Как сделать мультиплексор
Мультиплексор (селектор) - это логическая схема, производящая выбор одного из нескольких информационных входов в соответствии с выбранным адресом и коммутацию выбранного информационного входа с единственным информационным выходом.
увеличить изображение
Рис. 6.1. УГО мультиплексоров: а - "1 из 2"; б - "1 из 4"; в - "1 из 8"; г - "1 из 16"
На рис. 6.1 показаны УГО мультиплексоров. Здесь MS - функциональное обозначение мультиплексора, А - входные линии адреса, D - входные информационные линии, Е - разрешающий вход, Y - выходная информационная линия. Связь между количеством выбираемых входных информационных линий N и входных линий адреса n та же, что у дешифратора [1]: N=2 n .
Принцип действия мультиплексора рассмотрим на примере ИМС, производящей выбор "1 из 4". УГО данного мультиплексора приведено на рис. 6.1,б, а его функциональная схема - на рис. 6.2. Здесь, А1 и А0 - входные линии адреса, D3 , D2 , D1 и D0 - входные информационные линии.
При наличии активного разрешающего сигнала (в нашем примере вход Е прямой , поэтому логика положительная и активный разрешающий сигнал равен 1) на адресные линии подается двоичный код адреса. При этом на выход Y будет копироваться информация с выбранного в соответствии с этим адресом информационного входа. Так, если А1А0=002=010 , на выход Y подается информация с линии D0 ; если А1А0=012=110 , то с линии D1 , если А1А0=102=210 , то с линии D2 ; а при А1А0=112=310 - с линии D3 . Таким образом, таблицу истинности данного мультиплексора можно представить в виде табл. 6.1.
Как и для дешифратора, разрешающий вход Е мультиплексора может иметь активный нулевой уровень.
Каскадное соединение мультиплексоров
Рассмотрим пример. Необходимо синтезировать схему мультиплексора, обеспечивающего выбор "1 из 16" на базе мультиплексоров "1 из 4".
Для выбора одного информационного входа из шестнадцати ( 16=2 4 ) необходимы 4 входные линии адреса: А3 , А2 , А1 и А0 (рис. 6.3). Четыре базовых мультиплексора обеспечивают выбор в зависимости от кода, поданного на А1 и А0 , соответственно: первый - одного из сигналов D0 , D1 , D2 или D3 , второй - из сигналов D4 , D5 , D6 или D7 , третий - из сигналов D8 , D9 , D10 или D11 , четвертый - из сигналов D12 , D13 , D14 или D15 . Пятый мультиплексор обеспечивает выбор одного из этих ранее выбранных сигналов в зависимости от кода, подаваемого на А3 и А2 . Например, при подаче А3А2А1А0=11102= 1410 на адресные входы первых четырех мультиплексоров будет поступать двоичный код А1А0=102=210 . Поэтому первая часть каскада будет выбирать входные информационные линии D2 , D6 , D10 , D14 . Они подключены соответственно ко входам D0 , D1 , D2 и D3 пятого мультиплексора. Поскольку на его адресные линии приходит код А3А2=112=310 , на выход каскада будет передаваться информация с выхода D3 пятого выходного мультиплексора, то есть информация с входной информационной линии D14 , что соответствует принципу работы мультиплексора.
Схему каскада той же разрядности можно реализовать на базе мультиплексоров с большей разрядностью, например, "1 из 8" (рис. 6.4). Для наглядности на рис. 6.4 указан тот же пример подачи информации на входы каскада: А3А2А1А0=11102= 1410.
Закономерность построения каскада мультиплексоров аналогична каскадированию дешифраторов. Но построение начинается со входной (а не выходной, как у дешифраторов) очереди каскада. На адресные линии всех мультиплексоров этой очереди подключается соответствующее разрядности базового мультиплексора количество линий адреса. Принципиальное отличие каскада мультиплексоров состоит в том, что все входящие в него мультиплексоры работают одновременно (разрешающий сигнал Е подается на все мультиплексоры сразу).
На рис. 6.3 и 6.4 показаны схемы с одной очередью. При малой разрядности базового мультиплексора количество очередей увеличивается - рис. 6.5. А на рис. 6.6 показана схема каскада мультиплексоров на 16 входов на базе "1 из 8", в которой адресные линии А1 и А2 (и, соответственно информационные линии D2-D7 ) выходного мультиплексора ( MS2.1 ) не используются в данной схеме, они остаются в резерве (на рис. 6.6 они заземлены, а в общем случае они могут быть подключены к другой схеме). В данной схеме показано состояние линий адреса и данных, соответствующее заданию: на линии адреса состояние 1110=10112 , а на информационных линиях D15. D0 состояние 610= 00000000000001102 . Данная схема осуществляет передачу на выход данных с входной линии D11=0 .
При синтезе каскада мультиплексоров рекомендуется придерживаться следующей последовательности действий:
Благодаря низкому сопротивлению в замкнутом состоянии, высокому сопротивлению в режиме отсечки, низким токам утечки и малым паразитным емкостям, MOSFET-транзисторы с успехом используются в качестве аналоговых ключей. В портативных устройствах аналоговые мультиплексоры используются для коммутации входных и выходных сигналов. С помощью аналогового мультиплексора можно из одноканального АЦП сделать многоканальный и т.д.
Так как одноканального мультиплексора для решения возникшей проблемы мне бы не хватило, выбор пал на 74HC4052
74HC4052 — это высокоскоростная CMOS микросхема, с двумя 4-х канальными аналоговыми мультиплексируемыми-демультиплексируемыми входами.
Каждый мультиплексер имеет 4-е независимых входа/выхода (выводы nY0-nY3) и общие Common входы/выходы (выводы nZ).
Логику переключения задают выводы S0-S1 и вход управления состоянием — E.
Когда вывод E находится в LOW состоянии — один из четырех переключателей (определяют S0 и S1)приходит в активное состояние.
Когда вывод E в высоком состоянии — все переключатели находятся в высокоимпедансном состоянии, независимо от выводов S0 и S1
(на схеме в зеленных блоках — делители и стабилитроны).
Дальше из основного цикла, по прерыванию от таймера — вызываю функцию переключения каналов
И само прерывания от ADC
Получилось так:
Чтобы перевести полученный результат в вольты — применим:
VREF 2.5
АЦП 10 битное (1023)
Один отсчет — VREF/1023 = 0.0024437 V
т.е. например 114 * 0.0024437 = 0,2785818 вольта.
Аналоговые мультиплесоры в настоящее время предлагет большое количество фирм (Maxim, Analog Device, TI и пр. пр.), у каждого есть преимущества и недостатки.
Если это высокая цена — значит прибор обладает низким уровнем шума или высоким быстродействием на переключение (с низким шумом), и наоборот.
74HC4052 в этом отношении — достаточно бюджетное решение.
Устройство называют комбинационным, если его выходные сигналы в некоторый момент времени однозначно определяются входными сигналами, имеющими место в этот момент времени.
Комбинационные цифровые устройства (КЦУ) не содержат элементов памяти. Простейшим КЦУ является конъюнктор.
Синтез комбинационных цифровых устройств
В процессе проектирования любого устройства приходится выполнять ряд действий, которые могут быть отнесены к задачам синтеза.
Синтез КЦУ предусматривает построение структурной схемы устройства, т. е. определение состава необходимых логических элементов и соединения между ними, при которых обеспечивается преобразование входных цифровых сигналов в выходные в соответствии с заданными условиями работы устройства. В процессе синтеза обычно подразумевается необходимость минимизации затрат на реализацию устройства.
Рассмотрим поэтапный синтез КЦУ с одним выходом.
Этап 1. Запись условий функционирования КЦУ. Как отмечалось ранее, эти условия могут быть заданы словесно, с помощью таблиц истинности или булевых выражений. Например, требуется синтезировать на элементах И — НЕ КЦУ на три входа, выходной сигнал которого совпадает с большинством входных сигналов (мажоритарный элемент). Это словесное описание условий функционирования требуемого КЦУ. Ему соответствует таблица истинности:
Этап 2. Запись и минимизация булева выражения обычно производится на основе таблиц истинности. Если условия на этапе 1 заданны словесно, то на их основе предварительно составляется таблица истинности. Если булево выражение уже имеется на этапе 1, то выполняется его минимизация. В процессе минимизации широко используется преобразования с помощью соотношения булевой алгебры.
По таблице истинности записываем булево выражение (логическую функцию):
y= x 3 •x 2 •x 1 +x 3 • x 2 •x 1 +x 3 •x 2 • x 1 +x 3 •x 2 •x 1
Минимизацию логической функции осуществим с использованием основных теорем алгебры логики.
Добавим к данной функции два слагаемых, которое уже есть в данной функции, используя правило: х + х + х = х.
y= x 3 •x 2 •x 1 +x 3 • x 2 •x 1 +x 3 •x 2 • x 1 +x 3 •x 2 •x 1 +x 3 •x 2 •x 1 +x 3 •x 2 •x 1 Применим метод склеивания: х 1 • x 2 + x 1 •x 2 = x 2
y = x 2 •x 1 + x 3 •x 1 + x 3 •x 2
В результате получили упрощённое минимизированное выражение.
Этап 3. Запись минимизированной структурной формулы в заданном базисе. Так как реализация КЦУ на ИС предусматривает широкое использование элементов И — НЕ, ИЛИ — НЕ, И — ИЛИ — НЕ, то часто возникает необходимость соответствующих преобразований структурных формул с учётом заданной элементной базы.
Для перехода к заданному базису И — НЕ поставим два знака инверсии над правой частью формулы и применим к ней правило де Моргана. В результате получим структурную формулу в следующем виде:
Этап 4. составления структурной схемы, т. е. изображения нужных логических элементов и связей между ними.
Структурная схема синтезированного КЦУ приведена на рисунке:
Типовые комбинационные цифровые устройства.
При построении сложных устройств широко применяются не только отдельные логические элементы, реализующие элементарные булевы функции, но и их комбинации в виде типовых структур, выполняемых как единое целое в виде интегральных микросхем. На входе таких структур могут подаваться информационные логические сигналы и сигналы управления. Последние могут определять, например, порядок передачи информационных входных сигналов на выход или играть роль сигналов синхронизации. Во многих случаях, особенно при использовании в устройствах выходных цепей с тремя состояниями, в качестве сигналов синхронизации выступают сигналы " Выбор микросхемы" (CS). Наличие активного значения такого сигнала управления (в одних микросхемах это логический нуль, в других — логическая единица) разрешает устройству выполнение заданных функций, отсутствие его переводит схему в " невыбранное" состояние, при котором она обрабатывает информацию, а её выходы отключены от нагрузки. Внутренняя структура КЦУ часто приводится в справочниках. Для разработчика важно знать таблицу истинности, принцип преобразования входных сигналов в выходные.
Мультиплексоры и демультиплексоры
Мультиплексором называются комбинационные устройство, обеспечивающее передачу в желаемом порядке цифровой информации, поступающей по нескольким входам на один выход. Мультиплексоры обозначают через MUX (от англ. multiplexor), а также через MS (от англ. Multiplexor selector). Схематически мультиплексор можно изобразить в виде коммутатора, обеспечивающего подключение одного из нескольких входов (их называют информационными) к одному выходу устройства. Кроме информационных входов в мультиплексоре имеются адресные входы и, как правило, разрешающие (стробирующие). Сигналы на адресных входах определяют, какой конкретно информационный канал подключен к выходу. Если между числом информационных входов n и число адресных входов m действуют соотношение n =2 m , то такой мультиплексор называют полным. Если n m , то мультиплексор называют неполным.
Рассмотрим функционирование двухвходового мультиплексора (2 → 1), который условно изображён в виде коммутатора, а состояние его входов Х 1 , Х 2 и выхода Y приведено в таблице:
Исходя из таблицы, можно записать следующее уравнение: Y = X 1 • A + X 2 • A,
Реализация такого устройства и его УГО приведены ниже:
Количество мультиплексируемых входов называется количеством каналов мультиплексора, а количество выходов называется числом разрядов мультиплексора.
Число каналов мультиплексоров, входящих в стандартные серии, составляет от 2 до 16, а число разрядов — от 1 до 4, при чём чем больше каналов имеет мультиплексор, тем меньше у него разрядов.
Управление работой мультиплексора (выбор номера канала) осуществляется с помощью входного кода адреса. Например, для 4 — канального мультиплексора необходим 2 — разрядный управляющий (адресный) код, а для 16 — канального — 4 разрядный код. Разряды кода обозначаются 1, 2, 4, 8 или А0, А1, A2, А3. Мультиплексоры бывают с выходом 2С и с выходом 3С. Выходы мультиплексоров бывают прямыми и инверсивными. Выход 3С позволяет объединить выходы мультиплексоров с выходами других микросхем, а также получать двунаправленные и мультиплексированные линии.
УГО мультиплексора, имеющего 8 информационных входов, 3 адресных входа, вход разрешения V, и два выхода (прямой инверсный) показано на рисунке:
При V = 1 мультиплексор блокируется.
Два 8 — канальных мультиплексора объединены в 16 — ти канальный. Старший разряд А3 выбирает один из 2 — ух мультиплексоров.
Расширение разрядности мультиплексоров в общем случае реализуется их каскадным включением:
Здесь " Мультиплексорное дерево" содержит четыре четырёхвходовых мультиплексора MUX1 — MUX4 c запараллеленными адресными входами А0, А1, которыми одновременно выбирается один из входов всех четырёх элементов, а мультиплексор MUX5 кодом на адресных входах А2, А3 выбирает один из выходов Y 0 — Y 3 . Таким образом, четырёхразрядный код на входах А0 — А3соединяется с входом только один из 16 входов (16 =2 4 ) D0 — D15.
Демультиплексором называют устройство, в котором сигналы с одного информационного входа поступают в желаемой последовательности по нескольким выходам в зависимости от кода на адресных шинах. Таким образом, демультиплексор в функциональном отношении противоположен мультиплексору. Демультиплексоры обозначают через DMX или DMS:
При использовании КМОП — технологии можно построить двунаправленные ключи, которые обладают возможностью пропускать ток в обоих направлениях и передавать не только цифровые, но и аналоговые сигналы. Благодаря этому можно строить мультиплексоры — демультиплексоры, которые могут использоваться либо как мультиплексоры, либо как демультиплексоры. Мультиплексоры — демультиплексоры обозначаются через MX.
Шифраторы (кодеры) и дешифраторы (декодеры)
Шифратор — это комбинационное устройство, преобразующее десятичные числа в двоичную систему счисления, причём каждому входу может быть поставлено в соответствие десятичное число, а набор выходных логических сигналов соответствует определённому двоичному коду. Шифратор иногда называют " кодером" (от англ. Coder) и используют, например, для перевода десятичных чисел, набранных на клавиатуре.
Функции шифратора показаны на рисунке:
УГО и таблица истинности шифратора приведены на рисунке:
Из таблицы видно, что на выходах 1, 2, 4, 8, формируется двоичный код номера входной линии (x 0 , х 1 . x 9 ), на которую приходит входной сигнал. Одновременное поступление нескольких входных сигналов приводит к неопределённости на выходах.
Дешифратором называется комбинационное устройство, преобразующее n — разрядный двоичный код в логический сигнал, появляющийся на том выходе, десятичный номер которого соответствует двоичному коду. Функции дешифратора показан на рисунке:
УГО и таблица истинности дешифратора показаны на рисунке:
Активным всегда являются только один выход. Легко заметить, что активируется тот выход, адрес которого установлен на входах.
Дешифраторы широко используются в цифровой аппаратуре.
Аналоговый коммутатор с цифровым управлением
Аналоговый коммутатор служит для последовательной обработки аналоговых сигналов.
Схема и УГО аналогового коммутатора показаны на рисунке:
Аналоговый коммутатор содержит ключи, на вход каждого из которых (Д0, Д1. Д7) действует напряжение аналогового сигнала. Управление ключами производится дешифратором, на входы которого поступает цифровой код.
Для коммутации на выход линии D0 на адресных входах устанавливают код À 0 = 0, À 1 = 0, À 2 = 0, для аналогичного соединения линии D1 — код = 0, = 0, = 0 и т. д.
Для периодического опроса источников сигналов адресные входы коммутатора подключают к выходам счётчика, на которых циклически изменится код при поступлении входных импульсов.
Мультиплексоры — демультиплексоры
При использовании КМОП — технологии можно построить двунаправленные ключи, которые обладают возможностью пропускать ток в обоих направлениях:
Сопротивление КМОП — транзистора в открытом состоянии составляет от 10 Ом до 1 кОм, сопротивление в закрытом состоянии ограничивается токами утечки, которые составляют 0,1. 100 нА, время включения ключа составляет 3. 5 нс.
Двунаправленные ключи могут передавать цифровые и аналоговые сигналы. Благодаря этому можно строить мультиплексоры — демультиплексоры:
Показанная на рисунке микросхема содержит два четырёхвходовых мультиплексора, которые могут использоваться как демультиплексоры (МХ — ДМХ). На схемах они обозначаются буквами МХ.
Микросхема содержит один общий инверсный вход Е разрешения (стробирования) и два общих адресных входа 1 и 2.
При логической 1 на входе разрешения выходы отключаются от информационных входов и переходят в высокоипедансное состояние.
При активизации входа разрешения, т. е. при подаче на него логического 0, происходит соединение одного из информационных входов (в соответствии с кодом на адресных входах) с выходом микросхемы. Поскольку это состояние происходит при помощи двунаправленных ключей на КМОП — транзисторах, то сигнал может передаваться как со входов на выход (режим мультиплексора), так и с выхода на входы ( режим демультиплексора). Кроме того, передаваемый сигнал может быть как аналоговым, так и цифровым.
Преобразователи кодов
Преобразователи кодов служат для преобразования входных двоичных кодов в выходные двоично— десятичные и наоборот. Находят применение в схемах многоразрядной десятичной индикации. На схемах обозначаются буквами X/Y. Например, микросхема к155пп5 представляет преобразователь двоично-десятичного кода, в код семисегментного индексатора:
1, 2, 4, 8 — информационные входы.
1, 2, 3, 4, 5, 6, 7 — выходы для управления светодиодной матрицей (показана справа)
Сегмент светится, если на него подаётся логическая 1.
Цифровые компараторы (компараторы кодов)
Цифровые компараторы выполняют сравнение двух чисел, заданных в двоичном коде. Они могут определять равенство двух двоичных чисел А и В с одинаковым количеством разрядов либо вид неравенства А > В или А b, Fa = b, Fa b = а • b
Fa = b = аb + a b
Fa a b
Схема одноразрядного компаратора, реализующая приведённые функции, показана ниже:
Например, четырёхразрядный компаратор кодов имеет два варианта обозначения:
Сумматоры
Сумматоры — это комбинационные устройства, предназначенные для сложения двух входных двоичных кодов. Например, арифметическая сумма кодов 0111 (число 7) и 0101 (число 5) равна 1100 (число 12). Арифметическая сумма кодов 1101 (число 13) и 0110 (число 6) равна 10011 (число 19), т. е. сумма двух двоичных чисел с числом разрядов n может иметь результат с числом разрядов n + 1. Этот дополнительный (старший) разряд называется выходом переноса (Р). На схемах сумматоры обозначаются буквами SM. Микросхемы сумматоров кодируются буквами ИМ.
Рассмотрим таблицу истинности сложения двух одноразрядных двоичных чисел без учёта переноса:
A | B | S |
0 | 0 | 0 |
0 | 1 | 1 |
1 | 0 | 1 |
1 | 1 | 0 |
Запишем логическую функцию:
Устройство, реализующее эту функцию, называется " исключающее ИЛИ":
Схема не информирует о бите переноса.
Рассмотрим сложение двух одноразрядных двоичных чисел, для чего составим таблицу сложения (таблицу истинности), в которой отразим значение входных чисел А и В, значение результата суммирования S и значения переноса в старший разряд Р:
A | B | P | S |
0 | 0 | 0 | 0 |
0 | 1 | 0 | 1 |
1 | 0 | 0 | 1 |
1 | 1 | 1 | 0 |
Работа устройства, реализующего таблицу истинности, описывается следующими уравнениями: S = A B+A B и Р = АВ
Устройство, реализующего таблицу истинности, содержит " исключающие ИЛИ" и конъюнктор " И"
Это устройство называется полусумматором и изображается в виде:
Устройства называются полусумматором, т. к. имеет только два входа и не воспринимается сигнал переноса от других микросхем. Он используется только в младшем разряде.
Рассмотрим сложение двух одноразрядных двоичных чисел с учётом бита переноса от других микросхем:
Работа устройства, реализующего таблицу истинности, описывается следующими уравнениями:
S= A B P n-1 +A BP n-1 + AB P n-1 +ABP n-1
Pn=AB P n-1 + A BP n-1 +A B P n-1 +ABP n-1
Устройство, реализующие таблицу, содержит два полусумматора и дизъюнктор " ИЛИ":
Это устройство называется одноразрядным сумматором и имеет следующее условное графическое обозначение:
Сумматоры бывают одноразрядные (для суммирования двух одноразрядных чисел) двухразрядные (суммируют двухразрядные числа) и четырёхразрядные (суммируют четырёхразрядные числа). Чаще всего применяют 4 — х разрядные:
На сегодняшний день приобретение дополнительной техники или специальных устройств является достаточно дорогим удовольствием. Для того, чтобы сохранить свои финансовые затраты, довольно часто используют такие устройства, как мультиплексор и демультиплексор, которые являются своеобразными селекторами данных.
В случае с мультиплексором есть возможность через один выход пропустить информацию с нескольких входов. А демультиплексор действует с точностью наоборот – распределяет полученные данные с одного входа на разные выходы.
Мультиплексор представляет собой такое оборудование, которое содержит в себе несколько входов сигнала, один или несколько входов управления и лишь один общий выход. Данное устройство дает возможность передавать определенный канал из одного из имеющихся входов на специальный и единственный выход.
При всем этом выбирается вход с помощью подачи определенной комбинации сигналов управления. Чаще всего мультиплексор необходим там, где нужно обустраивать для передачи сигналов большое количество каналов (сигналов), а денег и технического оснащения для этого нет.
Работоспособность данного типа устройства основана на том, что сигнал связи, даже в случае, если он один, очень часто не применяется на всю мощность. По этой причине имеется лишнее место для запуска других потоков информации по одной линии.
Разумеется, что если все эти потоки пускаются в изначальном виде и в одно и то же время, то на выходе получится обычная мешанина информационных данных, которую будет практически нереально расшифровать. Из-за этого мультиплексор производится при помощи разделения потоков информации разнообразными методами.
Разделение по частотным полосам – это когда все потоки данных идет в одно и то же время, но с разной частотой. При этом не происходит смешивание потоков. Кроме этого, есть возможность пустить потоки в различных временных линиях. Также особо популярным является способ кодирования. В этом случае все потоки обозначаются специальными знаками, кодируются и одновременно отправляются.
Мультиплексоры классифицируют по нескольким критериям: по месту использования или по своим целевым задачам и так далее.
Линия связи мультиплексора и демультиплексора
Основным различием мультиплексоров считается то, каким образом происходит уплотнение сигналов в один сплошной поток.
Мультиплексирование бывает таких видов:
- временного характера;
- пространственного типа;
- кодовым;
Как правило, если каналы являются проводными, то в применении актуальны первые два метода, а для беспроводных каналов применяются все четыре варианта. Обычно, если речь идет о мультиплексоре, то подразумевается проводное устройство.
По этой причине стоит более подробно ознакомиться с частотным и временным методами:
Методы мультиплексирования
Частотное мультиплексирование и демультиплексирование
Чтобы исполнить частотное мультиплексирование необходимо для всех потоков определить определенный частотный период. Перед самим процессом нужно переместить спектра всех каналов, что входят в период иной частоты, что не будет никак пересекаться с иными сигналами. Кроме того, для обеспечения надежности, меж частотами делают определенные интервалы для дополнительной защиты. Данный метод применяют и в электрических, и в оптических связных линиях.
Временной вариант
Временное мультиплексирование и демультиплексирование
Чтобы передать каждый сигнал в сплошном потоке, что входит, имеется определенное количество времени. В этом случае, перед устройством стоит особая задача – гарантировать доступ циклов к общей среде перенаправления для потоков, которые входят на маленький временной промежуток.
При этом необходимо сделать так, чтобы не возникло нежелательное накладывание каналов друг на друга, которое смешивает информацию. Для этого используют специальные интервалы для защиты, которые ставят меж этими самыми каналами.
Этот способ используют, как правило, для цифровых связных каналов.
Классификация мультиплексоров
Мультиплексоры существуют таких видов:
- Терминальные. Их размещают на концах связных линий.
- Ввода и вывода. Такие устройства встраивают в разрыв связных линий, чтобы из сплошного потока выводить определенные сигналы. При их помощи можно обойтись без дорогостоящих мультиплексоров терминального типа.
Также мультиплексоры классифицируются таким способом:
Аналоговые мультиплексоры
Ключи аналогового типа являются специальными аналого-дискретными элементами. Аналоговый ключ может быть представлен в качестве отдельно взятого устройства. Набор такого рода ключей, которые работают на единственный выход с цепями выборки определенного ключа, являются специальным аналоговым мультиплексором. Аналоговое оборудование в каждый период времени выбирает определенный входной канал и направляет его на специальное устройство
Цифровые мультиплексоры
Цифровые оборудования делятся на мультиплексоры второго, первого и иных высоких уровней. Цифровые мультиплексоры дают возможность принимать сигналы цифрового типа из устройств низкого уровня. При этом можно их записать, образовать цифровое течение высокого уровня. Таким образом, входящие потоки синхронизируются. Также можно отметить, что они обладают одинаковыми скоростями.
Области применения
Видеомультиплексоры применяют в телевизионной технике и различных дисплеях, в системах охранного видеонаблюдения. На мультиплексировании базируется GSM-связь и разнообразные входные модемы провайдеров в интернете. Также данные устройства применяют в GPS-приемниках, в волоконно-оптических связных линиях широкополосного типа.
Мультиплексоры используют в различных делителях частоты, специальных триггерных элементах, особых сдвигающихся устройствах и так далее. Их могут применять для того, чтобы преобразовать определенный параллельный двоичный код в последовательный.
Схема применения оптического мультиплексора
Структура мультиплексора
Мультиплексор состоит из специального дешифратора адреса входной линии каналов, разнообразных схем, в том числе и схемы объединения.
Существуют типы мультиплексоров, которые обладают выходом с тремя состояниями. Все нюансы работы мультиплексора зависят от его модели.
Демультиплексор
Демультиплексор представляет собой логическое устройство, которое предназначено для того, чтобы свободно переключать сигнал с одного входа информации на один из имеющихся информационных выходов. На деле демультиплексор является противоположностью мультиплексору.
Во время передачи данных по общему сигналу с разделением по временному ходу необходимо как использование мультиплексоров, так и применение демультиплексоров, то есть прибор обратного функционального назначения. Это устройство распределяет информационные данные из одного сигнала между несколькими приемниками данных.
Особым отличием данного типа устройства от мультиплексоров считается то, что есть возможность обледенить определенное количество входов в один, не применяя при этом дополнительных схем. Но для того, чтобы увеличить нагрузку микросхемы, на выходе устройства для увеличения входного канала рекомендуется установить специальный инвертор.
В схеме самого простого такого устройства для определенного выхода применяется двоичный дешифратор. Стоит отметить, что при подробном изучении дешифратора, можно сделать демультиплексор гораздо проще. Для этого необходимо ко всем логическим элементам, которые входят в структуру дешифратора прибавить еще вход. Данную структуру достаточно часто называют дешифратором, который имеет вход разрешения работы.
На что следует обратить внимание при выборе мультиплексора?
- Какие камеры используются – черно-белые, цветные?
- Общее количество камер, которое возможно подключить к устройству.
- Тип мультиплексора.
- Разрешение устройства.
- Наличие детектора, определяющего движение.
- Можно ли подключить второй экран монитора?
При выборе мультиплексора или демультиплексора необходимо учитывать все нюансы и технические характеристики устройства.
Мультиплексорами называются устройства, которые позволяют подключать несколько входов к одному выходу. Демультиплексорами называются устройства, которые позволяют подключать один вход к нескольким выходам.
Содержание
Устройство
Рис. 1. Мультиплексор на 2 входа
Схематически мультиплексор можно изобразить в виде коммутатора, обеспечивающего подключение одного из нескольких входов (их называют информационными) к одному выходу устройства. Коммутатор обслуживает управляющая схема, в которой имеются адресные входы и, как правило, разрешающие (стробирующие).
Рис. 2. Функциональная схема мультиплексора на 2 входа
Рис. 3. Функциональная схема мультиплексора на 4 входа
Сигналы на адресных входах определяют, какой конкретно информационный канал подключен к выходу. Если между числом информационных выходов n и числом адресных входов m действует соотношение n=2 m , то такой мультиплексор называют полным. Если n m , то мультиплексор называют неполным.
Разрешающие входы используют для расширения функциональных возможностей мультиплексора. Они используются для наращивания разрядности мультиплексора, синхронизации его работы с работой других узлов. Сигналы на разрешающих входах могут разрешать, а могут и запрещать подключение определенного входа к выходу, то есть могут блокировать действие всего устройства.
- Нормальнозамкнутые - размыкаются при срабатывании
- Нормальноразомкнутые - замыкаются при срабатывании
Можно ли сократить количество проводов? Одновременно по каждому проводнику от любого датчика передаём состояние. Возьмем один провод и будем последовательно подключать все датчики и определять их состояние.
Используем временное разделение, то есть осуществляем мультиплексирование канала (мультиплексор - устройство, в котором используется временное разделение). Обратное преобразование называется демультиплексированием, а устройство - демультиплексор.
Условно-графическое изображение предоставлено на Рис.1. S - управляющий вход. Если S=0, то Y = x0, если S=1, то Y = x1. x0 и x1 - информационные входы, S - информационный выход.
На рисунке 2 представлен мультиплексор на 4 входа.
Описание мультиплексора с помощью булевой функции
Данная БФ описывает работу мультиплексора на 4 входа
Функциональная схема мультиплексора
На рисунке 3 представлена функциональная схема мультиплексора, где E - вход стробирования (вход разрешения работы). Время задержки будет:
Рис. 6. Временные диаграммы
При tИЛИ m для двоичных демультиплексоров или n=3 m для троичных демультиплексоров, то такой демультиплексор называют полным. Если n m для двоичных демультиплексоров или n m для троичных демультиплексоров, то демультиплексор называют неполным. Функции демультиплексоров сходны с функциями дешифраторов. Дешифратор можно рассматривать как демультиплексор, у которого информационный вход поддерживает напряжение выходов в активном состоянии, а адресные входы выполняют роль входов дешифратора. Поэтому в обозначении как дешифраторов, так и демультиплексоров используются одинаковые буквы - ИД.
Сигнал, приходящий на Х будет на обоих выходах Y0 и Y1 сразу и исчезнет только через
Демультиплексор осуществляет обратное преобразование мультиплексору.
Позиционный код
двоичный код
a3 | a2 | a1 | a0 | HEX |
0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 1 |
0 | 0 | 1 | 0 | 2 |
0 | 0 | 1 | 1 | 3 |
0 | 1 | 0 | 0 | 4 |
0 | 1 | 0 | 1 | 5 |
0 | 1 | 1 | 0 | 6 |
0 | 1 | 1 | 1 | 7 |
1 | 0 | 0 | 0 | 8 |
1 | 0 | 0 | 1 | 9 |
1 | 0 | 1 | 0 | a |
1 | 0 | 1 | 1 | b |
1 | 1 | 0 | 0 | c |
1 | 1 | 0 | 1 | d |
1 | 1 | 1 | 0 | e |
1 | 1 | 1 | 1 | d |
Предполагается, что любой разряд имеет соответствующий вес:
7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 6 |
"1" ставится в соответствующий разряд, число "8" в данной разрядной сетке представить не получится.
Читайте также: