Как найти соотношение сторон квадрата
Квадрат — правильный четырёхугольник. У квадрата все углы и стороны одинаковы.
Квадраты различаются лишь длиной стороны, а все 4 угла прямые и равны 90°.
Квадратом может стать параллелограмм, ромб либо прямоугольник, когда у них одинаковые длины диагоналей, сторон и равные углы.
Свойства квадрата.
- у всех 4-х сторон квадрата одинаковая длина, т.е. стороны квадрата равны:
- противолежащие стороны квадрата параллельны:
- каждый уг ол квадрата прямой:
- сумма углов квадрата равна 360°:
- каждая диагональ квадрата имеет такую же длину, как и другая:
- каждая из диагоналей квадрата делит квадрат на 2 одинаковые симметричные фигуры.
- угол пересечения диагоналей квадрата равен 90°, пересекая друг друга, диагонали делятся на две равные части:
- точку пересечения диагоналей называют центр квадрата и она оказывается центром вписанной и описанной окружностей.
- все диагонали делят угол квадрата на две равные части, таким образом, они оказываются биссектрисами углов квадрата:
- диагонали делят квадрат на 4 одинаковых треугольника, кроме того, полученные треугольники в одно время и равнобедренные и прямоугольные:
Диагональ квадрата.
Диагональю квадрата является всякий отрезок, который соединяет 2-е вершины противолежащих углов квадрата.
Диагональ всякого квадрата больше стороны этого квадрата в √2 раз.
Формулы для определения длины диагонали квадрата:
1. Формула диагонали квадрата через сторону квадрата:
2. Формула диагонали квадрата через площадь квадрата:
3. Формула диагонали квадрата через периметр квадрата:
4. Сумма углов квадрата = 360°:
5. Диагонали квадрата одной длины:
6. Все диагонали квадрата делят квадрат на 2-е одинаковые фигуры, которые симметричны:
7. Угол пересечения диагоналей квадрата равен 90°, пересекая друг друга, диагонали делятся на две равные части:
8. Формула диагонали квадрата через длину отрезка l:
9. Формула диагонали квадрата через радиус вписанной окружности:
R - радиус вписанной окружности;
D - диаметр вписанной окружности;
d - диагональ квадрата.
10. Формула диагонали квадрата через радиус описанной окружности:
R – радиус описанной окружности;
D – диаметр описанной окружности;
11. Формула диагонали квадрата через линию, которая выходит из угла на середину стороны квадрата:
C – линия, которая выходит из угла на середину стороны квадрата;
Вписанный круг в квадрат – это круг, примыкающий к серединам сторон квадрата и имеющий центр на пересечении диагоналей квадрата.
Радиус вписанной окружности - сторона квадрата (половина).
Площадь круга вписанного в квадрат меньше площади квадрата в π/4 раза.
Круг, описанный вокруг квадрата - это круг, который проходит через 4-ре вершины квадрата и который имеет центр на пересечении диагоналей квадрата.
Радиус окружности описанной вокруг квадрата больше радиуса вписанной окружности в √2 раз.
Радиус окружности описанной вокруг квадрата равен 1/2 диагонали.
Площадь круга описанного вокруг квадрата большая площадь того же квадрата в π/2 раз.
Квадрат — это прямоугольник, у которого все стороны равны.
Можно дать и другое определение квадрата:
квадрат — это ромб, у которого все углы прямые.
Получается, что квадрат обладает всеми свойствами параллелограмма, прямоугольника и ромба.
Перечислим свойства квадрата:
- Все углы квадрата — прямые, все стороны квадрата — равны.
- Диагонали квадрата равны и пересекаются под прямым углом.
- Диагонали квадрата делят его углы пополам.
Площадь квадрата, очевидно, равна квадрату его стороны: .
Диагональ квадрата равна произведению его стороны на , то есть
.
Разберем несколько простых задач на тему «Квадрат». Все они взяты из Банка заданий ФИПИ.
1 . Найдите сторону квадрата, диагональ которого равна .
Мы знаем, что . Тогда .
2 . Найдите радиус окружности, описанной около квадрата со стороной, равной .
Очевидно, радиус окружности равен половине диагонали квадрата.
3 . Найдите сторону квадрата, описанного около окружности радиуса .
Диаметр окружности равен стороне квадрата.
4 . Найдите радиус окружности, вписанной в квадрат , считая стороны квадратных клеток равными .
Чуть более сложная задача. Нарисуйте окружность, вписанную в данный квадрат, то есть касающуюся всех его сторон. Вы увидите, что диаметр этой окружности равен стороне квадрата.
5 . Найдите радиус окружности, вписанной в четырехугольник . В ответе укажите
.
Считаем стороны клеток равными единице. Четырехугольник — квадрат. Все его стороны равны, все углы — прямые. Как и в предыдущей задаче, радиус окружности, вписанной в квадрат, равен половине его стороны.
Найдем на чертеже прямоугольный треугольник. По теореме Пифагора найдем сторону, например, . Она равна . Тогда радиус вписанной окружности равен . В ответ запишем .
Квадрат — правильный четырёхугольник. У квадрата все углы и стороны одинаковы.
Квадраты различаются лишь длиной стороны, а все 4 угла прямые и равны 90°.
Квадратом может стать параллелограмм, ромб либо прямоугольник, когда у них одинаковые длины диагоналей, сторон и равные углы.
Свойства квадрата.
- у всех 4-х сторон квадрата одинаковая длина, т.е. стороны квадрата равны:
- противолежащие стороны квадрата параллельны:
- каждый уг ол квадрата прямой:
- сумма углов квадрата равна 360°:
- каждая диагональ квадрата имеет такую же длину, как и другая:
- каждая из диагоналей квадрата делит квадрат на 2 одинаковые симметричные фигуры.
- угол пересечения диагоналей квадрата равен 90°, пересекая друг друга, диагонали делятся на две равные части:
- точку пересечения диагоналей называют центр квадрата и она оказывается центром вписанной и описанной окружностей.
- все диагонали делят угол квадрата на две равные части, таким образом, они оказываются биссектрисами углов квадрата:
- диагонали делят квадрат на 4 одинаковых треугольника, кроме того, полученные треугольники в одно время и равнобедренные и прямоугольные:
Диагональ квадрата.
Диагональю квадрата является всякий отрезок, который соединяет 2-е вершины противолежащих углов квадрата.
Диагональ всякого квадрата больше стороны этого квадрата в √2 раз.
Формулы для определения длины диагонали квадрата:
1. Формула диагонали квадрата через сторону квадрата:
2. Формула диагонали квадрата через площадь квадрата:
3. Формула диагонали квадрата через периметр квадрата:
4. Сумма углов квадрата = 360°:
5. Диагонали квадрата одной длины:
6. Все диагонали квадрата делят квадрат на 2-е одинаковые фигуры, которые симметричны:
7. Угол пересечения диагоналей квадрата равен 90°, пересекая друг друга, диагонали делятся на две равные части:
8. Формула диагонали квадрата через длину отрезка l:
9. Формула диагонали квадрата через радиус вписанной окружности:
R - радиус вписанной окружности;
D - диаметр вписанной окружности;
d - диагональ квадрата.
10. Формула диагонали квадрата через радиус описанной окружности:
R – радиус описанной окружности;
D – диаметр описанной окружности;
11. Формула диагонали квадрата через линию, которая выходит из угла на середину стороны квадрата:
C – линия, которая выходит из угла на середину стороны квадрата;
Вписанный круг в квадрат – это круг, примыкающий к серединам сторон квадрата и имеющий центр на пересечении диагоналей квадрата.
Радиус вписанной окружности - сторона квадрата (половина).
Площадь круга вписанного в квадрат меньше площади квадрата в π/4 раза.
Круг, описанный вокруг квадрата - это круг, который проходит через 4-ре вершины квадрата и который имеет центр на пересечении диагоналей квадрата.
Радиус окружности описанной вокруг квадрата больше радиуса вписанной окружности в √2 раз.
Радиус окружности описанной вокруг квадрата равен 1/2 диагонали.
Площадь круга описанного вокруг квадрата большая площадь того же квадрата в π/2 раз.
В данной публикации мы рассмотрим определение и свойства (с рисунками) одной из основных геометрических фигур – квадрата.
Определение квадрата
Квадрат – это правильная геометрическая фигура на плоскости , у которой четыре равные стороны и прямые углы (т.е. 90°). Чаще всего квадрат обозначается названиями вершин (например, ABCD), а его сторона – маленькой латинской буквой (например, a).
- AB = BC = CD = AD = a
- ∠ABC = ∠BCD = ∠ADC = ∠BAD = 90°
Свойства квадрата
Свойство 1
Диагонали квадрата равны, расположены под прямым углом друг к другу, в точке пересечения делятся пополам.
- AC = BD = d (диагонали)
- AE = EC = BE = ED
- ∠AEB = ∠AED = ∠BEC = ∠CED = 90°
Свойство 2
Диагонали квадрата являются биссектрисами его углов. Для рисунке выше:
- BD – биссектриса углов ABC и ADC, следовательно, ∠ABD = ∠DBC = ∠ADB = ∠BDC
- AC – биссектриса углов BAD и BCD, следовательно, ∠BAC = ∠CAD = ∠BCA = ∠ACD
Свойство 3
Центром описанной вокруг и вписанной в квадрат окружностей является точка пересечения его диагоналей (в нашем случае – E).
При этом радиусы окружностей можно вычислить через длину стороны или диагонали квадрата:
- R – радиус описанной окружности;
- r – радиус вписанной окружности;
- a – длина стороны квадрата;
- d – длина диагонали квадрата.
Также, один радиус можно выразить через другой:
Свойство 4
Зная длину стороны или диагонали квадрата, можно найти его площадь или периметр.
Читайте также: