Что такое gl2 в компьютере
Сейчас трёхмерные изображения можно увидеть везде, начиная от компьютерных игр и заканчивая системами моделлирования в реальном времени. Раньше, когда трёхмерная графика существовала только на суперкомпьютерах, не существовало единого стандарта в области графики. Все программы писались с "нуля" или с использованием накопленного опыта, но в каждой программе реализовывались свои методы для отображения графической информации. С приходом мощных процессоров и графических ускорителей трёхмерная графика стала реальностью для персональных компьютеров. Но в тоже время производители программного обеспечения столкнулись с серьёзной проблемой - это отсутствие каких-либо стандартов, которые позволяли писать программы, независимые от оборудования и операционной системы. Одним из первых таких стандартов, существующий и по сей день является OpenGL.
OpenGL - это графический стандарт в области компьютерной графики. На данный момент он является одним из самых популярных графических стандартов во всём мире. Ещё в 1982 г. в Стенфордском университете была разработана концепция графической машины, на основе которой фирма Silicon Graphics в своей рабочей станции Silicon IRIS реализовала конвейер рендеринга. Таким образом была разработана графическая библиотека IRIS GL. На основе библиотеки IRIS GL, в 1992 году был разработан и утверждён графический стандарт OpenGL. Разработчики OpenGL - это крупнейшие фирмы разработчики как оборудования так и программного обеспечения: Silicon Graphics, Inc., Microsoft, IBM Corporation, Sun Microsystems, Inc., Digital Equipment Corporation (DEC), Evans & Sutherland, Hewlett-Packard Corporation, Intel Corporation и Intergraph Corporation.
OpenGL переводится как Открытая Графическая Библиотека (Open Graphics Library), это означает, что OpenGL - это открытый и мобильный стандарт. Программы, написанные с помощью OpenGL можно переносить практически на любые платформы, получая при этом одинаковый результат, будь это графическая станция или суперкомпьютер. OpenGL освобождает программиста от написания программ для конкретного оборудования. Если устройство поддерживает какую-то функцию, то эта функция выполняется аппаратно, если нет, то библиотека выполняет её программно.
Что же представляет из себя OpenGL? С точки зрения программиста OpenGL - это программный интерфейс для графических устройств, таких как графические ускорители. Он включает в себя около 150 различных команд, с помощью которых программист может определять различные объекты и производить рендеринг. Говоря более простым языком, вы определяете объекты, задаёте их местоположение в трёхмерном пространстве, определяете другие параметры (поворот, масштаб, . ), задаёте свойства объектов (цвет, текстура, материал, . ), положение наблюдателя, а библиотека OpenGL позаботится о том чтобы отобразить всё это на экране. Поэтому можно сказать, что библиотека OpenGL является только воспроизводящей (Rendering), и занимается только отображением 3Д обьектов, она не работает с устройствами ввода (клавиатуры, мыши). Также она не поддерживает менеджер окон.
OpenGL имеет хорошо продуманную внутреннюю структуру и довольно простой процедурный интерфейс. Несмотря на это с помощью OpenGL можно создавать сложные и мощные программные комплексы, затрачивая при этом минимальное время по сравнению с другими графическими библиотеками.
В некоторых библиотеках OpenGL (например под X Windows) имеется возможность изображать результат не только на локальной машине, но также и по сети. Приложение, которое вырабатывает команды OpenGL называется клиентом, а приложение, которое получает эти команды и отображает результат - сервером. Таким образом можно строить очень мощные воспроизводящие комплексы на основе нескольких рабочих станций или серверов, соединённых сетью.
Основные возможности OpenGL.
- Геометрические и растровые примитивы. На основе геометрических и растровых примитивов строятся все объекты. Из геометрических примитивов библиотека предоставляет: точки, линии, полигоны. Из растровых: битовый массив(bitmap) и образ(image)
- Использование В-сплайнов. B-сплайны используются для рисования кривых по опорным точкам.
- Видовые и модельные преобразования. С помощью этих преобразований можно располагать обьекты в пространстве, вращать их, изменять форму, а также изменять положение камеры из которой ведётся наблюдение.
- Работа с цветом. OpenGL предоставляет программисту возможность работы с цветом в режиме RGBA (красный-зелёный-синий-альфа) или используя индексный режим, где цвет выбирается из палитры.
- Удаление невидимых линий и поверхностей. Z-буферизация.
- Двойная буферизация. OpenGL предоставляет как одинарную так и двойную буферизацию. Двойная буферизация используется для того, чтобы устранить мерцание при мультипликации, т.е. изображение каждого кадра сначала рисуется во втором(невидимом) буфере, а потом, когда кадр полностью нарисован, весь буфер отображается на экране.
- Наложение текстуры. Позволяет придавать объектам реалистичность. На объект, например шар, накладывается текстура(просто какое-то изображение), в результате чего наш объект теперь выглядит не просто как шар, а как разноцветный мячик.
- Сглаживание. Сглаживание позволяет скрыть ступенчатость, свойственную растровым дисплеям. Сглаживание изменяет интенсивность и цвет пикселей около линии, при этом линия смотрится на экране без всяких зигзагов.
- Освещение. Позволяет задавать источники света, их расположение, интенсивность, и т.д.
- Атмосферные эффекты. Например туман, дым. Всё это также позволяет придать объектам или сцене реалистичность, а также "почувствовать" глубину сцены.
- Прозрачность объектов.
- Использование списков изображений.
Дополнительные библиотеки OpenGL
Несмотря на то, что библиотека OpenGL (сокращённо GL) предоставляет практически все возможности для моделирования и воспроизведения трёхмерных сцен, некоторые из функций, которые требуются при работе с графикой, отсутствуют в стандартной библиотеке OpenGL.. Например, чтобы задать положение и направление камеры, с которой будет наблюдаться сцена, нужно самому рассчитывать модельную матрицу, а это далеко не все умеют. Поэтому для OpenGL существуют так называемые вспомогательные библиотеки.
Первая из этих библиотек называется GLU. Эта библиотека уже стала стандартом и поставляется вместе с главной библиотекой OpenGL. В состав этой библиотеки вошли более сложные функции, например для того чтобы определить цилиндр или диск потребуется всего одна команда. Также в библиотеку вошли функции для работы со сплайнами, реализованы дополнительные операции над матрицами и дополнительные виды проекций.
Следующая библиотека, также широко используемая - это GLUT. Это также независимая от платформы библиотека. Она реализует не только дополнительные функции OpenGL, но и предоставляет функции для работы с окнами, клавиатурой и мышкой. Для того чтобы работать с OpenGL в конкретной операционной системе (например Windows или X Windows), надо провести некоторую предварительную настройку и эта предварительная настройка зависит от конкретной операционной системы. С библиотекой GLUT всё намного упрощается, буквально несколькими командами можно определить окно, в котором будет работать OpenGL, определить прерывание от клавиатуры или мышки и всё это не будет зависеть от операционной системы. Библиотека предоставляет также некоторые функции, с помощью которых можно определять некоторые сложные фигуры, такие как конусы, тетраэдры, и даже можно с помощью одной команды определить чайник!
Есть ещё одна библиотека похожая на GLUT, называется она GLAUX. Это библиотека разработана фирмой Microsoft для операционной системы Windows. Она во многом схожа с библиотекой GLUT, но немного отстаёт от неё по своим возможностям. И ещё один недостаток заключается в том, что библиотека GLAUX предназначена только для Windows, в то время как GLUT поддерживает очень много операционных систем.
Существуют и другие дополнительные библиотеки для OpenGL. Все они добавляют что-то своё или ориентированы на какую-то платформу. Например существует такая библиотека как GLX - это расширение для X Windows, позволяющее использовать в X Windows OpenGL. GLX предоставляет не только локальный рендеринг, но и рендеринг по сети.
Альтернативы OpenGL
Хотя библиотека OpenGL и считается одной из лучших библиотек как для профессионального применения так и для игр, у неё существуют и конкуренты.
Одним из главных конкурентов считается Direct3D из пакета DirectX, разработанный фирмой Microsoft. Direct3D создавался исключительно для игровых приложений. Если сравнивать эти две библиотеки, то нельзя сказать, что одна из них лучше, а другая хуже, у каждой библиотеки имеются свои особенности. Например, если сравнивать их в плане переносимости программ с одной платформы на другую, то Direct3D будет работать только на Intel платформах под управлением операционной системы Windows, в то время программы, написанные с помощью OpenGL можно успешно перенести на такие платформы как Unix, Linux, SunOS, IRIX, Windows, MacOS и многие другие. А вот в плане объектно-ориентированного подхода OpenGL уступает Direct3D. OpenGL работает по принципу конечного автомата, переходя из одного состояния в другое, совершая при этом какие-то преобразования. Ещё одним преимуществом Direct3D является поддержка дешёвого оборудования, OpenGL же поддерживается не на всех графических картах, но для профессиональных ускорителей OpenGL является стандартом де-факто. И ещё, OpenGL легче чем Direct3D для изучения основ графики, OpenGL можно применять например для начального изучения трёхмерной графики.
GLide до недавнего времени тоже являлся довольно широко используемым стандартом для игровых приложений. Этот стандарт создала фирма 3Dfx и библиотека GLide создавалась исключительно для видео ускорителей фирмы 3Dfx Voodoo и была оптимизирована исключительно под них. GLide является более низкоуровневым по отношению к OpenGL и по своим командам похож на него. GLide мало чем отличается от OpenGL по своим возможностям, за исключением некоторых функций, которые специально предназначались для Voodoo ускорителей. Но к сожалению 3Dfx отказалась от этого стандарта, передав его в руки разработчиков открытого программного обеспечения.
Есть ещё несколько библиотек, среди них можно отметить Heidi. Heidi это библиотека или даже лучше сказать драйвер для визуализации трёхмерных сцен, используемый только в 3D Studio Max и только под Windows NT.
Стоит также отметить совместную разработку двух гигантов - Microsoft и Silicon Graphics в области стандартизации компьютерной графики. Этот проект носит название Fahrenheit и сейчас находится в стадии разработки.
Заключение
Заканчивая вводный рассказ про OpenGL хочется подвести некоторые итоги. Итак OpenGL представляет собой единый стандарт для разработки трёхмерных приложений, сочетает в себе такие качества как мощь и в то же время простоту. Мультиплатформенность позволяет без труда переносить программное обеспечение с одной операционной системы в другую. OpenGL предоставляет вам в распоряжение всю мощь аппаратных возможностей, которые вы имеете на данном компьютере и при написании программ вам не нужно будет беспокоится о конкретных деталях используемого оборудования, за вас побеспокоится драйвер OpenGL. OpenGL прекрасно подходит как для профессионалов так и для новичков в области компьютерной графики.
Программы, которые поддерживают GL2 расширение файла
Ниже приведена таблица со списком программ, которые поддерживают GL2 файлы. Файлы с суффиксом GL2 могут быть скопированы на любое мобильное устройство или системную платформу, но может быть невозможно открыть их должным образом в целевой системе.
Программы, обслуживающие файл GL2
Как открыть файл GL2?
Проблемы с доступом к GL2 могут быть вызваны разными причинами. С другой стороны, наиболее часто встречающиеся проблемы, связанные с файлами HP Graphics Language Plotter, не являются сложными. В большинстве случаев они могут быть решены быстро и эффективно без помощи специалиста. Приведенный ниже список проведет вас через процесс решения возникшей проблемы.
Шаг 1. Получить XnView
Наиболее распространенной причиной таких проблем является отсутствие соответствующих приложений, поддерживающих файлы GL2, установленные в системе. Решение этой проблемы очень простое. Загрузите XnView и установите его на свое устройство. В верхней части страницы находится список всех программ, сгруппированных по поддерживаемым операционным системам. Одним из наиболее безопасных способов загрузки программного обеспечения является использование ссылок официальных дистрибьюторов. Посетите сайт XnView и загрузите установщик.
Шаг 2. Убедитесь, что у вас установлена последняя версия XnView
Если проблемы с открытием файлов GL2 по-прежнему возникают даже после установки XnView, возможно, у вас устаревшая версия программного обеспечения. Проверьте веб-сайт разработчика, доступна ли более новая версия XnView. Может также случиться, что создатели программного обеспечения, обновляя свои приложения, добавляют совместимость с другими, более новыми форматами файлов. Причиной того, что XnView не может обрабатывать файлы с GL2, может быть то, что программное обеспечение устарело. Последняя версия XnView должна поддерживать все форматы файлов, которые совместимы со старыми версиями программного обеспечения.
Шаг 3. Настройте приложение по умолчанию для открытия GL2 файлов на XnView
Если у вас установлена последняя версия XnView и проблема сохраняется, выберите ее в качестве программы по умолчанию, которая будет использоваться для управления GL2 на вашем устройстве. Метод довольно прост и мало меняется в разных операционных системах.
Изменить приложение по умолчанию в Windows
- Нажатие правой кнопки мыши на GL2 откроет меню, из которого вы должны выбрать опцию Открыть с помощью
- Выберите Выбрать другое приложение → Еще приложения
- Наконец, выберите Найти другое приложение на этом. , укажите папку, в которой установлен XnView, установите флажок Всегда использовать это приложение для открытия GL2 файлы свой выбор, нажав кнопку ОК
Изменить приложение по умолчанию в Mac OS
Шаг 4. Убедитесь, что GL2 не неисправен
Вы внимательно следили за шагами, перечисленными в пунктах 1-3, но проблема все еще присутствует? Вы должны проверить, является ли файл правильным GL2 файлом. Проблемы с открытием файла могут возникнуть по разным причинам.
1. Проверьте GL2 файл на наличие вирусов или вредоносных программ.
Если GL2 действительно заражен, возможно, вредоносное ПО блокирует его открытие. Рекомендуется как можно скорее сканировать систему на наличие вирусов и вредоносных программ или использовать онлайн-антивирусный сканер. Если файл GL2 действительно заражен, следуйте инструкциям ниже.
2. Проверьте, не поврежден ли файл
Если вы получили проблемный файл GL2 от третьего лица, попросите его предоставить вам еще одну копию. Возможно, что файл не был должным образом скопирован в хранилище данных и является неполным и поэтому не может быть открыт. Это может произойти, если процесс загрузки файла с расширением GL2 был прерван и данные файла повреждены. Загрузите файл снова из того же источника.
3. Проверьте, есть ли у вашей учетной записи административные права
Иногда для доступа к файлам пользователю необходимы права администратора. Выйдите из своей текущей учетной записи и войдите в учетную запись с достаточными правами доступа. Затем откройте файл HP Graphics Language Plotter.
4. Проверьте, может ли ваша система обрабатывать XnView
Если в системе недостаточно ресурсов для открытия файлов GL2, попробуйте закрыть все запущенные в данный момент приложения и повторите попытку.
5. Проверьте, есть ли у вас последние обновления операционной системы и драйверов
Регулярно обновляемая система, драйверы и программы обеспечивают безопасность вашего компьютера. Это также может предотвратить проблемы с файлами HP Graphics Language Plotter. Устаревшие драйверы или программное обеспечение могли привести к невозможности использования периферийного устройства, необходимого для обработки файлов GL2.
Вы хотите помочь?
Если у Вас есть дополнительная информация о расширение файла GL2 мы будем признательны, если Вы поделитесь ею с пользователями нашего сайта. Воспользуйтесь формуляром, находящимся здесь и отправьте нам свою информацию о файле GL2.
Сегодня принтер несильно отличается от компьютера. У него есть процессор, память, операционная система и постоянная память-накопитель. Если принтер сетевой, то у него есть сетевая карта и веб-сервер, позволяющий его администрировать. Принтеры не только поддерживают разные сетевые протоколы, но и принимают задания на специфичных языках, которые описывают разметку страниц и документов. Таким образом, на крупном предприятии программные средства печати должны взаимодействать с разными аппаратными реализациями протокола печати, возможно даже неизвестными. Конфигурирование печати принтера труднее, чем кажется на первый взгляд. Пользователи воспринимают печать как должное, однако, для получения качественного результата нужно пройти не один шаг.
В этой статье предлагаю рассмотреть и сравнить технологии печати, с которыми вы сталкиваетесь, выбирая новый принтер, проводя допечатную подготовку документа или работая с электронными PDF-копиями документов. И конечно, если вы пытаетесь перехватить и проанализировать задание на печать.
О языках принтеров
Что такое задание на печать? Это программа, написанная на специальном языке программирования – Page Description Language (PDL).
Печатаемые страницы кодируются в PDL и занимают меньший размер, а значит, передаются быстрее необработанных изображений. PDL не зависят ни от самих устройств, ни от разрешающей способности. Принтеры преобразуют задания на специализированном языке в понятный для устройства формат. Это значит, что принтеры содержат языковые интерпретаторы. Также как у языков программирования «а ля Java», у этих языков не одна версия и каждая работает немного по-своему.
Преобразование PDL в растровые изображения выполняется программой-обработчиком: процессором растровых изображений, Raster Image Processor или просто RIP.
Самые известные PDL языки: Postscript, PCL5, PCL6
PostScript – самый распространённый из всех. Первоначально разработан компанией Adobe. Требует наличия лицензии для использования, поэтому на сегодняшний день используется преимущественно в высокопроизводительных устройствах верхнего ценового сегмента. Почти все программы, компонующие страницы, могут генерировать задания на PostScript. Это полнофункциональный язык программирования. Написанные программы можно просматривать с помощью текстового редактора. В них много круглых скобок, а также символов / %!
P.S. Эти символы ищутся интерпретаторами для распознавания заданий на печать.
Пример PostScript:
Также PostScript является стандартом для MAC и профессиональным стандартом.
PCL – или Printer Common Language – альтернатива PostScript от Hewlett Packard (далее HP). Язык понятен принтерам других производителей, некоторые умеют работать только с ним. PCL – не язык программирования, он просто сообщает на принтер как ему следует напечатать страницы. Задания на PCL бинарные и непонятны для человека, зато короче по размеру, чем PostScript.
Существуют фильтры, преобразующие Postscript в PCL. Версии PCL разнятся не так сильно как PostScript, но достаточно, чтобы вызывать раздражение. Задания печатаются немного не так на разных моделях принтеров. Причина в диалектах со специальными командами. В отличие от PostScript, PCL изначально заточен именно на управление принтером, а не на переносимость страницы, поэтому для достижения наилучшего результата печати необходимо использовать команды под соответствующий принтер. Именно поэтому в операционной системе (ОС) указывается модель принтера, в противном случае генерируются иные PCL команды, интерпретируемые неправильно или вовсе игнорируемые.
На самом деле, вопрос не только в железе: существует так называемая эмуляция.
Эмуляция PCL – это значит, что разработчик стандарта (т.е. HP) не лицензировал или не тестировал принтер производителя на совместимость с PCL.
Эмуляция PostScript – Adobe не получал отчисления за свой интерпретатор PostScript, вместо этого некоторые вендоры написали собственный код. Политика лицензирования породила диалекты языков – схожие, но не повторяющие оригинал в точности. На практике оба могут выполняться с ошибками, но случается такое редко.
Чтобы вас окончательно запутать, HP определила два семейства языков PLC5 (5e – черно-белый, и 5c – цветной) и PCL6 (PCL/XL). Новые HP принтеры поддерживают оба. Ранее существовал и PCL4, но сейчас он слишком архаичный. Начиная с PCL5 5e, также были введены такие новшества, как: поддержка разрешения 600 dpi, двунаправленный обмен данными между принтером и компьютером и новые шрифты для Microsoft Windows.
Пример PCL5:
Пример PCL6:
PDF – еще одна разработка Adobe – Portable Document Format. Это формат документов, использующий часть возможностей PostScript, основа издательского дела и программ Office. PDF-документы не зависят от ОС и платформы. Очень часто формат используется для обмена документами с возможностью просмотра и печати. PDF – язык описания документов, а не страниц. Позволяет описывать не только страницы, но и всю структуру документа, главы, взаимосвязь текстовых столбцов друг с другом, правки и так далее. Плюс, куча возможностей мультимедиа.
Есть принтеры, которые интерпретируют PDF напрямую. Есть масса программ-трансляторов и визуальных редакторов с возможностью преобразования PDF, например, в PostScript. Это преобразование даже может быть скрыто от пользователя.
XHTML – появился относительно недавно. Принтер получает поток данных на языке, описывающем XHTML-print веб-страницу, генерирует представление задания (разные принтеры формируют разные задания, также как разные браузеры отражают страницу иначе).
HP-GL/2 – Hewlett-Packard Graphics Language – Служат для печати векторной графики в составе документа.
HPGL – язык поддержки плоттеров. Поддерживается почти всеми HP-принтерами.
PJL – Printer Job Language. Язык заданий для принтера, метаязык от HP, описывает какой PDL должен использоваться для задания, каким будет формат бумаги, сколько копий нужно напечатать, симплексное задание или дуплексное и так далее.
О драйверах
Драйвер принтера и поддержка – ПО, преобразующее файл в понятный для принтера. Задачи и функции драйвера отвечают на вопросы: «Что если принтер не поддерживает все языки?», «Имеется задание postscript, а принтер распознает только PCL 5E. Нужно напечатать PDF, что делать, если принтер его не интерпретирует?».
Система сможет сделать все самостоятельно (выяснить язык PDL файла, выполнить преобразования). Вы также можете преобразовать файл вручную. Браузеры умеют преобразовывать HTML в postscript или в PDF. Open Office может преобразовать .doc в PDF. Из postscript можно преобразовать почти в любой формат, в том числе PCL.
GDI – ещё задание на печать можно просматривать и интерпретировать централизованно, на ПК. Также можно отправлять готовые обработанные растровые изображения на принтер «без интеллекта». Именно так и работают многие Windows GDI-принтеры. Такие принтеры обладают весьма незначительным количеством логических инструкций и совсем не обладают интерпретаторами PDL. Вместо этого растеризацию выполняет обслуживающий компьютер. Часть информации для взаимодействия с GDI скрыта в коде Windows под патентами. Эта секретность затрудняет разработку аналогов в системах Linux, и, по сути, является преимуществом. Аналогично ситуация развивается с поддержкой новейших моделей принтеров. Впрочем, ситуация меняется благодаря существованию демона CUPS с поддержкой многих Win Printers с помощью реверс инжиниринга.
О сервере печати
В Windows печать через протокол IPP появилась, начиная с Windows 2000. На клиентах с Windows 7 и новее, поддержка протокола IPP, как правило, уже установлена. Также есть Internet Printing – windows реализация сервера печати Internet через IPP. Для его установки необходимо сначала установить службу веб сервера MS IIS
О безопасности для принтеров
Какая операционная система используется принтером? Некоторые модели имеют Linux-based дистрибутив на борту. Понять, что же установлено на принтере, либо поменять пароли по умолчанию можно лишь закопавшись в документацию производителя. Неразбериха с операционной системой усугубляется тем, что средства графического администрирования имеют тенденцию сокрытия сведений о различиях производителей.
В заключение хочу еще раз сказать, что проблемы печати многогранны, некоторые из них остались за рамками статьи. В следующий раз надеюсь рассказать о ведении журналов, PPD-файлах и форматах бумаги. О том, как попросить монохромный принтер распечатать двусторонний цветной документ в неизвестном ему формате b4, а также о всевозможных утилитах печати и командах совместимости.
Интерфейс HDMI широко распространен и используется от телевизоров до плееров. Однако для мониторов на рынке есть и другой стандарт подключения — DisplayPort. Давайте разберемся, в чем его преимущества по сравнению с HDMI, когда он появился, а главное — зачем.
История создания
Стандарт DisplayPort был разработан американской некоммерческой организацией VESA, первая версия появилась в 2006 году. Целью было заменить устаревший интерфейс DVI, который был частично аналоговым и существовал на рынке еще с конца 90-х годов. Как и HDMI, появившийся тремя годами ранее, он передавал на устройство не только изображение, но и звук.
DP изначально создавался как открытый стандарт, не требующий отчислений. HDMI же всегда был проприетарным: он предполагает ежегодные выплаты в 10 тысяч долларов, а также минимум 5 центов за каждое устройство с этим разъемом. У DisplayPort выплаты появились только 9 лет спустя — в 2015 году VESA установила ценник в 20 центов за конкретный девайс.
Версии DisplayPort
Актуальными можно назвать даже самые первые версии DP — в продаже до сих пор можно найти кабели ревизий 1.1 и 1.2. Последней будет вполне достаточно для подключения бюджетного геймерского монитора 1080p@144 Гц с технологией Freesync.
Для удобства сведем данные в таблицу.
Версия DP
Макс. скорость передачи данных
Максимальное доступное разрешение
Поддержка HDR
Поддержка Freesync и G-Sync
* данные передаются со сжатием по технологии Display Stream Compression 1.2
Несмотря на то, что DisplayPort 2.0 был представлен еще в 2019 году, до сих пор нет ни оборудования, ни кабелей, которые бы его поддерживали. Из-за пандемии, релиз мониторов задерживается до конца 2021: новинки смогут работать в 4K при 144 Гц (и выше) и HDR без применения сжатия.
С другой стороны, даже самые современные видеокарты вроде NVIDIA GeForce RTX 3090 и AMD Radeon RX 6900 XT последнюю версию стандарта пока не поддерживают. Геймерам нужно подождать следующего поколения видеоадаптеров — тем более, из-за майнеров карточки сейчас все равно не купить. Поэтому наиболее функциональным выбором на данный момент остается кабель версии 1.4.
Виды разъемов и распиновка
Одним из конструктивных преимуществ DP по сравнению с HDMI является механизм фиксации штекера в гнезде. Без нажатия механической кнопки кабель не вытащить — это может спасти от сгоревшего порта.
Помимо основного разъема, существует также версия DisplayPort mini, которая применяется в ноутбуках и других компактных устройствах. Например, лэптопы от Apple имеют разъем Thunderbolt 2, который обратно совместим с DP mini.
Распиновка очень похожа на HDMI, только вместо 19 контактов компания VESA использовала 20.
Интерфейс включает в себя три канала передачи данных. Основной отвечает за передачу графической информации и включает 12 контактов. Дополнительный канал использует три контакта и является двунаправленным, обеспечивая связь передающего (ПК) и приемного устройства (монитор). Третий канал называется линией горячего подключения (Hot Plug Detect) и служит для определения момента включения и выключения дисплея, используя один контакт. Оставшиеся четыре контакта используются для питания (током 3,3 В при 500 мА) и заземления.
Какие бывают функции у DisplayPort
DisplayPort Dual-Mode (DP++) позволяет выдавать сигнал в режиме HDMI/DVI, используя лишь пассивный переходник. Устройство, которое поддерживает двойной режим, обнаруживает, что подключен адаптер DVI или HDMI и отправляет ему соответствующие сигналы вместо стандартных сигналов DisplayPort. На практике, этот режим поддерживают практически все современные девайсы. Однако есть ограничения по разрешению и частоте обновления экрана.
DisplayPort Alternate Mode дает возможность подключиться к устройству с разъемом USB Type-C. При использовании соответствующего кабеля можно подключить смартфон или планшет к монитору с разъемом DisplayPort.
Multi-Stream Transport (MST) позволяет последовательно подключить между собой несколько мониторов, при этом к компьютеру или ноутбуку идет только один кабель. Удобно, если вы хотите избавиться от вороха проводов на рабочем столе с двумя-тремя дисплеями.
Что лучше для геймера
Производители обычно кладут в комплект игровых мониторов именно кабель Display Port. Мы также рекомендуем этот интерфейс. У владельцев видеокарт от NVIDIA альтернативы нет — HDMI попросту не поддерживает технологию G-Sync. У геймеров AMD доступны недорогие мониторы FreeSync с HDMI. Но DP все равно является предпочтительным вариантом: легче найти дисплей, который сможет отображать 144 Гц через DisplayPort с FreeSync, тогда как многие производители обычно делают порты HDMI «для галочки» — подключенные к ним мониторы работают только с более низким разрешением или частотой обновления.
Разрешение 2560×1440 при частоте обновления 144 Гц отлично работает на DisplayPort 1.2 или выше, а также с HDMI 2.0 или выше. Все, что ниже, также будет без проблем работать с любым типом подключения. Если вы все-таки хотите подсоединить дисплей по HDMI, убедитесь, что он поддерживает необходимую вам версию.
Читайте также: