Из чего делают телефоны и планшеты
Смартфоны - самые популярные гаджеты у подавляющего большинства людей. Мы пользуемся ими каждый день, а ведь практически не знаем из каких частей он состоит. Можно долго спорить необходимы ли эти знания обычному пользователю, но в ряде ситуаций информация будет полезной. Особенно при покупке нового девайса. Итак, начнём:
▌Дисплей (экран)
Технологий здесь несколько IPS, Amoled, TFT, Super Amoled. Amoled и Super Amoled используют свет каждого пикселя, что при их чёрном цвете (выключенном состоянии) позволяет экономить энергию смартфона. IPS же обладает более приближенными к жизни цветами, используя подсветку целостного экрана.
Аккумулятор бывает съёмным и несъёмным. Выполнены они или по литий-ионной, или по литий-полимерной технологии. Первые теряют свою ёмкость от времени, независимо от того сколько раз их заряжили/разрядили. Литий-полимерные же наоборот полностью зависят от циклов заряда, хорошие АКБ начинают умирать спустя в среднем 1000 циклов.
▌Процессор и материнская палата
К материнской плате относится не только процессор и графический ускоритель, а и все дополнительные модели смартфона, вроде Wi-Fi, Bluetooth, NFC и т.д. Что касается процессоров в смартфоне - о них на нашем канале скоро выйдет отдельная статья, с оценками решений от каждого производителя для разных ценовых категорий.
Памяти в смартфоне 2 типа: внутренняя и оперативная. Оперативная нужна для работы приложений и в целом смартфона. Внутренняя хранит всю информацию на смартфоне. Память бывает различных классов и отличается по объёму.
Чип LTE, который отвечает за сотовую связь.
В современных смартфонах их две - фронтальная и основная. Разрешающая способность отражена в пикселях. Но за хорошие фото отвечают далеко не они, если хотите узнать как устроена камера - поставьте лайк и подпишитесь на канал, мы оперативно выпустим материал.
▌Различные датчики и сканеры
Сканер отпечатка пальца, сканер лица, акселерометр (нужен для ориентации устройства в пространстве), компас (север, юг, ну Вы помните), гироскоп (более детально работает с положением в пространстве), датчик освещённости (отвечает за автоматическую регулировку яркости), датчик приближения (определяет, когда его закрывают, выключая экран смартфона во время беседы по сотовой связи, иногда может использоваться для жестов).
Если Вы узнали что-то новое или вспомнили забытое - поставьте лайк и подпишитесь на канал, а чтобы не пропустить другие материалы - подпишитесь на канал .
В настоящее время существует три основных материала для смартфонов: металл, стекло и пластик. Их обычно используют в качестве основы для корпуса. Но не забыли мы и про редко встречающуюся керамику, а также про разные варианты для отделки — кожу, дерево, резину.
Металл
Статистика и опросы пользователей уверяют: именно цельнометаллические смартфоны пользуются наибольшей популярностью у пользователей, хотя металл — это далеко не дешёвый вариант, его обработка стоит дорого и сам смартфон, следовательно, не может быть чересчур бюджетным. Правда, сейчас металлические корпуса стали использовать не только во флагманах, а вполне себе в среднебюджетных моделях.
Huawei Nova 2 Plus в корпусе из цельного анодированного алюминия
Чаще всего для металлического корпуса используют анодированный либо шлифованный алюминиевый сплав — он легче и дешевле остальных плюс не подвержен коррозии; реже — сталь, титановый сплав и магний. Не забываем и о премиальных лимитированных моделях, которые сделаны из золота или серебра.
Всё чаще слышно про авиационный алюминий — речь идёт о сплавах алюминия с магнием и другими добавками для увеличения прочности, коррозионной устойчивости и уменьшения массы. Но, в конечном итоге, это можно назвать маркетинговым ходом, потому что, в любом случае, для смартфонов не применяют исключительно алюминий — в чистом виде он слишком пластичный и мягкий.
Caviar iPhone X Titano Gold Diamonds: титан, жёлтое золото и бриллианты
Достоинства металлического корпуса на виду: он выглядит дороже, чем пластиковый, долговечный, сломать его сложно и в случае падения металл берёт удар на себя — больше шансов, что «начинка» останется цела. Хотя металлический корпус может царапаться и гнуться, да и отпечатки пальцев на нём обычно очень заметны.
Ещё металл имеет хорошую теплопроводность, поэтому он не даёт перегреваться аппаратной части смартфона. Правда, если устройство как следует «разогнать», то о металлический корпус пользователь может даже обжечься.
Nokia 8 в цельнометаллическом корпусе из авиационного алюминия с пластиковыми вставками для антенн (наш обзор)
Есть существенное «но»: металлический корпус является помехой для радиоволн и беспроводной связи, поэтому производители иногда располагают антенны в самых неожиданных местах, что может быть попросту неудобно для пользователя. Эти проблемы стали очевидны ещё во времена iPhone 4, потом его судьбу повторил Samsung Galaxy A в цельнометаллическом корпусе. Сейчас всё чаще стали делать специальные окошки из пластика или стекла рядом с антенной.
Пластик
Из пластика, в основном, делают бюджетные смартфоны — это самый недорогой материал, простой в обработке и достаточно прочный. При этом пластиковый корпус при падении неплохо держит удар, несмотря на кажущуюся хрупкость. Но вот для «внутренностей» смартфона последствия падения такого аппарата могут быть плачевны: энергия удара передаётся вовнутрь и могут пострадать гораздо более дорогостоящие компоненты устройства. По этой причине часто смартфоны делают из пластика, но облекают в металлическую рамку, причём она иногда проходит даже внутри корпуса.
Meizu M6 из поликарбоната (стилизация под металл)
В качестве материала пластиковых корпусов смартфонов, как правило, используется ABS-пластик или поликарбонат. Первый – обычный облегчённый пластик, второй – с примесями, которые делают его более надежным. Встречается пластик, армированный стекловолокном, который был разработан для военной промышленности.
Дизайнеры нередко играют с разными покрытиями задней панели: Soft Touch, пластик, текстурированный под кожу, металл, дерево и т.д. Иногда на первый взгляд даже сложно отличить пластиковый корпус от реально покрытого кожей или металлического.
BQ-5201 Space с задней панелью из пластика и металлическими вставками сверху и снизу (наш обзор)
Также пластик позволяет выпускать смартфоны с самыми невероятными расцветками и дизайном. Фактически, пластиковый аппарат может быть любой формы. Но на плюс приходится и минус — материал имеет низкую теплопроводность, т.е. плохо отводит тепло от «начинки» смартфона, поэтому аппарат может перегреваться. Если «железо» стоит мощное, то производители предпочитают более теплопроводные материалы.
Стекло
Корпус из стекла смотрится эффектно, его даже жалко прятать под чехол, но пачкается стекло, увы, быстро. Первые стеклянные корпуса в массовом производстве появились у iPhone 4 и Nexus 4, а выход Galaxy S6 сделал их уже более популярными.
Samsung Galaxy S9+ в стеклянном корпусе (Gorilla Glass 5) с металлической рамкой
В большей части современных флагманов используется именно стеклянный корпус: кроме привлекательного внешнего вида, он ещё позволяет оснастить смартфон беспроводной зарядкой (стекло хорошо проводит сигнал). Сейчас стекло даёт возможность дизайнерам отвести душу на визуальных эффектах: оно может менять цвет в зависимости от того, как падает свет, отражать его в виде лучей и т.д.
Apple iPhone 8 и 8 Plus в корпусе из стекла — здесь присутствует металлическая рамка из авиационного алюминия
Производители обычно используют закалённое алюмосиликатное стекло от компании Corning, для большей прочности заключая его в металлическую рамку. Хотя и обещано, что Gorilla Glass не царапается, всевозможные краш-тесты как раз показывают, что особой устойчивости к царапинам ожидать не стоит. К тому же стекло всё равно остаётся довольно хрупким и при сильном ударе оно просто разобьется, образуя сетку. Ну хотя бы не разлетится на осколки, рискуя травмировать пользователя. Кстати, про падения: смартфоны из стекла довольно скользкие, поэтому многие всё-таки приходят к необходимости чехла.
HTC U Ultra Deluxe Sapphire
Редко, но встречается высокопрочное сапфировое стекло, которое используется в HTC U Ultra Deluxe Sapphire. На сегодняшний день это самое прочное стекло в смартфонах, что было доказано тестами — оно очень устойчиво к царапинам, хорошо экранирует и полностью прозрачно.
Керамика
Смартфоны из керамики — пока экзотика. На прилавках их можно увидеть крайне редко, они не ставятся на поток, хотя смотрятся весьма привлекательно. Дело в том, что материал довольно хрупкий и производителю приходится поднапрячься, чтобы изготовить из него смартфон. Обработка керамики достаточно сложная, в процессе образуется слишком много брака, поэтому такой корпус влетает производителю «в копеечку».
Xiaomi Mi Mix 2 Ceramic Version — в белом цвете эффектнее
Но в конечном итоге после обработки керамика становится прочнее стекла. Царапины на этом материале оставить сложнее, не говоря уже о том, что он плохо бьётся. Однако керамика просто до неприличия скользкая, поэтому «выгуливать» такой смартфон без чехла будет крайне неосмотрительно. Кстати, керамический корпус может быть только чёрным или белым, зато последний выглядит уж очень эффектно.
OnePlus X Ceramic Edition
Теплопроводность керамики низкая, что позволяет спокойно «убирать под капот» мощную начинку. Пока керамические смартфоны выпускают, в основном, китайские производители и делают это в виде лимитированных серий: Xiaomi Mi 6 Ceramic Edition, Mi Mix 2, OnePlus X Ceramic Edition и т.д.
Материалы для отделки
Встречаются смартфоны с панелями из дерева либо с кожаной отделкой, но целиком смартфоны из этих материалов не делают, и это обоснованно – проблема в их прочности и теплопроводности. Обычно в таких моделях используется либо пластик, либо металл в качестве несущей конструкции. Выглядят подобные устройства красиво, стильно и их корпус очень приятен на ощупь. Однако выпускают их обычно ограниченным тиражом.
Lenovo Vibe X2
В качестве примера можно вспомнить один из необычных смартфонов, о котором мы уже рассказывали в нашей статье — Monohm Runcible, круглый аппарат, одна из частей которого целиком сделана из дерева. Если обратиться к более массовым моделям, то задняя панель Moto X изготавливалась в том числе из кожи и бамбука, а нижняя часть «слойки», из которой состоял корпус Lenovo Vibe X2 тоже был бамбуковым — смотрелось, прямо скажем, здорово.
LG G4 с задней крышкой из пластика, обтянутой кожей разных цветов
Для защищённых смартфонов используют накладки на корпус из резины, обычно в сочетании с ударопрочным пластиком и металлом. Резина не скользкая и обладает свойством амортизировать ударные нагрузки. Но смартфоны с прорезиненными корпусами громоздкие и толстые, «изящество» — это уже не про них.
Защищённый смартфон North Face M9 Pro LTE PTT с прорезиненными вставками на корпусе
В будущем же производители обещают использовать такие материалы, как графин и износоустойчивый, но пластичный жидкий металл, который являет собой аморфный сплав циркония, меди, никеля и др. На последний Apple уже зарегистрировала несколько патентов, но дальше дело пока не сдвинулось.
За последние четыре года рынок радикально изменился. Очень сильно выросло качество дисплеев, увеличилась продолжительность работы от аккумулятора. На фоне использования OEM-производителями очень похожих платформ, выбор материалов для их устройств становится всё важнее. Почти все производители уже сталкивались с необходимостью кардинальной смены используемых материалов: в то время как рынок становится всё насыщенней, покупатели всё реже меняют свои мобильные устройства. И производителям приходится выдумывать различные ходы, чтобы стимулировать спрос. Зачастую это сводится к более тщательному подбору материалов для использования в экстерьере устройства.
Однако подобные усилия нередко уходят впустую. Просто многих пользователей мало заботит материал корпуса, особенно при условии использования чехла. Например, бытует мнение, что алюминий тяжелее, менее надёжен ухудшает качество связи по сравнению с поликарбонатом. Некоторые ссылаются на слишком сильный нагрев при интенсивной работе. При этом алюминий дороже, как утверждают некоторые производители. А уж если использовать стекло, то всем очевидно, что падения такой гаджет не перенесёт. И тут встаёт вопрос: почему производители до сих пор применяют разные непрактичные материалы?
На это нельзя ответить однозначно. При выборе материала необходимо учесть множество разных требований. И не существует единственного, самого лучшего варианта. Для большинства деталей, выбор ограничивается тремя материалами: пластиком, стеклом и металлом.
Пластик
Среди огромного разнообразия пластиков, поликарбонат является наиболее часто используемым при создании мобильных устройств. Он устойчив к ударам, относительно неплохо держит нагрев и невероятно гибок. Поликарбонат практически не является препятствием для распространения радиоволн. А поскольку ценовая конкуренция на рынке мобильных устройств усиливается, более низкая стоимость поликарбоната по сравнению с металлами и стеклом будет становиться всё более веским преимуществом.
Но есть у этого материала и недостатки. Поликарбонат обладает низкой теплопроводностью, то есть фактически он работает как термоизолятор. А это ведёт к снижению тактовых частот центральных и графических процессоров, чтобы предотвратить их перегрев. При этом металлические корпуса (алюминиевые и магниевые) прекрасно проводят тепло и выполняют роль радиатора. Похожая ситуация наблюдается и при сравнении поликарбоната со стеклом. Для сравнения, теплопроводность алюминия составляет 205 Ватт/м*К, магния — 156, однослойного стекла — 0,8, а у поликарбоната — 0,22. Иными словами, при прочих равных устройства в поликарбонатных корпусах приходится делать более медленными, по сравнению с аналогами в металлических и стеклянных корпусах.
Но и это не всё. Я упоминал о высокой гибкости поликарбоната. А это становится большим недостатком для смартфонов, которые стараются сделать как можно тоньше и компактнее. Металл и стекло обеспечивают куда большую механическую жёсткость на изгиб. Ведь в смартфонах даже задняя крышка выполняет различные функции: в частности, на неё зачастую крепится антенна, чтобы обеспечить поддержку всевозможных стандартов связи. Согнувшаяся от нагрузок крышка может повлиять на достаточно хрупкие контакты антенны, которые зачастую очень малы. До определённого предела они выдержат, но дальше контакт просто нарушится. В качестве примера можно привести модификацию Tegra 3 смартфона HTC One X. Её преследовал дефект: часто терялся Wi-Fi и Bluetooth из-за разрушения антенных контактов. Для решения проблемы производителю пришлось дополнительно усилить крышку, чтобы она не скручивалась от внешних нагрузок.
Металл
Многие превозносят металл как суперматериал для корпусов мобильных устройств. Однако зачастую люди ограничиваются внешним видом и тактильными ощущениями. Конечно, применительно к обсуждаемой теме речь идёт об алюминии. Магний тоже часто используется, но обычно для изготовления рамы.
У алюминиевых сплавов есть свои достоинства. В первую очередь, это высокая жёсткость. Благодаря этому внутренности гаджетов защищены в случае удара лучше, чем в поликарбонатном корпусе. Однако при цельноалюминиевом корпусе целесообразнее делать внешнюю антенну, чтобы улучшить характеристики сигнала.
Алюминиевые сплавы также лучше противостоят появлению царапин, чем поликарбонат. Но в гаджетах алюминий редко используется без анодирования. Оно бывает трёх типов, и лишь один из них имеет высокую стойкость к повреждениям. В остальных случаях анодированное покрытие не может похвастаться тем же и быстро покрывается царапинами. Также одним из важнейших преимуществ алюминия является высокая теплопроводность, что позволяет не экономить на тактовых частотах.
Но как и любой другой материал, алюминий не идеален для изготовления мобильных устройств. При отказе от внешней антенны приходится делать пластиковое/стеклянное радиопрозрачное «окно». Это означает, что устройство будет менее изотропичным при приёме сигнала. Даже если часть алюминиевого корпуса превратить во внешнюю антенну, рука человека, к ней прикасающаяся, будет вносить помехи. К тому же в этом случае гораздо сложнее обеспечить совместимость с различными частотами.
Если использовать несколько разных антенн и тюнеры ради создания полностью металлического корпуса, остаётся такой недостаток, как заметная разница в приёме сигнала. И эта разница зависит от текущей частоты.
Помимо проблем с сигналом, алюминий обладает меньшей устойчивостью к пластическим деформациям. И хотя внутренности защищены лучше, но внешний вид быстро портится из-за мелких вмятинок. Зато поликарбонат с большими шансами переживёт падение без повреждений. Алюминий также куда дороже, да ещё и требует больше времени и энергии на обработку, что выливается в приличную долю в цене готового изделия. И наконец, отличная теплопроводность алюминия выливается в слишком горячую поверхность устройства при высоких вычислительных нагрузках. Также на морозе держать поликарбонатный корпус в руку куда приятнее, чем алюминиевый.
Магний гораздо легче алюминия благодаря более низкой плотности. При этом магний меньше влияет на прохождение радиосигнала, обладая рядом преимуществ алюминия по сравнению со стеклом и поликарбонатом: высокой теплопроводностью, относительно высокой твёрдостью и несколько лучшей устойчивостью к появлению царапин. По всем показателям выходит, что магний лучше алюминия.
Однако от поставки магниевых корпусов на конвейер нас удерживает повышенная огнеопасность магния в кислородной среде, из-за чего литьё приходится проводить в вакуумных камерах. К тому же без обработки поверхности магний быстро коррозирует, что делает его не лучшим выбором при изготовлении корпуса, хотя он часто применяется при создании рамы изделия.
Стекло
Это самый твёрдый и царапиноустойчивый из всех трёх рассматриваемых нами материалов. Но и самый хрупкий, склонный к образованию осколков. Поэтому стекло переносит только пластическую деформацию. Алюмосиликатное стекло, больше известное под маркой Gorilla Glass, используется для изготовления корпусов чаще всего. По теплопроводности оно находится между алюминием и поликарбонатом. Стекло мало искажает радиосигнал, что позволяет использовать внутреннюю антенну. Однако главнейший недостаток — хрупкость, а также небезопасность для человека в случае разрушения. К тому же стекло накладывает большие ограничения на возможную форму корпуса. Поэтому такие устройства обычно невелики в размерах, а долю стекла в общем объёме материала корпуса стараются сделать поменьше.
Заключение
Конечно, инженеры стараются обойти врождённые недостатки всех рассмотренных материалов. В случае поликарбонатных корпусов используют магниевую раму, которая отводит тепло на стеклянный дисплей, который выступает в роли радиатора. Толщина стенок и разные виды пластика, металла и стекла могут существенно смягчить присущие им недостатки. Например, добавление АБС-пластика в поликарбонат значительно повышает твёрдость материала. Противоосколочная плёнка на стекле снижает опасность нанесения ранений человеку в случае разбиения. А достижения в антенностроении сводят на нет экранирующий эффект любого металла.
Но вопрос по прежнему остаётся — почему так важен выбор того или иного материала? Ответ заключается в промышленном дизайне. Мы постоянно прикасаемся к смартфонам и планшетам, держим их в руках. Большую часть времени мы смотрим на дисплей, но при этом постоянно имеем тактильный контакт с устройством. И то, как оно выглядит, каково на ощупь, какой оно формы, всё это имеет очень большое значение. Всегда лучше, когда устройство хорошо лежит в руке, приятно наощупь, красиво. Ненужные элементы портят внешний вид. Хороший дизайн очевиден и невиден. Только когда мы сталкиваемся с плохим дизайном, мы начинаем замечать хороший. Технологии могут сгладить недостатки материалов, но ничто не исправит плохой дизайн.
Второй причиной, почему выбору материалов уделяется большое внимание, являются такие важные для мобильных устройств параметры, как вес и габариты. Например, поликарбонатные корпуса зачастую приходится делать с более толстыми стенками, чтобы обеспечить необходимую жёсткость конструкции.
Пока всё это звучит субъективно, но когда рынок достигнет точки насыщения, выбор материалов и промышленный дизайн станут критически важными факторами. Впрочем, они уже ими стали.
Однако ситуация может измениться в связи с разработкой новых материалов и технологий. В частности, промышленная трёхмерная печать может помочь в создании новых конструкций корпусов. Представьте себе смартфон с очень тонкими стенками, лёгкий, но при этом словно сделанный из стали. Такое вполне возможно в будущем с помощью 3D-печати из композиционных материалов. Например, в виде сотовых панелей из смол, обладающих очень высокой механической жёсткостью:
Подобный принцип применяется при создании межконтинентальных и космических ракет, в которых очень тонкая внешняя оболочка выполняет роль несущей конструкции, каркаса.
Дальнейшая миниатюризация потребует создания гибких гаджетов. В частности, производители уже несколько лет экспериментируют с изготовлением подобных дисплеев. В качестве защитного стекла и материала для корпуса может быть использовано очень тонкое гибкое стекло, например, Willow Glass. Его разработала компания Corning, производитель Gorilla Glass.
Ещё одним кандидатом в материалы для корпусов гаджетов является графен. Впрочем, это такой специальный материал, о котором все говорят, которому находят миллионы применений, описывают его чудесные свойства, но на этом, обычно, всё заканчивается. Неизвестно, удастся ли наладить промышленное производство изделий из графена по приемлемой цене. Пока что всё его великолепие не выходит за пределы лабораторий.
Также можно упомянуть материал под названием Liquidmetal. Он обладает уникальной аморфной структурой, поэтому его ещё называют «металлостеклом». По своей прочности и эластичности он сравним с титаном, устойчив к коррозии. Ему можно придавать сложную форму без ухудшения прочностных характеристик. Поэтому многие прочат его на роль «материала будущего» для изготовления гаджетов.
У каждого человека есть один, а порой и несколько мобильных телефонов. И хоть один раз, но каждый задумывался или интересовался, из чего сделан телефон. Интерес понятен, хочется же знать, как и почему работает мобильник и что у него внутри.
Составляющие телефона
Основных частей несколько. Вот они:
- Самый главный элемент телефона. Как и в компьютере, ноутбуке, планшете. Именно на материнской плате расположены все детали, к ней подключается дисплей, аккумулятор.
- На ней стоят модули оперативной памяти, антенны мобильной связи, модуль GPS, слоты для сим-карт и карты памяти, процессор и все остальные необходимые для работы элементы.
- Не работающая материнская плата — это не работающий телефон. Проще купить новый аппарат, чем пытаться восстановить поломанную материнскую плату.
- В смартфонах дисплею отводится две основные роли:
- управляющая;
- информативная.
- Накопитель энергии для работы всех составляющих смартфона. С него, через контроллёр питания подаётся электрический ток, запускающий работу остальных деталей.
- Аккумулятор по истечению накопления энергии требует подзарядки от сети. Уровень энергии показывает значок, вынесенный в панель уведомления на экране.
Дополнительные составляющие
Далее перечислим дополнительные составляющие, наличие которых никак не скажется на работе основных функций телефона.
Однако, их наличие приносит массу удовольствий, появляются дополнительные полезные возможности и функции телефона, работа с устройством становится разнообразнее.
Внутреннее содержание
Вскрыв корпус, можно увидеть, что составных деталей внутри очень мало. Основная материнская плата занимает примерно половину пространства корпуса, столько же отведено для батареи. Вся плоскость в передней части занята тонкой пластиной экрана. И все — остальные мелкие детали вроде гнезд и разъемов подключения часто располагаются прямо на материнской плате. Отдельно стоит только вибромотор. Рассмотрим подробнее, за счет чего работает планшет.
Материнская плата
Секрет маленьких размеров устройства — минимальные преобразования и низкое потребление энергии. Материнская плата обычного компьютера несет на себе множество цепей согласования и преобразования напряжений, есть даже блоки, отвечающие за эти процессы. Устройство планшета, напротив, является результатом применения подхода максимальной совместимости.
Центральный процессор
Небольшая микросхема в центре печатной платы — вычислительный центр. Размером с контроллер моста у «большого» компьютера, этот маленький чип не оборудован радиатором, а тем более вентилятором. Он выделяет очень мало тепла. Но одновременно это многоядерная вычислительная структура, способная выполнять сотни тысяч операций в секунду и больше.
Вокруг процессора персонального компьютера — десятки конденсаторов и цепей управления питанием. Рядом с процессором планшета расположен всего один блок — задающий генератор. Даже по сравнению с маленькой микросхемой процессора он выглядит крошечным и незаметным.
Постоянное запоминающее устройство
Место, где «прошита» операционная система и хранятся данные пользователя. Это всего одна микросхема перезаписываемой флеш-памяти. В зависимости от модели планшета она может иметь разный объем.
Блок памяти для промежуточных данных и вычислений. Обычно это пара микросхем еще меньшего размера, чем ПЗУ. С объемом этой памяти работают программы и службы операционной системы во время функционирования планшета. Здесь же производится промежуточная обработка данных, полученных от камер или микрофона.
Модули беспроводной связи
Bluetooth и Wi-Fi находятся обычно на самом краю материнской платы, чаще всего в углу. Вызвано это необходимостью дополнительной антенны и буферного источника питания. Антенна представляет собой полоску пластика с нанесенным медным покрытием. В качестве буфера питания выступает маленький аккумулятор в 3,3 В.
Управление питанием
Блок, действительно работающий «на износ», — центр распределения питания. В функции этого модуля входит преобразование напряжений, контроль уровня заряда аккумулятора, а также параметров напряжения, приходящих «снаружи» — от зарядного устройства, присоединенного компьютера или внешнего устройства. От правильности работы этого модуля зависит функционирование всех внешних портов и камер. Построен этот блок на одной-единственной микросхеме. Неудивительно, что она часто выходит из строя.
Система обработки тачскрина
Экран, точнее, рабочий комплекс матрицы соединен со своим контроллером с помощью довольно тонкого шлейфа. По нему передаются все данные от датчиков емкостного слоя о движениях пальцев пользователя. Задача контроллера тачскрина — обработать и преобразовать полученные сигналы в цифровой формат. Эти данные, в свою очередь, обрабатываются операционной системой и преобразуются в видимые пользователю визуальные реакции, а также соответствующие действия.
Это были устройства и блоки, которые расположены на материнской плате.
Устройство экрана планшета
Конструктивно дисплей состоит из нескольких слоев. Сегодня практически не встречаются экраны с резистивной технологией, поэтому не будем их рассматривать.
Емкостные экраны для определения прикосновения используют простой принцип. Чувствительный элемент представляет собой, грубо говоря, сетку из двух слоев перпендикулярно расположенных проводников. Они очень тонкие, а сетка настолько мелкая, что не воспринимается глазом. Когда на проводники подается напряжение, контроллер тачскрина фиксирует уровень возникшего поля. Пользователь подносит палец. Он тоже токопроводящий, поэтому изменяет поле проводников. По изменению двух сигналов — от разных слоев сетки — контроллер определяет, в каких координатах произошло касание.
Еще один слой формирует изображение. Существует несколько технологий, основанных на различном ориентировании кристаллов. Например, IPS-матрица в выключенном состоянии — черная и непрозрачная. При подаче напряжения кристаллы поворачиваются, пропуская свет. В зависимости от угла, на который «повернута» ячейка одного из трех составных цветов, образуется точка нужного цвета.
Матрица типа TN-Film, грубо говоря, «крутит кристаллами в другую сторону». В выключенном состоянии она прозрачная.
Нижний слой — подсветка. Не вдаваясь в детали, это панель, которая светится с разной силой в зависимости от поданного напряжения. На этом ее работа заканчивается.
И главный слой, по которому постоянно водят пальцами, — защитный. Благодаря тому, что емкостной сенсор не требует деформации для определения касания, сегодня встречаются всевозможные конструкции — пластиковая пленка, пластина, даже слой закаленного или сапфирового стекла.
Аккумулятор
Если описывать внутреннее устройство и принцип работы литий-полимерного источника, можно написать научную статью. Устройство батареи планшета сложное, обязательно включает в себя блок энергоячеек и контроля состояния. От блока мониторинга приходят данные на материнскую плату.
Модуль контроля может запретить работу аккумулятора, если его заряд упал ниже предельного, технически допустимого. Аккумулятор можно «завести» от более мощного источника питания, но планшет сгорит при попытке. Поэтому контроль питания материнской платы и блок мониторинга состояния батареи работают в паре, чтобы не допустить аварийных режимов.
Почему планшеты разные?
Можно спросить — а почему так отличаются конструкции, если внутри все одинаковое? У некоторых планшетов все разъемы с одной стороны, у других — равномерно распределены. Где-то камеры по центру, где-то внизу или в углу.
Ответ прост. Все зависит от разработчика и сборщиков. Проще наладить производственную линию, где автомат соберет материнскую плату со всеми портами и разъемами. От сборщика потребуется установить дисплей, прищелкнуть плату, аккумулятор и соединить все шлейфами. И получится — порты и кнопки в кучу, зато дешево.
Чем дороже планшет, тем лучше сборка
Можно сделать отдельные платы для разъемов, предусмотреть для них место, вынести камеры на отдельные посадочные места. Словом, нанять квалифицированный и аккуратный персонал. Зато получится удобное устройство с продуманной эргономикой.
Так что в планшете главное — не только начинка, но и уровень квалификации сборщиков и усердие разработчиков.
Читайте также:
- управляющая;