовые и сотовые
В пенопластовых конструкциях полости между металлическими оболочками заполняют вспенивающимися пластиками на основе термореактивных или отверждающйхся смол. Пластики вводят в жидком виде с добавлением газообразующих веществ и эмульгаторов. При нагреве до 150-200°С состав вспенивается и затвердевает, образуя пористую массу с объемом пор до 80—90% и плотностью 0,1-0,2 кг/дм 3 . Прочность, жесткость и устойчивость систем в целом значительно увеличиваются, хотя и не до такой степени, как в случае введения металлических пространственных связей. Эту систему обычно применяют в сочетании с металлическими связями, поперечными (нервюры, шпангоуты) и продольными (лонжероны, стрингеры)
Сотовые конструкции изготовляют соединением тисненных в виде пчелиных сот хлопчатобумажных или стеклянных тканей, пропитанных термореактивными или отверждающимися смолами. Покровные оболочки делают из листов того же материала или металлических листов. Размер ячеек сот обычно 8 —15 мм.
Более высокой прочностью и жесткостью обладают металлические соты, получаемые склеиванием тисненых металлических листов, покрытых пленкой из фенолнеопреновых клеев или клеев на основе модифицированных эпоксидов. Эти же клеи служат для присоединения к сотам покровных металлических оболочек. Прочность сотовых конструкций зависит от прочности клеевых соединений (у наиболее прочных синтетических клеев сопротивление сдвигу составляет 2—5 кгс/мм 2 , отрыву 5—10 кгс/мм 2 )
Стальные листы можно соединять более прочным способом — печной пайкой бронзовыми сплавами в вакууме или восстановительной атмосфере.
Металлические сотовые конструкции изготавливают при помощи сварки острофокусированным электронным лучом. Поток электронов высокой энергии проникает через довольно большую толщину металла. Сварочная температура возникает только в фокусе; остальные зоны не вызывают существенного нагрева материала. Это позволяет сваривать стыки на любой глубине конструкции при одном и том же положении сварочного аппарата. Сварочную зону вглубь перемещают перефокусировкой луча с помощью собирательных электромагнитных катушек, а в поперечном и продольном направлениях — с помощью отклоняющих катушек. Таким образом можно последовательно проверить все внутренние стыки конструкции
Устойчивость оболочковых конструкций
Увеличение габаритных размеров и уменьшение толщины стенок выдвигают на первый план, повышение поперечной жесткости и предотвращение потери устойчивости конструкций. В случае тонкостенных балок закрытого профиля задача состоит в предупреждений прогиба вертикальных стенок 1 и перекоса профиля 2 под действием нагрузок
Прогиб стенок предотвращают введением ребер 3, выбивкой рельефов 4, 5, установкой продольных вертикальных связей 6, 7. Более эффективным является введение поперечных вертикальных 8 и продольных горизонтальных 9 — 12 перегородок, анкерных болтов 13, 14, трубчатых связей 15, 16, соединение стенок пуклевками 17, 18. Общую жесткость профиля увеличивают диагональными связями 19, 20 и косыми перегородками, расположенными змейкой 21, 22
Усиление участков приложения сосредоточенных сил
Недостаточная жесткость этих участков может вызвать местную деформацию стенок и сделать конструкцию неработоспособной. Для цилиндрических оболочковых деталей простейшим способом является введение накладок, распределяющих силу на большую поверхность (рис. а). Более эффективно применение поясов жесткости и перегородок (рис. б), вводящих в работу полное сечение детали
Прогиб тонкостенных деталей 1 на участке расположения крепежных болтов предупреждают установкой шайб 2 большого диаметра, отбортовкой стенки 3, 4, введением усиливающих элементов 5 — 8. Наиболее целесообразный способ — восприятие сил затяжки распорными элементами, например трубчатыми колонками 9, работающими на сжатие
На рисунке показано соединение тонкостенной крышки с корпусной деталью с помощью невыпадающего болта. В исходной конструкции 1 стенка крышки деформируется даже при слабой затяжке. В конструкции 2 слабый участок подкреплен приварными ребрами m.
Другой способ уменьшения прогиба — ограничение затяжки заранее установленным зазором S (конструкции 3—5). В конструкции 5 ограничителю придан конус — ловитель, облегчающий введение нарезного конца болта при установке крышки. Пружина служит для поддержания болта в выпрямленном состоянии при отнятой крышке
Стыки листовых конструкций
Жесткость стыков тонкостенных деталей играет большую роль особенно в тех случаях, когда стыки должны быть герметичными
При фланцевом соединении двух тонкостенных цилиндрических деталей большого диаметра (рис. а) герметичной затяжки на участках между болтами из-за нежесткости фланцев достичь невозможно. Мало помогает уменьшение шага болтов и установка шайб 1 под головки болтов и гайки. Добиться герметичности стыка можно введением накладных 2 или приварных массивных 3 колец. В случае крепления штампованного из листовой стали поддона к корпусной детали (рис. б) герметичную затяжку обеспечивают отбортовкой фланца, введением массивной рамки 4 по контуру фланца, прихваченной к поддону точечной сваркой
Рельефы жесткости
Для увеличения жесткости на стенках выбивают рельефы. При холодном штамповании рельефам рекомендуется придавать высоту не более (3~5) s, где s — толщина материала.
Рельефы большой высоты нужно штамповать в несколько приемов с промежуточным отжигом, что удорожает производство. При горячем штамповании возможно применение рельефов большой высоты и протяженности.
Помимо повышения прочности и жесткости в силу чисто геометрических соотношений (увеличение моментов сопротивления и инерции сечений), рельефы, выбиваемые вхолодную, увеличивают прочность благодаря нагартовке металла
Рельефы жесткости на прямоугольной крышке
Рельефные валики следует располагать вдоль плоскости действия изгибающего момента (рис. а). Обратное расположение (рис. б) не увеличивает жесткости, а напротив делает деталь более податливой. Рельефы должны быть направлены к узлам жесткости системы. Наилучшим расположением валиков для прямоугольных пластин является диагональное (рис. в)
Придание вогнутой формы днищам цилиндрических тонкостенных сосудов увеличивает жесткость, улучшает устойчивость и придает определенность установке сосудов на плоскости. Эффективным способом увеличения жесткости углов перехода от обечайки к днищу являются местные выдавки треугольной формы
Усиление кромок цилиндрических обечаек производится отбортовкой
Облегчающие отверстия
С целью уменьшения массы в тонкостенных конструкциях часто делают облегчающие отверстия.
Для увеличения местной жесткости, уменьшения концентрации напряжений и повышения циклической прочности, сниженной воздействием вырубного инструмента, кромки отверстий усиливают отбортовкой (рис. а)> подвивкой кромок (рис б и в), обжимом кромок (рис. г), введением усиливающих накладок (рис. д)
Высоту h при отбортовке вхолодную с одной операции можно принимать h = (0,15 — 0,25) D. Более высокие отбортовки, а также отбортовки с подвивкой требуют нескольких последовательных операций с промежуточным отжигом
Эффективным средством увеличения усталостной прочности материала возле отверстий является двустороннее обжатие кромок по контуру отверстия с помощью чеканов скругленного профиля
Резервуары
Резервуары 1 прямоугольной формы нетехнологичны, так как под действием давления стенки выпучиваются (штриховая линия). При таких формах обязательно введение поперечных перегородок жесткости 2
Большей жесткостью обладают овальные 3, эллиптические 4, 5 и особенно цилиндрические 6 резервуары. При усилении цилиндрических резервуаров наружными ребрами следует учитывать направление деформации стенок
Напряжения растяжения в сечении по образующим:
где р — внутреннее давление; D — диаметр резервуара; s — толщина стенки.
Напряжения в поперечных сечениях
т. е. в 2 раза меньше, чем по образующим. По этой причине резервуары всегда разрушаются по образующим
Продольные ребра 1 увеличивают жесткость и прочность резервуара незначительно — в меру своего сопротивления изгибу в продольной плоскости. Выгоднее применять кольцевые ребра 2, работающие на растяжение
Плоские днища 1 при высоких внутренних давлениях неприемлемы. Более жесткими и прочными являются вогнутые днища 2
Однако их деформация под действием давления вызывает распор обечайки и создает в ней дополнительные напряжения изгиба. Кроме того, вогнутые, днища заметно уменьшают рабочий объем резервуара. Выпуклые днища 3 и близкие к ним конические 4, напротив, сдерживают радиальные деформации обечайки
Щитки
Жесткость крышек, щитков, панелей и подобных им деталей увеличивают приданием коробчатых 1 и выпуклых 2 форм, отбортовкой 3, выбивкой рельефов 4.
На рис. а — показаны формы щитков (в плане) с прямоугольным и диагональным (рис. 6) рисунком рельефа и пирамидальные (рустированные) крышки (рис. в). Выбор формы и рисунка рельефа часто определяется требованиями эстетики, особенно в тех случаях, когда щиток находится на виду. Красивы и достаточно жестки рустированные щитки.
Щитки большой протяженности делят на ряд отсеков (рис. г), каждый из которых усиливают описанными выше приемами. Для увеличения продольной жесткости отсеки связывают между собой рамкой или продольными рельефами
С нами вы научитесь делать все сами: Процесс познания – это наше естественное состояние. И для начала нам нужно признать, что вы можете сделать все сами, не обязательно сразу бежать в магазин или торговый центр за новой вещью, если её можно сделать самим. .
Порой может потребовать выгнуть из листового металла рельефную деталь, возможно даже с вогнутым или выпуклым рисунком. Это может быть крышка ящика, декоративная накладка и т.д. На производстве их получают прессованием между матрицами. Но есть технология, которая позволяет делать такие сложные детали в домашних условиях без пресса.
Материалы:
- Мягкий листовой металл;
- МДФ 18 мм;
- болты и гайки М6;
- стальной кругляк для изготовления пробоя.
Процесс изготовления рельефных панелей
Первым делом нужно изготовить из бумаги шаблон будущей детали. Из МДФ по шаблону выпиливается половинка формы. Ее ответная часть должна получиться меньшей, чтобы не мешать работе молотком.
Кромки половинок нужно будет отфрезеровать с одной стороны.
Из листового металла вырезается заготовка панели. Она делается немного большего размера.
Часть заготовку уйдет на загибы по кромке, так что чем выше бортики должны получиться, тем больше берутся допуски.
Затем она помещается между матрицами. Все 3 слоя вместе просверливаются, и стягиваются болтами.
Теперь зажатый металл можно начать сгибать. Скользящими легкими ударами необходимо выгнуть бортики по окружности на широкую половину матрицы. Действовать нужно перемещаясь по кругу, подгибая бортики понемногу.
После этого матрица разбирается.
На ее половинах выпиливаются сквозные пазы по очертанию желаемого рельефа панели. В данном случае тот будет представлять собой 2 пересекаемые линии.
В паз нижней панели нужно выпилить ограничивающие глубину рейки. Они не позволят металлу выгнуться больше положенного, и порваться. К тому же с ними углубление получится однородным по глубине.
Заготовка панели снова стягивается половинками формы. Под нижнюю закладываются вставки.
Для дальнейшей работы нужно выточить из кругляка пробой с округлым концом. Он и будет формировать углубление.
Затем ударами по нему молотка, выгибаем рельеф по матрице.
Если у вас имеется электрический или пневматический перфоратор, то можно сделать из прута набалдашник, и наварить его на биту. Тогда простучать рельеф получится куда быстрее и легче.
Сделанная таким образом панель в дальнейшем немного шлифуется, чтобы убрать следы от вмятин. Также их можно зашпаклевать, и затем закрасить. Если панель должна быть сплошной без перфорации, то отверстия завариваются.
Наш проект живет и развивается для тех, кто ищет ответы на свои вопросы и стремится не потеряться в бушующем море зачастую бесполезной информации. На этой странице мы рассказали (а точнее - показали :) вам Как сделать ребра жесткости на листовом металле своими руками . Кроме этого, мы нашли и добавили для вас тысячи других видеороликов, способных ответить, кажется, на любой ваш вопрос. Однако, если на сайте все же не оказалось интересующей информации - напишите нам, мы подготовим ее для вас и добавим на наш сайт!
Если вам не сложно - оставьте, пожалуйста, свой отзыв, насколько полной и полезной была размещенная на нашем сайте информация о том, Как сделать ребра жесткости на листовом металле своими руками .
Привет, меня зовут Дмитрий. На канале вы увидите: этапы восстановления классического автомобиля Ford Gran Torino72".
Станок для ребер жесткости - это оборудование для нанесения ребер жесткости при изготовлении прямоугольных .
как ровно и красиво гнуть металл(листовой) Likecoin - криптовалюта за лайки: likecoin.pro/@chpu/wzq7/yoe5.
. от вас магазин всякой нужный атрибутика для того чтобы творить из металл своими руками так что спасибо удачи вам.
В этом видео я вам покажу как сделать штамповку из подручных материалов, без применения спец. приспособлений Группа .
Мастерская
Используя тонкий листовой металл для обшивки, или делая из него декоративные панели, для усиления необходимо выдавливание на его поверхности рельефа, выполняющего роль ребра жесткости. Оно предотвращает продавливание листа при легком нажатии, к тому же сделает его неотличимым от заводского изделия. Такой рельеф можно делать у себя дома, если собрать вальцовочный станок.
Материалы:
- стальной уголок;
- стальная полоса;
- мощные шестерни – 2 шт.;
- подшипники – 2 шт.;
- стальной кругляк;
- стальная труба;
- болты, гайки, шпильки.
Изготовление станка
Для сварки станины станка понадобиться подготовить 2 заготовки длиной по 40 см из уголка и полосы.
Валы станка изготавливаются из 2-х отрезков кругляка. Один длиной 50 см, а второй должен быть короче на ширину подшипника. Также нужно подготовить 4 заготовки трубки длиной по 5 см. Их внутренний диаметр должен быть на пару миллиметров больше используемого кругляка.
На заготовки из кругляка набивается по подшипнику. Затем на них надеваются по 2 обрезка трубок, после чего устанавливаются шестерни.
Далее сваривается станина. Для этого нужно уложить уголок и полосу, чтобы примерить на них валы.
Элементы станины нужно будет развести и приварить между ними короткую проставку.
Также на полосе понадобится вырезать паз для дальнейшей регулировки вальцов.
На следующем этапе сваривается механизм регулировки.
Для этого понадобится снять одну трубку с вала напротив паза станины. Снизу к ней приваривается короткий болт, который позволит ее прикручивать к корпусу станка.
Под прямым углом относительно него нужно приварить длинный доработанный болт с гайкой, продетый через массивную пластину. Перед этим к его торцу приваривается болтик поменьше с выгнутой дугой прижимной пластинкой. Длинный болт сваривается с трубкой через эту пластинку, благодаря чему сохраняет подвижность.
Затем трубка устанавливается обратно на вал, и прикручивается к станине через паз коротким болтом. После этого пластина на длинном болте приваривается к полосе корпуса.
Далее нужно приварить 3 трубки на валах к станине. Важно все тщательно отмерить, чтобы шестерни хорошо примыкали друг к другу. Также нужно приварить гайку на длинном болте к пластине. На его головку наваривается удобная рукоятка. После этого вращением механизма регулировки можно менять положение вальцов.
Для удобства работы на станке понадобиться сделать параллельный упор. Он должен скользить по части станины из уголка. Его каретку можно сварить из любого листового металла или полосы. На ней делается 2 отверстия, к которым привариваются гайки. Это позволит фиксировать ее положением вкручиванием болтиков. Перпендикулярно к каретке приваривается сам параллельный упор. Это может быть квадрат, профильная труба или другой ровный металлопрокат.
Для крепления станка нужно сделать 2 Т-образные ножки. Они привариваются к уголку станины. На их подошвах делаются отверстия, чтобы станок можно было прикручивать к столешнице.
Работа на станке заключается в протягивании листового металла между вальцами. Для этого он вставляется до регулируемого параллельного упора. Затем вальцы поджимаются вращением винта, и лист аккуратно протягивается руками в направлении от себя.
Если угол рамки из ребер жесткости нужно скруглить, то параллельный упор снимается.
Смотрите видео
Читайте также: