Анкерные устройства для арматуры
Анкеровка арматуры в бетоне. Таблица длины анкеровки и нахлеста арматуры в бетоне
Анкеровка арматуры – обязательное мероприятие при строительстве ответственных железобетонных конструкций. Оно заключается в заведении арматурного стержня в бетонную смесь на длину, которой будет достаточно для передачи нагрузок от арматурного стального стержня на бетонный камень без его разрушения. При воздействии растягивающих нагрузок на арматурную сталь стержень будет работать на вырывание из бетонного элемента, сжимающих – передавать усиленную нагрузку на бетон. Поэтому от правильного расчета длины анкеровки арматуры в массиве бетона зависит прочность строящегося объекта и его эксплуатационный период.
Описание
Предварительно напряженные железобетонные конструкции и другие аналогичные изделия отличаются тем, что натянутая до высоких показателей арматура включается в работу еще в процессе изготовления. В остальных случаях металлические детали воспринимают усилия от внешних воздействий. В предварительно напряженных изделиях активно используется анкеровка арматуры. Только в этом случае профессиональные строители могут обеспечить высокую степень надежности в течение всего эксплуатационного срока. В большинстве случаев самой эффективной считается та анкеровка, при которой можно минимизировать итоговую стоимость и трудоемкость работ.
Во время натяжения на упоры обязательно используется несколько разновидностей арматуры:
- прочная проволока периодического профиля;
- канаты из двух прядей;
- горячекатаная стержневая арматура периодического профиля, которая сегодня пользуется наибольшим спросом.
Показатели для расчета
Для максимально точного расчета длины анкеровки армирующих элементов во внимание принимают следующие данные:
- сечение арматуры;
- вид профиля;
- марку бетона;
- длину конструкции и глубину укладки армирующих элементов;
- метод заделки стержней;
- напряжение в месте сцепления.
Быстро произвести расчет величины позволяет таблица. В ее состав могу входить разные показатели. Подобные таблицы входят в состав программ для расчета анкеровки на ПК. Использование таких методик приемлемо для непрофессионального строительства. В профессиональной сфере так проводят предварительные расчеты. Окончательный показатель рассчитывают по формулам.
Для проведения расчетов с использованием формул необходимо иметь инженерное образование и опыт в сфере строительства. Начинающие строители могут:
- воспользоваться услугами профильных компаний;
- определить приблизительное значение при помощи таблиц, графиков и программ.
Учитывая тот факт, что от качественной анкеровки зависит окончательный результат строительства и прочность конструкции, рекомендовано заказывать расчеты в специализированных фирмах. Лучше оплатить работу специалистов, чем впустую потратить дорогие строительные материалы.
Характеристика
Профессиональная анкеровка арматуры в бетоне может осуществляться самыми разными способами. Сами специалисты выделяют несколько ключевых разновидностей:
- Применение различных петель, крюков и лапок.
- Прочные выступы арматурного профиля (исключительно прямые изделия).
- Использование вспомогательных стальных изделий, которые отличаются поперечным сечением.
- Универсальные приспособления, монтируемые исключительно на концах арматуры.
В независимости от длины анкеровки арматуры по СП, фиксация в бетоне прямых элементов может использоваться для строительной заготовки с периодическим профилем. Исполнителю таких работ необходимо понимать, что максимальные показатели сцепления железобетона и металла наблюдаются только в том случае, если на начальном этапе были достигнуты оптимальные прочностные показатели раствора. Надежность фиксации напрямую зависит и от того, есть ли в системе поперечное сжатие.
Анкеровка арматуры в плитах может похвастаться оптимальными показателями только в том случае, если в системе не предусмотрено поперечное сжатие. Крюки допустимы для тех строительных ситуаций,когда основная стальная заготовка абсолютно гладкая. Лапки монтируются исключительно на периодические по профилю стержни.
Черт.5.2 . Конструкция отгибов арматуры
Прямые участки отогнутых гладких стержней должны заканчиваться крюками.
Расстояние от грани свободной опоры до верхнего конца первого отгиба (считая от опоры) должно быть не более 50 мм.
Угол наклона отгибов к продольной оси элемента следует принимать в пределах 30 — 60°, рекомендуется принимать угол 45°.
5.23. Во внецентренно сжатых линейных элементах, а также в изгибаемых элементах при наличии необходимой по расчету сжатой продольной арматуры, с целью предотвращения выпучивания продольной арматуры следует устанавливать поперечную арматуру с шагом не более 15 d
и не более 500 мм (
d —
диаметр сжатой продольной арматуры).
Если насыщение сжатой продольной арматуры, устанавливаемой у одной из граней элемента, более 1,5%, поперечную арматуру следует устанавливать с шагом не более 10 d
и не более 300 мм.
Расстояния между хомутами внецентренно сжатых элементов в местах стыкования рабочей арматуры внахлестку без сварки должны составлять не более 10 d
5.24. Конструкция хомутов (поперечных стержней) во внецентренно сжатых линейных элементах должна быть такой, чтобы продольные стержни (по крайней мере через один) располагались в местах перегибов, а эти перегибы — на расстоянии не более 400 мм по ширине грани. При ширине грани не более 400 мм и числе продольных стержней у этой грани не более четырех допускается охват всех продольных стержней одним хомутом ( черт.5.3).
Черт.5.3 . Конструкция пространственных арматурных каркасов в сжатых элементах
5.25. В железобетонных стенах поперечные стержни, нормальные плоскости стены, располагаются на расстояниях по вертикали не более 20 d ,
а по горизонтали не более 600 мм. При этом, если требуемая по расчету продольная арматура имеет насыщение меньше минимального процента армирования (см. табл.5.2), поперечные стержни можно располагать на расстояниях по вертикали не более 600 мм, а по горизонтали не более 1000 мм.
При насыщении продольной арматуры железобетонных стен более 2% поперечные стержни должны располагаться на расстояниях по вертикали не более 15 d
и не более 500 мм, а по горизонтали не более 400 мм и не более 2-х шагов вертикальных стержней.
В этом пункте d —
диаметр вертикальных стержней.
5.26 . Поперечную арматуру в плитах в зоне продавливания в направлении, перпендикулярном сторонам расчетного контура, устанавливают с шагом не более ho
/3 и не далее 300 мм. Стержни, ближайшие к контуру грузовой площади, располагают не ближе
ho
/3и не далее
ho
/2от этого контура. При этом ширина зоны постановки поперечной арматуры (от контура грузовой площади) должна быть не менее 1,5
ho .
Расстояния между стержнями поперечной арматуры в направлении, параллельном сторонам расчетного контура, принимают не более 1/4 длины соответствующей стороны расчетного контура.
5.27 . Поперечная арматура в виде сварных сеток косвенного армирования при местном сжатии (смятии) должна удовлетворять следующим требованиям:
а) площади стержней сетки на единицу длины в одном и другом направлении не должны различаться более чем в 1,5 раза;
б) шаг сеток (расстояние между сетками в осях стержней одного направления) следует принимать не менее 60 и не более 150 мм;
в) размеры ячеек сеток в свету должны быть не менее 45 и не более 100 мм;
г) первая сетей располагается на расстоянии 15-20 мм от нагруженной поверхности элемента.
5.28. Поперечная арматура, предусмотренная для восприятия поперечных сил и крутящих моментов, должна иметь замкнутый контур с надежной анкеровкой по концам путем приварки или охвата продольной арматуры, обеспечивающую равнопрочность соединений и поперечной арматуры.
АНКЕРОВКА АРМАТУРЫ
5.29. Анкеровку арматуры осуществляют одним из следующих способов или их сочетанием:
— в виде прямого окончания стержня (прямая анкеровка);
— с загибом на конце стержня в виде крюка, отгиба (лапки) или петли;
— с приваркой или установкой поперечных стержней;
— с применением специальных анкерных устройств на конце стержня.
5.30 . Прямую анкеровку и анкеровку с лапками допускается применять только для арматуры периодического профиля. Для растянутых гладких стержней следует предусматривать крюки, петли, приваренные поперечные стержни или специальные анкерные устройства.
Лапки, крюки и петли не рекомендуется применять для анкеровки сжатой арматуры, за исключением гладкой арматуры, которая может подвергаться растяжению при некоторых возможных сочетаниях нагрузки.
5.31. При расчете длины анкеровки арматуры следует учитывать способ анкеровки, класс арматуры и ее профиль, диаметр арматуры, прочность бетона и его напряженное состояние в зоне анкеровки, конструктивное решение элемента в зоне анкеровки (наличие поперечной арматуры, положение стержней в сечении элемента и др.).
5.32 . Базовую (основную) длину анкеровки, необходимую для передачи усилия в арматуре с полным расчетным значением сопротивления Rs
на бетон, определяют по формуле
и
us —
соответственно площадь поперечного сечения анкеруемого стержня арматуры и периметр его сечения, определяемые по номинальному диаметру стержня;
— расчетное сопротивление сцепления арматуры с бетоном, принимаемое равномерно распределенным по длине анкеровки и определяемое по формуле
1- коэффициент, учитывающий влияние видаповерхности арматуры, принимаемый равным:
1,5 — для гладкой арматуры (класса А240);
2,0 — холоднодеформируемой арматуры периодического профиля (класса В500)
2,5 — для горячекатаной и термомеханически упрочненной арматуры периодического профиля (классов A 300, А400 и А500);
2
—
коэффициент, учитывающий влияние размера диаметра арматуры, принимаемый равным:
1,0 — при диаметре арматуры ds
0,9 — при диаметре арматуры 36 и 40 мм.
5.33. Требуемую расчетную длину анкеровки арматуры с учетом конструктивного решения элемента в зоне анкеровки определяют по формуле
где lo , an —
базовая длина анкеровки, определяемая по формуле ( 5.1);
As , cal , As , ef —
площади поперечного сечения арматуры соответственно, требуемая по расчету с полным расчетным сопротивлением и фактически установленная;
коэффициент, учитывающий влияние на длину анкеровки напряженного состояния бетона и арматуры и конструктивного решения элемента в зоне анкеровки.
При анкеровке стержней периодического профиля с прямыми концами (прямая анкеровка) или гладкой арматуры с крюками или петлями без дополнительных анкерующих устройств для растянутых стержней принимают, а
= 1,0 , а для сжатых —
а
= 0,75 .
Допускается уменьшать длину анкеровки в зависимости от количества и диаметра поперечной арматуры, и величины поперечного обжатия бетона в зоне анкеровки (например, от опорной реакции), в соответствии с указаниями п.3.45 .
Значения относительной длины анкеровки λan = lan
/
ds
для стержней, работающих с полным расчетным сопротивлением диаметром менее 36 мм, приведены в табл.3.3 п.3.45 .
В любом случае фактическую длину анкеровки принимают не менее 0,3· lo , an
, а также не менее 15
ds
и 200 мм.
5.34.Усилие, воспринимаемое анкеруемым стержнем арматуры Ns
определяют по формуле
определяется согласно п. 5.33 при
As , cal
/
As , ef
=1,0;
s — расстояние от конца анкеруемого стержня до рассматриваемого поперечного сечения элемента.
5.35 . На крайних свободных опорах элементов длина запуска растянутых стержней за внутреннюю грань свободной опоры при выполнении условия Q ≤ 0
,5
Rbtbho
должна составлять не менее 5
ds .
Если указанное условие не соблюдается, длину запуска арматуры за грань опоры проверяют расчетом согласно пп.3.43 — п.3.46 .
5.36 . При невозможности выполнения требований п. 5.33 должны быть приняты специальные меры по анкеровке продольных стержней:
а) устройство на концах специальных анкеров в виде пластин, шайб, гаек, уголков, высаженных головок и т. п. ( черт.5.4). В этом случае площадь контакта анкера с бетоном должна удовлетворять условию прочности бетона на смятие (см. п.3.81 ), а толщина анкерующей пластины должна быть не менее 1/5 всей ширины (диаметра) и удовлетворять условиям сварки; длина заделки стержня должна определяться расчетом на выкалывание и приниматься не менее 10 ds
б) отгиб анкеруемого стержня на 90° по дуге круга радиусом в свету не менее 10 ds
(1 –
l
1 /
lan
) [где
l
1 — длина прямого участка у начала заделки ( черт.5.5)], и не менее значений, приведенных в п.5.41; на отогнутом участке ставятся дополнительные хомуты против разгибания стержней;
в) приварка на длине заделки ls
, поперечных анкерируюших стержней; в этом случае длина анкеровки
lan
определенная согласно п.5.32, уменьшается на длину [где
Nw
-см.формулу ( 3.75) п.3.45], но более чем на 0,43
ls
; если Δ
l
≥ 150 мм, гладкие стержни могут выполняться без крюков, при этом значение
lan
не уменьшается.
Параметры изделий
Для расчета анкеровки эксперты используют целый ряд обязательных показателей. В противном случае будет сложно добиться желаемого результата. Основным рабочим параметром является длина анкеровки арматуры в бетоне. Все нюансы определяются с особой тщательностью. Итоговая длина заделки устанавливается проектировщиками с максимальной тщательностью. Для этих целей могут использоваться специальные графики. Эксперты учли класс арматуры, а также итоговое напряжение в прутке.
Анкеровка продольного стержня с помощью специальных устройств
— бетон;
2
— анкеруемый стержень;
3
— круглая или квадратная, стальная шайба;
4
— сварка;
5
— обжатие;
6
— высаженная головка;
7
— стальной уголок;
8
— резьба
Смещение стержней арматуры при соединении без сварки
Смещение стержней арматуры при соединении без сварки
Соседние соединения арматуры по длине должны быть разнесены в разбежку так, чтобы в одном сечении одновременно соединялось не более 50% арматуры. В качестве одного расчетного сечения элемента, рассматриваемого для определения относительного количества стыкуемой арматуры в одном сечении, принимают участок вдоль стыкуемой арматуры длиной 130% длины нахлеста стержней. Считается, что стыки арматуры расположены в одном расчетном сечении, если центры этих стыков находятся в пределах этого участка [раздел 6.1 пособия по проектированию «Армирование элементов монолитных железобетонных зданий» (Москва 2009)]
Длина анкеровки зависит от профиля и диаметра стержня, напряженного состояния бетона в зоне анкеровки (сжатие/растяжение), наличия поперечной арматуры в зоне анкеровки, фактического напряжения в стержне относительно его максимального значения и других конструктивных факторов.
Используемые устройства
Для классической стержневой арматуры, изготовленной из горячекатаной стали, чаще всего применяются анкеры в виде коротышей, приваренных шайб, нарезных наконечников (классические гайки), закладных деталей. Каждая деталь отличается своими техническими характеристиками. Если анкерное изделие располагается под небольшим углом, тогда нужно предусмотреть незначительное углубление в бетоне. Выступы будут целесообразны в том случае, если общая конструкция не имеет ограничений по соседним элементам и технологическому оборудованию. Если все эти особенности присутствуют, тогда следует использовать углубления.
Когда анкеровка арматуры расположена над поверхностью бетона, изделие может быть подвержено негативному воздействию коррозии. Для предотвращения негативных последствий и преждевременного разрушения конструкции металлическую сетку обязательно покрывают слоем бетона.
Классификация арматурных элементов
Способы анкеровки могут быть различными, так же как и применяемая в строительстве арматура. Назвать классификацию данного вида изделий обширной нельзя. Применяется несколько видов классификации. В зависимости от условий, в которых будет эксплуатироваться изделие, различают:
Если рассматривать изделие с точки зрения его прямого назначения, применяют следующую классификацию:
- анкерная (речь в данном случае идёт о закладных деталях);
- распределительная;
- рабочая;
- монтажная.
Ещё одним видом классификации является рассмотрение ориентации изделия в конструкции. Тут выделяют:
При этом целью продольной является препятствование образованию вертикальных трещин в наиболее растянутой зоне конструкций, а поперечная не даёт образовываться наклонным трещинам, которые характерны при скалывающих напряжений, которые возникают вблизи опор. Все это при условии, что хороший бетон. Читайте более подробно, о том, как его улучшить.
Правильный расчет
Чтобы выполнить анкеровку арматуры в плитах из бетона, нужно учитывать все строительные нюансы. Расчет операции заделки стальных изделий осваивается на изучении следующих показателей:
- Максимальная прочность железобетона.
- Показатель напряжения на участке сцепления.
- Разновидность анкеровки.
- Профиль используемой арматуры.
- Глубина и длина закладки стальных деталей.
- Сечение стержней.
Упрощенный способ расчета важных показателей (длина, глубина) позволяет мастерам выполнить качественно все строительные работы в максимально сжатые сроки. Для этих целей можно задействовать специальную таблицу, которая включает в себя различные показатели. Изучить все необходимые данные можно при помощи компьютерной программы. Если внести все данные, то в итоге можно получить комплексный расчет анкеровки.
Способы анкеровки
Закрепить арматуру в железобетоне можно несколькими способами. Выделяют следующие виды закрепления:
- с использованием приспособлений, устанавливаемых на края армирующих элементов;
- монтаж арматуры в виде выступов для прямых конструкций;
- с применением поперечных элементов из металла;
- методом установки специальных петель, лапок или крюков.
Только для армирующих изделий с периодическим профилем предусмотрено закрепление прямых составляющих. Повышая прочность бетона, реально значительно увеличить сцепление бетонирующей смеси с анкеровкой. На качество закрепления также повлияет наличие или отсутствие поперечного сжатия. Согласно технологии использование специальных крюков разрешено исключительно для арматуры с гладкой поверхностью. Лапки применяют для армирующих элементов с периодическим профилем.
В случаях, когда для анкеровки выбирают строительные петли, важно соблюдать равенство величины растягивания обоих концов. Пренебрежение этим правилом приведет к значительному снижению сцепления элементов. Если нужна повышенная прочность конструкции, которую не могут обеспечить приведенные выше способы, применяют приспособления для отдельных арматурных стержней и усиливают закрепление методом приваривания поперечных элементов. Для этого берут прутья 6 мм в сечении, используют 2-4 поперечных элемента.
Стержни и сердечники
Эксперты привыкли выполнять анкеровку тех пучков, которые состоят из 12, 18 и 24 проволок. Итоговая технология напрямую зависит от степени натяжения арматуры на упоры или же бетон. Если строители используют гидравлические домкраты двойного действия, тогда уместно будут смотреться устройства в виде стальных пробок и колодок, разработанные на базе НИИЖБ.
В процессе изготовления клиньев и пробок, эксперты прибегают к термической обработке материала, так как это позволяет в несколько раз повысить твердость стали. Современное производство гильзостержневых и гильзовых анкеров основано на применении пучков, канатов, прядей. Эксперты предъявляют повышенное требование к физико-механическим свойствам стали. Для стержней и сердечников производители используют более прочный материал, за счет чего нет необходимости изготавливать объемные изделия.
Назначение арматуры
В нормальных эксплуатационных условиях ленты и плиты испытывают в верхней части характерное сжатие. Прочностные показатели бетона в 50 раз превосходят прочность растяжения. Анкерное армирование подошвы стальными прутками позволяет избежать разрушения фундамента и последующего раскрытия трещин. За счет этого конструкция способна выдержать гораздо большие нагрузки растяжения. При зимнем вспучивании ситуация кардинально меняется. Грунт стремится вытолкнуть фундамент на поверхность. Если глинистые почвы перенасыщены водой, то во время промерзания они увеличиваются в объеме. Меняется итоговое направление сил (сжатие у подошвы, растяжение в цокольной части).
Арматура, болты, вклеиваемые в бетон. HILTI или что-то другое?
хим анкер хилти - таже эпоксидка, только с добавками и подороже х10.
применение вклеек (любых) - путь обмана: прочность такого соединения при t=500(град.С) = 0. Т.е. огнестойкость такой конструкции не превысит REI15. Вот и делайте выводы: где можно, а где нельзя применять.
сам использую только в фундаментах, да в декоративных элементах.
Доброта спасет мир.
хим анкер хилти - таже эпоксидка, только с добавками и подороже х10. |
Я верю тому что вижу, но не вижу то во что верю.
Из Советских видел только ГОСТ 24379.1-80 и Пособие
по проектированию анкерных болтов для крепления строительных конструкций и оборудования
часто сверлю, потом затыкаю
Русский СевастопольКакая эпоксидка. Какие к черту Хилти! Все это туфта. Так же, как распорные анкера , запрещаемые совершенно обоснованно.
Правильно упомянули про саморасширяющийся цемент, но это лишнее, тем более, что на самом деле этот цемент в лучшем случае имеет нулевую усадуку -- я с этими производителями сволочами имел дело. Сам провел исследования,
все измерил звоню теххнологу - она чуть не об..ралась - а кроме Вас ни кто не проверяет наш цемент.
Да, говорит, Вы все правильно меряли. Даже марка 300. вместо заявленной 600.
Короче, послал я ее и их завод по известному адресу.
Анкеровку можно делать и нужно обычным цементом. Сверлите отверстие на глубину анкеровки диаметром от 32 мм,
не меньше. Вставляете прут арматурный и заполняете зазор не раствором!! , а бетоном на сеяной щебенке, так, чтоб
камешки вщель проходили. Отверстие надо пропылесосить и вымыть. Я обрывал 14 - ю арматуру А3 при анкеровке в ФБСку на глубину 600 мм. А вот как заполнить зазор - сами догадайтесь. Все в это упирается.
И забудьте Вы про эти Хилти недоделанные. Хилти - это просто стрижка бабла на лохах-проектантах, тратящих не свои деньги. Обычная эпоксидка, продаваемая по космической цене.Нельзя строить на органических компонентах - они плывут, непрогнозируемы свойства, адгезия и совершенно нетермостойки.
Последний раз редактировалось Brasero, 30.03.2012 в 15:05 .Какая эпоксидка. Какие к черту Хилти! Все это туфта. |
Т.е. когда производитель оборудования (например GE, Siemens и др) сам регламентирует применение хим. анкеров для установки своих конструкций - это по вашему туфта?
Вставляете прут арматурный и заполняете зазор не раствором!! , а бетоном на сеяной щебенке, так, чтоб камешки вщель проходили. |
По поводу бетона и сита, не надо изобретать велосипед, есть безхлоридные составы для заливки анкеров (ЕМАСO S55 (MASTERFLOW 928), Pagel и д.р.).
Да это все стоит денег, но это проверено и они (официальные поставщики) гарантируют заявленные качества.
Анкерные устройства для арматуры
Одной из важных особенностей предварительно напряженных железобетонных конструкций и изделий является то, что натягиваемая до высоких напряжений арматура включается в работу уже в процессе их изготовления, а в конструкциях, не подвергаемых предварительному напряжению, рабочая арматура начинает воспринимать в основном усилия от внешних воздействий и собственного веса конструкций. В предварительно напряженных конструкциях напрягаемая арматура может применяться как с анкерами на концах, так и без анкеров. Анкеры являются обязательными при натяжении арматуры на бетон, а при натяжении, на упоры-лишь в тех случаях, когда сцепление арматуры с бетоном оказывается недостаточным или возникает опасность раскалывания (расклинивания) бетона торцовой части конструкции в процессе его обжатия усилиями напрягаемой арматуры. Анкерные устройства должны обеспечивать надежную заделку арматуры в бетоне элемента на всех стадиях его работы под нагрузкой, включая предельную стадию. В большинстве случаев наиболее эффективной должна признаваться такая анкеровка, при которой достигаются наименьшая стоимость и трудоемкость работ по ее обеспечению.
При натяжении на упоры применяют следующие виды арматуры, используемой без устройства специальных анкеров: высокопрочная проволока периодического профиля, двух-, трех-, семи и девятнадцати-проволочные пряди и двух-прядные канаты, а также горячекатаная стержневая арматура периодического профиля до класса A-IV включительно, получившая в настоящее время наибольшее применение.
Анкерные устройства
Для стержневой арматуры из горячекатаной стали применяют анкеры в виде приваренных шайб, коротышей, закладных деталей, нарезных наконечников в виде гаек на нарезных концах стержней.
В случае расположения анкерных устройств под некоторым углом к поверхности элемента следует предусматривать устройство выступов или углублений в бетоне. Выступы (приливы) целесообразно применять для конструкций, не стесненных соседними элементами и технологическим оборудованием, располагаемым на конструкции. Углубления применяют при стесненных габаритах конструкции на опорах элемента или при малых зазорах между торцами смежных элементов, а также при необходимости скрытого расположения стальных деталей анкера.
Анкерные устройства, располагаемые на поверхности бетона, могут подвергаться коррозии, воздействию повышенных температур или механическим воздействиям. Для защиты анкеров от этих воздействий их покрывают слоем бетона или раствора. При предохранении анкеров только от коррозии можно применять специальные защитные антикоррозийные покрытия.
Толщину дополнительно наносимого слоя бетона или раствора принимают не менее толщины защитного слоя бетона, предусмотренного для рабочей арматуры.
Применение анкерных устройств, особенно
Отличительная особенность анкеров
Для изготовления гильз, наоборот, используют мягкую сталь, обладающую высокими пластическими свойствами, но невысокой прочностью (сталь группы марок Ст. 3 и т. п.). Это обеспечивает хорошее заполнение зазоров между отдельными проволоками пучков, прядей или тросов при запрессовке гильз протяжкой под давлением.
При натяжении пучков с анкерами конструкции б. НИИ по строительству Минстроя РСФСР гидравлическими домкратами одиночного действия их закрепляют гайками, расположенными на стержне с нарезкой либо на верхней поверхности обжимной гильзы. При гильзовом анкере резьбу нарезают после запрессовки гильзы, что менее удобно, чем при применении гильзостержневого анкера.
Отличительная особенность анкеров рассмотренных типов состоит в том, что при применении гильзовых и гильзостержневых анкеров требуются каналы большего диаметра, чем при применении анкеров в виде стальных колодок и пробок.
В необходимых случаях при ограниченных размерах сечения конструкции и затруднении расположения каналов большего диаметра можно применять на одном конце пучка гильзостержневой или гильзовый анкер, а на другом - анкер из колодки с пробкой. В этом случае пучок вводят в канал до установки колодочного анкера, а натяжение пучка производят домкратом одинарного действия со стороны гильзостержневого (гильзового) анкера после запрессовки пробки в колодку анкера.
Сердечники и стержни анкеров
Анкеровку пучков из 12, 18 и 24 проволок выполняют различными способами в зависимости от натяжения арматуры на бетон или на упоры. При натяжении пучков на бетон гидравлическими домкратами двойного действия широкое распространение получили анкерные устройства в виде стальных колодок и пробок, разработанных в НИИЖБ. Размеры анкерных колодок и пробок определяются числом и диаметром заанкериваемых проволок, величиной усилий натяжения и другими условиями. В отечественной строительной практике для изготовления стальных анкерных устройств и деталей: колодок, гильз, шайб, клиньев, пробок и т. п. - обычно применяют стали марок и других подобных им марок стали.
При изготовлении пробок и клиньев для повышения твердости стали производят их предварительную термическую обработку или цементацию, которые выполняют по специальным техническим условиям.
При изготовлении гильзовых и гильзостержневых анкеров, используемых для анкеровки пучков, прядей и канатов, обычно предъявляют различные требования к физико-механическим свойствам стали деталей анкера. Сердечники и стержни анкеров указанного типа выполняют из более прочных сталей, позволяющих в необходимых случаях обходиться их минимальными размерами; в частности, при большом числе напрягаемых элементов можно компактно расположить анкеры на торце конструкции.
Анкерные устройства для арматуры
Анкеры необходимы для арматуры, натягиваемой на затвердевший бетон, но они могут быть нужны и при натяжении арматуры на упоры при недостаточном сцеплении ее (гладкой) с бетоном.
Анкеры должны обеспечить надежную передачу бетону усилий от натянутой арматуры. При этом у места расположения анкеров бетон обычно усиливают косвенной арматурой (сетками, частыми хомутами, спиральной арматурой), для того чтобы он мог воспринимать местные усилия, передаваемые анкерами.
Анкерные устройства стержневой арматуры
а — приваренные коротыши; б — шайба; в — гайка; г — гайка и анкерная плита; д — улучшенная анкеровка; 1 — анкерная плита; 2 и 4 — шайба (анкерная); 3 и 5 — гайки; 6 — колпак; 7 — трубка для нагнетания в канал цементного раствора
Для стержневой арматуры, допускающей сварку, анкеры можно устраивать в виде приваренных коротышей, шайб или гаек (рис.1, а г). Улучшенная анкеровка этого типа показана на рис. 1, д, где поверх анкерной шайбы, в которую упирается гайка, укреплен накладной колпак, образующий герметическую камеру для нагнетания цементного раствора одобная анкеровка допускает регулирование натяжения путем подтягивания гайки. Для натяжения таких стержней пригодны домкраты винтового типа.
Для гладкой арматуры из высокопрочной проволоки (диаметром до 5—7 мм), допускающей сварки, применяются следующие анкерные устройства:
а) анкер в виде колец С. А. Дмитриева рис. 2, а); стержень изгибается в виде лучины, на которую надевается сварное и штампованное овальное кольцо, и в образовавшееся отверстие продевается анкерный стержень; этот тип анкера очень прост в изготовлении;
б) анкеровка при помощи трубок , применяемая при непрерывном армировании.
В крупных элементах больших пролетов для армирования требуется весьма большое количество проволоки, что осложнило бы сборку и натяжение арматуры; ля таких элементов высокопрочная проволока диаметром 5—7 мм используется в виде пучков, включающих от 8 до 60 штук в зависимости от мощности элемента и требуемой площади сечения арматуры
Анкеры для арматуры из высокопрочной стали
Для образования мощного пучка на сердечник в виде спирали из проволоки иаметром 1,8—2,2 мм укладываются параллельные проволоки (15 ф 7 мм), поверх которых наматывается также спираль из вязальной проволоки с шагом 5—-6 см; если необходимо, поверх спирали также укладывается второй ряд параллельных проволок, и опять навивается спираль; можно уложить и третий ряд с последней спиралью диаметром 2 мм (рис. 3). Для лучшего сцепления с инъецированным раствором проволоки в каждом ряду рекомендуется располагать с зазором в 1 мм и больше.
Пучки, укладываемые в конструкцию, должны быть предохранены от сцепления с бетоном до их натяжения; это достигается заключением арматурного пучка в трубку (кожух) из кровельной стали толщиной 0,4 мм или в специально изготовленные гофрированные трубки последние обладают большей жесткостью и лучшей связью с бетоном.
Вместо трубок, оставляемых в бетоне, находят применение резиновые шланги и стальные цельнотянутые трубы, извлекаемые вскоре после бетонирования.
Диаметр каналов должен быть на 10—15 мм больше диаметра пучка.
Для заанкеривания пучков часто применяют способ, предложенным Фрейссине: концы проволок арматурного пучка выпускаются из балку наружу через конусообразное отверстие анкерной колодки после натяжения проволок при помощи домкрата двойного действия, заанкеривание пучка достигается запрессовкой под сильным давлением в отверстие анкерной колодки железобетонного конуса (пробки), имеют спиральную обмотку и отверстие для нагнетания в канал цементного раствора При этом способе анкеровки пучки также состоят из параллельных проволок, укладываемых в один ряд вокруг сердцевины, имеющей вид спир и заключаются в трубку из жести толщиной 0,2 мм.
Возникающие при натяжении пучка высокие местные сжимающие пряжения в бетоне локализуются путем установки спирали из мягкой проволоки диаметром 5 мм, которая располагается в непосредственной близости от торца конструкции на длине 30—60 см; вместо спирали может быть тавлено несколько (3—5) сеток.
Этот простой и достаточно экономичный способ анкеровки вошел в практику изготовления большепролетных балок в промышленном и гражданском строительстве.
Сечения мощных пучков
a — из проволок, расположенных по концентрическим окружностям; 6 — из 7 проволочных пучков; 1 — сердечник в виде проволочной спирали; 2 — высокопрочная проволока; 3 — вязальная проволока d= 1,6 мм; 4 — полость, заполняемая цементным раствором; 5 — тело конструкции; 6 — трубка из кровельной стали, б = 0,4 мм
Успешно применяется и другой способ натяжения и анкеровки пучков
при помощи домкратов одиночного действия; пучки (из 14, 18 или 24 проволок) оканчиваются отрезками с нарезкой, что позволяет производить анкеровку гайками, как обычной стержневой арматуры. Пучок соединяется с концом стержня при помощи специальной гильзы. Внутрь пучка вдвигают б. Изготовление таких пучков целесообразно производить централизованно.
Зажим (анкер) для пучка с концевым стержнем и способ его натяжения
1 — обжимное кольцо; 2 — гильза; 3 — стержень; 4 — пучок; 5 — спираль; 6 — канал для пучка; 7 — пружина для обратной подачи поршня; 8 — шток поршня; 9 — патрубок для подави масла; 10 — гайка с шайбой для анкеровки; 11 — цилиндр домкрата; 12 — поршень; 13 соединительная муфта; 14 упор домкрата на торец железобетонного элемента
Как показал опыт, концевой стержень этого анкера после механической наработки, получив закалку, становится хрупким, и были случаи его разрушения. Для обеспечения стержня от разэушения предложено (М. К. Бородич и др.) изготовлять концевой стержень без термической обработки, но снабжать его спиралью из высокопрочной проволоки (рис. 4, в). Опрессовка такого анкера производится обычным способом, при чем гильза при обжимании уменьшается в диаметре и с силой давит нa проволоки пучка, которые изгибаются между витками спирали и взаимно вминаются; в свою очередь и спираль вдавливается в тонкий конец стержня.
В результате всех этих деформаций исключается проскальзывание рабочих проволок в анкере.
Применяемые при натяжении пучков домкраты одиночного действия представляют собой цилиндр с поршнем, шток которого скрепляется посредством соединительной муфты с анкером пучка. При нагнетании электро-насосом масла под поршень происходит его перемещение и натяжение лучка. Реактивное давление в виде сжимающей силы от цилиндра домкрата передается через специальный упор на торец железобетонного элемента (рис. 4, г).
При всех способах анкеровки по окончании натяжения пучка производится нагнетание в канал цементного раствора при помощи насоса давлением до 6 am. Полноценная инъекция канала необходима как для создания сцепления между арматурой и бетоном, так и для защиты ее от коррозии. Рекомендуются следующие составы инъекционных растворов (по весу) 1 : 0,35 - 0,4 (цемент: вода); 1 : 0,25 : 0,4 (цемент : мелкий песок : вода). Цемент должен применяться по возможности пластифицированный (ССБ 0,0015), зимой — преимущественно глиноземистый.
При незаполненных или плохо заполненных каналах наблюдалось разрушение проволок в результате коррозии. Это ведет к уменьшению долговечности конструкции.
Кроме механических способов, существует так называемый электротермический метод натяжения арматуры, основанный на использовании удлинения стали при нагреве. Арматура нагревается обычно вне формы до требуемой температуры и, будучи уложена в таком состоянии в формы до бетонирования, при остывании передает усилия на упоры; иногда нагревание арматуры производится в самих формах. Наибольшая температура нагрева, как правило, не должна превышать для стержневой арматуры 350°, для высокопрочной проволоки — 300° С.
Анкерные устройства для арматуры
Toggle navigationКАЧЕСТВЕННО
БЫСТРО
SEO оптимизация
адаптивная верстка
Ремонт в регионах
Виды арматуры для строительстваСтальные стержни, закладываемые в железобетонных элементах, называются его арматурой, последняя располагается главным образом в растянутой зоне конструкций - более редко усиливается сжатая зона.
Несущая арматура применяется главным образом при строительстве высотных зданий и сооружений (она позволяет обходиться без лесов).
Различают два вида несущей арматуры:
- из жесткой арматуры в виде фасонных профилей (двутавры, швеллеры)
- из пространственных сварных каркасов в виде решетчатых ферм из мелкого фасонного проката и гибкой арматуры
В железобетонных конструкциях применяется четыре типа арматуры:
- рабочая,
- монтажная,
- распределительная,
- поперечная.
Рабочая арматура в плитах и балках располагается вдоль пролета и воспринимает растягивающие, а в некоторых случаях сжимающие усилия; в балках эта арматура иногда располагается наклонно, так как воспринимает возникающие усилия по наклонным сечениям. Рабочая арматура колонн и стоек работает совместно с бетоном на сжатие и устанавливается вдоль конструкций.
Монтажные стержни выполняют вспомогательные функции, поддерживая или связывая рабочую арматуру, позволяют создать пространственные вязаные или сварные каркасы, воспринимают усадочные и температурные напряжения и т. п.
Распределительная арматура ставится в плитах, выполняя одновременно функции монтажной арматуры и способствуя пространственной работе плиты, а также воспринятою усадочных и температурных напряжений.
Поперечная арматура в балках и колоннах выполняется в виде хомутов в вязаных каркасах или отдельных стержней при сварных каркасах. В балках поперечная арматура работает на восприятие усилий по наклонным сечениям.
Механические свойства арматурной стали
Для арматуры железобетонных конструкций применяются стали классов А-I, А-II, А-III (сталь A-IV применяется главным образом для предварительно напряженных железобетонных конструкций).
Наиболее важной характеристикой для арматурной стали железобетонных конструкций является предел текучести; в случае его достижения нарушается бетона с арматурой в результате чего в бетоне появ ляются трещины значительной ширины, что недопустимо.
Диаграмма растяжения мягкой стали
На диаграмма деформаций стали при растяжений с четырьмя характерными точками: а предел упругости (пропорциональности), выше которого нарушается пропорциональное нарастание напряжения; b предел текучести, при достижении которого изменение деформаций происходит без изменения напряжений; эти деформации достигают 1—2% измеряемой длины; с начало зоны упрочнения стали, так как, пройдя площадку текучести, материал вновь приобретает способность наращивать напряжения с ростом деформаций; d предел прочности;
по ее достижении образуется шейка и происходит разрыв стержня.
Чем тверже сталь, тем ее площадка текучести меньше, и наоборот — площадка больше, чем мягче сталь. При растяжении стержня выше предела текучести (до точки k) с последующим снятием нагрузки получается остаточная деформация оl и при повторных загружениях работа происходит по упругой стадии (линия Ik).
Таким образом, при обработке стали с вытяжкой ее выше предела текучести восстанавливается пропорциональность до более высокого нового предела текучести в точке k, a при старении металла& подымается даже до точки k. Это явление называется наклепом, получаемым при специальной силовой обработке стали путем ее вытяжки. Такой силовой обработкой широко пользуются в практике строительства, предварительно вытягивая стальные стержни арматуры на 3,5%—5,5%; в результате ее предел текучести возрастает, и получается упрочненная арматура.
По принятому в настоящее время методу расчета за нормативное сопротивление арматурной стали Ra n принимается контролируемый браковочный минимум предела текучести, установленныйдлястали класса A-I («сталь 3») — 2400, для стали А-II (Ст. 5) — 3000, для стали A-III (25Г2С) — 4000 и для стали A-IV— 6000 кг/см2.
Упругие свойства арматурной стали в зоне пропорциональности характеризуются модулем упругости Ея, величина которого принимается для сталей классов A-I и А-II Eа = 2,1 • 10 в 6 степени кг/см2, а для сталей классов A-III и A-IV Eа = 2 • 10е кг/см2.
Рис. 1. Горячекатаная сталь периодического профиля
клаеса А-II (Ст. 5); б — класса A-III (25Г2С); в — холодносплющенная; 1 — развернутая боковая поверхность; 2 — деталь винтового выступа
Для железобетонных конструкций применяется арматура из отдельных стержней, сварных сеток, плоских сварных каркасов (решеток) ив виде несущей конструкции.
Арматура из отдельных гибких стержней выполняется из круглой гладкой стали, диаметром от 6 до 40 мм, а также из горячекатаной стали периодического профиля , т. е. из круглых стержней с выступающими ребрами для повышенного сцепления с бетоном. Такая арматура прокатывается из,сталей классов А-II, A-III и A-IV (ГОСТ 5781—61).
Для армирования плит широко применяют сварные сетки (ГОСТ 8478—57) холоднотянутой арматурной проволоки и из горячекатаной арматурной стали периодического профиля класса A-III. Стержни сеток диаметром 3—9 мм в местах их пересечения соединяются между собой посредством точечно контактной электросварки.
Сетки имеются двух типов рулонные и плоские весом от 100 до 300, В сетках рабочая арматура располагается в продольном, поперечном или обоих направлениях.
Рулонные сетки изготавливаются шириной до 3, а плоские — до 2,65 м Сварные плоские каркасы применяются в элементах сборных и монолитных железобетонных конструкций (балках, ригелях и колоннах).
Плоские каркасы изготавливаются в виде решеток нужной длины и состоят из продольных рабочих и монтажных стержней и поперечных стержней, располагаемых с определенным шагом.
Несущая арматура применяется главным образом при строительстве высотных зданий и сооружений (она позволяет обходиться без лесов).
Различают два вида несущей арматуры: из жесткой арматуры в виде фасонных профилей (двутавры, швеллеры) и из пространственных сварных каркасов в виде решетчатых ферм из мелкого фасонного проката и гибкой арматуры.
Читайте также: