2 50 ггц сколько это
Центральный процессор (ЦП) – базовый элемент компьютера, выполненный в виде электронного блока или интегральной схемы (так называемый микропроцессор). В англоязычных источниках его часто называют CPU (Central Processing Unit). Задача ЦП – исполнение заданных команд (программного кода), обработка информации, а также осуществление управления всеми интегрированными в компьютер и подключаемыми модулями.
От мощности ЦП зависит быстродействие компьютера.
Главные характеристики процессора:
Тактовая частота – количество операций, которое ЦП может осуществить за 1 секунду. Именно она определяет быстродействие процессора.
Разрядность – объем информации в битах, которое процессор обрабатывает за каждый такт. Современные производители собирают 64-х разрядные процессоры.
Процессоры Intel
Ведущую позицию по изготовлению процессоров занимает компания Intel. Она производит ЦП трех типов.
1. Celeron – сравнительно недорогой процессор, с невысокой производительностью. Его создали в качестве «бюджетного брата» более мощных ЦП.
2. Atom – микропроцессоры с низким энергопотреблением. Созданы для мобильных устройств: планшетников, смартфонов, нетбуков.
3. Core i – ЦП, применяемые всеми производителями компьютеров и ноутбуков. Они интегрированы в большинство компьютеров архитектур IBM и Mac. Выпускают процессоры:
Core i3 (самые слабые из семейства; имеют 2 физических ядра и тактовую частоту от 2,93 до 3,8 ГГц);
Core i5 (более мощные ЦП, с 4-мя физическими ядрами; тактовая частота ЦП i5 до 3,5 ГГц, кроме 2-х ядерного i5-661 с тактовой частотой 3,33 ГГц);
Core i7 (4-х ядерные процессоры; тактовая частота процессоров этого семейства от 2,8 ГГц до 5 МГц).
Процессоры AMD
Вторым по объему продаж процессоров является компания AMD (Advanced Micro Devices). Они зарекомендовали себя на рынке микропроцессоров как недорогие, но мощные - компания AMD является основным конкурентов Intel.
На сегодняшний день основными линейками процессоров AMD являются:
- бюджетная серия E (модели E1 c 2 ядрами и E2 с 4 ядрами);
- APU - серия со встроенным графическим ядром (модели A4,A6 c 2-мя ядрами; A8,A10 c 4-мя ядрами);
- Athlon - собственно те же APU, только с отключенным видеоядром и по меньшей стоимости (модель X4 с четырьмя ядрами, X8 соответственно с восьмью);
- FX - серия наиболее мощных моделей процессоров, все они имеют по 8 ядер.
Третий известный производитель 32-х и 64-х разрядных процессоров ARM Limited. Процессоры ARM применяются в большинстве мобильных устройствах, как самостоятельно, так и в сочетании с другими процессорами. В компьютерах ARM устанавливают редко. Планы по созданию поколения ноутбуков на базе ARM есть у разработчиков Apple, но пока ноутбуки и стационарные компьютеры Mac содержат Core i5 и i7.
При покупке компьютера или иного устройства информацию о технических характеристиках (начинке компьютера) можно найти в прилагаемом руководстве. На ноутбуках часто присутствует множество наклеек, на которых указан тип центрального процессора, модель графической карты, параметры дисплея и операционной системы.
Таблица мощности процессоров (сравнение)
Тест PassMark (больше- лучше)
Соотношение цена / качество (производи-тельность)
процессора (больше- лучше)
Высокая частота или большое количество ядер - извечный вопрос, мучающий пользователей при сборке игрового или рабочего ПК. В данной статье мы комплексно сравним медленный процессор с большим количеством ядер и высокочастотный процессор со средним количеством ядер и выясним, что предпочтительней выбрать именно сейчас.
реклама
Цель данной статьи проста - выяснить, какой процессор окажется объективно лучше и актуальней в рабочих задачах и играх - с большим количеством ядер или с большей частотой. Для большей наглядности тестирования "типовые" процессоры будут отличаться между собой лишь тактовой частотой и количеством ядер.
MSI RTX 3070 сливают дешевле любой другой, это за копейки Дешевая 3070 Gigabyte Gaming - успей пока не началосьПроцессоры будут являться "синтетическими", "созданными" на основе многоядерного процессора Ryzen 7 2700. В связи с тем, что данный процессор отказывается запускаться на частоте в 2 GHz (но данное сравнение не имело бы никакого отношения с действительностью), удалось создать лишь два "типовых" процессора.
По задумке "синтетический Ryzen 5" будет иметь на 1/3 большее число ядер, чем соперник - "синтетический Ryzen 3". Последний в свою же очередь будет обладать на 1/3 большей тактовой частотой. Итого: "синтетический Ryzen 5" - это процессор с шестью ядрами, работающий на фиксированной частоте в 3 GHz с отключенной технологией SMT; "синтетический Ryzen 3" будет представлять из себя CPU с четырьмя ядрами без технологии SMT, находящимися в разгоне до частоты в 4 GHz. Остальные же параметры у данных процессоров будут идентичны Ryzen 7 2700.
реклама
var firedYa28 = false; window.addEventListener('load', () => < if(navigator.userAgent.indexOf("Chrome-Lighthouse") < window.yaContextCb.push(()=>< Ya.Context.AdvManager.render(< renderTo: 'yandex_rtb_R-A-630193-28', blockId: 'R-A-630193-28' >) >) >, 3000); > > >);Даже простым перемножением ядер на частоты, не сложно догадаться, что конфигурация с шестью ядрами, работающими на частоте в 3 GHz будет немного сильнее конфигурации с четырьмя ядрами, работающими на частоте 4 GHz. В условном "математическом бенчмарке" (данный "бенчмарк" справедлив только для "синтетических процессоров", различающихся лишь количеством и частотой ядер), суммарная производительность данных CPU будет сопоставима, как "18" и "16" в пользу процессора с большим количеством ядер, так как для большей справедливости данного тестирования, ему следовало "привязать" частоту в 2.66 GHz.
Но данное действие было невозможно по той же причине, по которой в тестировании отсутствует "синтетический Ryzen 7 / Xeon" с частотой в 2 GHz. Материнская плата ASUS TUF B450M-PRO GAMING не может запустить процессор Ryzen 7 2700 с частотой ниже 2.8 GHz: во-первых, это не подразумевается, так как минимальный множитель для данного процессора равен 28; во-вторых, при попытке "взятия" необходимой частоты посредством комбинации множитель/делитель (формула следующая: Ratio=2*FID/DID), система отказывается запускаться с любым напряжением, даже в значении "авто".
И кто-то заметит, что данное сравнение двух математически не равных процессоров якобы теряет смысл, так как "итак понятно, что процессор с шестью ядрами окажется чуть сильней". Но в данном случае частоты процессоров приближены к реальным, а сравнить процессоры на 2 GHz, 2,66GHz и 4 GHz, было бы как минимум нелепо, так как процессоров Ryzen с такими низкими частотами попросту нет. И опять же, это ни в коем случае не "симуляция известных процессоров", это всего лишь попытка сравнения высокой частоты и большого количества ядер, что важнее сейчас.
В общем, далее нет смысла вдаваться в нюансы данного эксперимента, предлагаем же перейти к реальному исследованию.
реклама
Но для начала осмотр тестовой конфигурации.
"Синтетические" процессоры тестировались на следующей конфигурации:
- Системная плата: Asus TUF B450M PRO GAMING;
- ОЗУ: CRUCIAL Ballistix BL2K16G30C15U4B 2x16 Гб, 3333 MHz CL14
- Система охлаждения процессора: AMD Wraith Spire ;
- Термопаста: AMD;
- Видеоадаптер: GeForce GTX 1060 Xtreme Gaming 6G;
- Накопители: Samsung SSD 850 120GB (под Windows), Western Digital WD Blue 1 TB (под игры);
- Блок питания: Enermax Revolution D.F. , 650 Ватт;
- Корпус: Thermaltake View 31 TG;
- Монитор: Sharp Aquos lc-26le320e-bk ;
- Операционная система: Windows 10 Pro x64 (1909).
Вольтаж для процессора с шестью ядрами был подобран 0.8125 вольта, вольтаж же для процессора с четырьмя разогнанными ядрами составил 1.25 вольта. LLC был отрегулирован так, что напряжение при возрастании нагрузки оставалось стабильным.
Тестирование энергопотребления / уровня шума / температурных показателей
Тестирование процессоров проводилось посредством 10-минутного теста OCCT версии 5.5.7 с использованием AVX2 инструкций.
реклама
Для упрощения восприятия результатов тестирования, все данные были отображены в виде диаграммы с таблицей значений.
Таким образом, в тестировании OCCT процессор с шестью медленными ядрами оказался более "прохладным", чем процессор с разогнанными четырьмя ядрами. Но результаты данного тестирования нельзя интерпретировать на якобы Ryzen 5 3500X и Ryzen 3 3100/3300X. Все процессоры уникальны и данный тест лишь показывает серьезно возросшие показатели тепловыделения при небольшом разгоне, что характерно для всех процессоров Ryzen.
Тестирование в синтетических программах: CPU-Z
Теперь, когда мы разобрались с поведением двух экземпляров в стресс-тесте, предлагаю сравнить производительность процессоров в CPU-Z.
Для упрощения восприятия результатов тестирования, все данные были отображены в виде диаграммы с таблицей значений.
Результаты "математического бенчмарка" подтвердились. Четыре разогнанных ядра хоть и обошли шесть маломощных ядер в однопоточной производительности, но серьезно уступили во многоядерной производительности. Медленные шесть ядер обходят четыре быстрых на 12.5%, данная разница была известна еще заранее из "математического бенчмарка": разница между 18 и 16 составляет 12.5%.
Тестирование в синтетике: Cinebench R20, CPU Queen, CPU PhotoWorxx
Перед тем, как мы перейдем непосредственно к играм, предлагаю ознакомиться со сводным тестированием процессоров в популярной синтетике.
Для упрощения восприятия результатов тестирования, все данные были отображены в виде диаграммы с таблицей значений.
Как мы можем наблюдать, процессоры очень близки по своей производительности в синтетических тестах. Но у процессора с низкой частотой и шестью ядрами закономерный отрыв в Cinebench R20 и небольшое превосходство в CPU PhotoWorxx. По результатам "общей синтетики" трудно выявить явного фаворита, процессоры очень близки, но за счет чисто "математического превосходства", 6 ядер с частотой в 3 GHz становятся более предпочтительными.
"Игровая синтетика": Ashes of the Singularity: Escalation
Тестирование производилось с акцентом именно на CPU.
Для упрощения восприятия результатов тестирования, все данные были отображены в виде диаграммы с таблицей значений.
Стоит отметить, что оба процессора посредственно справились с данной игрой, но визуально плавность картинки была все-таки за процессором с шестью ядрами.
Assassin's Creed Odyssey
Настройки графики - минимально возможные.
Дополнительные слабые ядра положительно сказались на производительности в игре Assassin's Creed Odyssey.
Для упрощения восприятия результатов тестирования, все данные были отображены в виде диаграммы с таблицей значений.
Даже на минимальные настройки графики не смогли "спасти" четыре разогнанных ядра от проигрыша в Assassin's Creed Odyssey. К сожалению, разница в гигагерц не дала фору четырем ядрам.
Far Cry New Dawn
Для упрощения восприятия результатов тестирования, все данные были отображены в виде диаграммы с таблицей значений.
В данной игре шесть низкочастотных ядер потерпели разгромное поражение по плавности, проиграв четырем быстрым ядрам.
Metro Exodus
Для упрощения восприятия результатов тестирования, все данные были отображены в виде диаграммы с таблицей значений.
И опять с крохотным отрывом победу одержали четыре быстрых ядра. Но не стоит забывать, что это самые минимальные настройки графики, если бы видеокарта позволяла выставить максимальные настройки графики без "бутылочного горлышка", то процессор с четырьмя ядрами, скорее всего, серьезно бы уступил более медленному процессору, но с большим количеством ядер.
Заключение
Четыре ядра, шесть ядер, низкая частота, высокая частота имеет ли это такое большое значение, если итоговая производительность "гуляет" от игры к игре, а в синтетических тестах разница между этими решениями настолько мала, что становится трудно "рассудить", какой типовой процессор действительно лучший? Все зависит от ваших конкретных задач.
Единственно, что можно вычленить из всего этого тестирования - покупайте процессоры холодные, производительные и современные, особое внимание уделяйте микроархитектуре процессора, не гонитесь за парой лишних ядер при низкой частоте, но и не акцентируйте внимание на высоких частотах. Совсем скоро пред многими предстанет выбор бюджетного процессора для игр и мультимедиа - Ryzen 5 1600AF и Ryzen 3 3100. Какой процессор выбрать по моему мнению - никакой, а чуть переплатить и забрать Ryzen 5 3500X. А все потому что процессоры из одного ценового сегмента примерно равны по производительности, либо же созданы под определенные задачи, на которые и вам стоит ориентироваться.
Самое простое в выборе процессора из одного ценового сегмента - сравнить процессоры именно в тех задачах, которые вам интересны и выбрать именно тот процессор, который покажет себя лучше в приоритетных для вас задачах.
Следовательно, если вы играете в игры, то оптимальным вариантом будет приобретение процессора с шестью производительными ядрами , если вас интересуют онлайн игры, то хорошим бюджетным решением будет четырехъядерный процессор с высокой производительностью на ядро, желательно с технологией многопоточности. А если вам нужен процессор для работы , тогда стоит обратить внимание на многоядерные процессоры с наименьшей ценой за ядро при большом количестве ядер. Отличный пример - Ryzen 9 3900 PRO.
Если же вы собираете универсальный компьютер с прицелом на будущее, то отличным решением для вас будет покупка современного процессора с восемью ядрами: Ryzen 7 1700 / 1700X / 2700 / 2700X - бюджетные универсальные процессоры для тех, кто не гонится за максимальным FPS в играх; Ryzen 7 3700X / I7 9700KF - максимальный FPS за разумные деньги с прицелом на будущее; I9 9900KF - лучший выбор энтузиаста-максималиста, если в ближайшие 5-7 лет планируется апгрейд только видеокарты.
А что вы считаете по этому поводу и по какому принципу выбираете процессор для себя ?
Содержание
Содержание
Процессоры для персональных компьютеров прошли огромный путь с 70-х годов прошлого века и до наших дней. Давайте вспомним самые интересные процессоры и то, как росла их тактовая частота год за годом, от 2-4 МГц в 70-х и до 5000 МГц в 2019 году.
Что значат "МГц" процессора?
Тактовая частота процессоров - это одна из их главных характеристик. Она характеризует производительность процессора, через количество выполняемых операций в секунду. Однако процессоры с одной и той же тактовой частотой нельзя сравнивать "в лоб", они могут иметь различную производительность, так как на выполнение одной операции разным системам может требоваться различное количество тактов.
Яркий пример - процессоры AMD и Intel, иногда отличающиеся по частотам на 30-40% при сопоставимой производительности.
70-е годы
Другие производители не заставили себя долго ждать, Motorola представила процессор 6800, работающий на частоте 2 МГц, а годом спустя компания MOS Technology выпускает процессор 6502 с частотой лишь 1 МГц.
В 1976 году на рынок был выпущен процессор Zilog Z80 с частотами от 2,5 до 8 МГц. Это был уже серьезный прирост частоты.
Несмотря на то, что названия этих процессоров мало что говорят современному пользователю ПК, на них была построена масса популярных компьютеров и игровых приставок: микрокомпьютер Altair-8800, Dendy (Nintendo Entertainment System), Apple I, Apple II, Commodore PET и популярнейший Sinclair ZX-Spectrum.
В 1978 году компания Intel выпустила первый 16-битный микропроцессор 8086 с частотами 4 МГц — 10 МГц, его можно назвать прадедушкой процессоров, работающих в наших ПК и основателем платформы PC компьютеров.
80-е годы
Далее произошел скачек производительности процессоров с выходом Intel 80286 в 1982 году. Он работал на невысоких частотах — от 6 МГц, до 12,5 МГц. А вот последующий за ним Intel 80386 в 1985 году принес большой рост и производительности, и частоты, которая доходила до 40 МГц. AMD уже тогда выпускала конкурентов — процессор Am386DX на 40 МГц.
В 1989 году выходит Intel 80486 с частотами 25 МГц — 50 МГц.
90-е годы
Знаменитые процессоры Pentium, на базе архитектуры P5, выходят в 1993 году с частотами 60 МГц или 66 МГц и достигают огромных, по тем меркам, частот в 100-233 МГц у Pentium MMX, к концу 90-х годов. Параллельно развиваются процессоры PowerPC, DEC Alpha и некоторые другие, но они мало интересны пользователям ПК.
Постепенно накапливающиеся технологические и инженерные успехи приводят в 1995 году к смене архитектур и на рынок выходит архитектура P6 — CISC-платформа с RISC-ядром. На ней работает знакомый многим Pentium II, вышедший в 1997 году и имевший частоты до 450 МГц. А Pentium III, пришедший ему на смену в 1998 году, уже работал на частоте от 600 МГц (ядро Katmai), до 1130 МГц на ядре Coppermine в 1999 году.
1000 МГц был впечатляющей планкой в 1999 году и перепрыгнуть ее первой старались и Intel и AMD. AMD выпустила новейший процессор Athlon, работающий на частоте 1000 МГц, 6 марта 2000 года и первой покорила рубеж 1000 МГц. Intel не хватило всего 2 дня для победы, она выпустила процессор Pentium III с частотой 1000 МГц 8 марта 2000 года.
2000-е годы
В 2001 году процессоры Pentium III получили ядро Tualatin и частоты до 1400 МГц. У AMD в это время были очень удачные процессоры Athlon и Duron на ядре Thunderbird с частотами до 1400 МГц. Поскольку частоты перевалили за 1000 МГц, теперь проще называть их гигагерцами (ГГц).
Дальше началась захватывающая война между Pentium 4 от Intel и Athlon XP от AMD. Pentium 4 начал с 1.4 ГГц в 2000 году и быстро дошел до 2 ГГц в 2001 году. Athlon XP в 2001 году смог покорить 1,6 ГГц. Так как производительность на МГц у него была выше, AMD ввела так называемый P-рейтинг, который показывал производительность процессоров Athlon XP относительно сопоставимого по мощности процессора Pentium 4 от Intel. Поэтому модель с реальной частотой 1.6 ГГц имела обозначение 1900+.
В 2002 году Pentium 4 достигли частот 3 ГГц, в 2003 — 3.2 ГГц, в 2004 — 3.4 ГГц, в 2005 — 3.8 ГГц. На этом диапазоне частот хотелось бы заострить внимание, во-первых, заметно резкое замедление прироста частот. Процессоры уперлись в технологический потолок, даже сейчас большинство выпускаемых моделей имеют частоты из диапазона 3.2-3.8 ГГц, а ведь достигнуты они были 15 лет назад.
С трудом современные массовые процессоры перевалили потолок в 4 ГГц и сейчас штурмуют 5 ГГц. Intel Core i9-9900KS — первый процессор, который с заводскими настройками работает на частоте 5 ГГц по всем ядрам.
В 2006 году процессор Intel Pentium D960 работал на частоте 3.6 ГГц, Athlon 64 FX-60 на ядре Toledo, на 2.6 ГГц. Гонка частот практически остановилась.
Последующие Core 2 Duo и Core 2 Quad работали все на тех же частотах, что и предшественники. Процессоры Intel Core i3/i5/i7 на микроархитектуре Bloomfield, Gulftown, Sandy Bridge, Ivy Bridge, тоже работали на частотах до 4 ГГц.
2010-е годы
У AMD сменились процессоры Athlon 64 X2, Athlon II, Phenom, Phenom II, не выходя за рамки 4 ГГц. В 2011 году процессоры на архитектуре Bulldozer смогли в турбобусте покорить частоты выше 4 ГГц. У Intel первыми это смогли сделать Core i7 4790K, на ядре Haswell, в 2014 году.
AMD и Intel вели жестокую борьбу за рынок процессоров и цифра 5 ГГц была очень важна. Битва за нее развернулась нешуточная, и победила в ней AMD с FX-9590 на ядре Vishera в 2013 году.
Но это была чисто маркетинговая победа, FX-9590 имел ужасающее энергопотребление в 220 ватт и плачевную производительность. Это не позволило ему стать массовым. Intel смогла достичь заветной цифры в 5 ГГц процессором Core i7-8086K на ядре Coffee Lake лишь в 2018 году.
Наши дни
На сегодняшний день массовые процессоры AMD Ryzen 3000-й серии и Intel Coffee Lake Refresh имеют частоты по всем ядрам в районе 3.9-4.7 ГГц и постепенно подбираются к 5 ГГц при нагрузке на все ядра. 2020 год обещает быть насыщенным в плане анонса новых процессоров, посмотрим, какие частоты покажут AMD Ryzen 4000-й серии и Intel Core десятого поколения.
Может быть, цифра 5 ГГц наконец-то станет массовой, и процессоры начнут покорять 6 ГГц?
В следующих блогах цикла "Интересные цифры" я расскажу о росте частот графических процессоров, объема ОЗУ и жестких дисков персональных компьютеров.
Содержание
Содержание
Процессоры для персональных компьютеров прошли огромный путь с 70-х годов прошлого века и до наших дней. Давайте вспомним самые интересные процессоры и то, как росла их тактовая частота год за годом, от 2-4 МГц в 70-х и до 5000 МГц в 2019 году.
Что значат "МГц" процессора?
Тактовая частота процессоров - это одна из их главных характеристик. Она характеризует производительность процессора, через количество выполняемых операций в секунду. Однако процессоры с одной и той же тактовой частотой нельзя сравнивать "в лоб", они могут иметь различную производительность, так как на выполнение одной операции разным системам может требоваться различное количество тактов.
Яркий пример - процессоры AMD и Intel, иногда отличающиеся по частотам на 30-40% при сопоставимой производительности.
70-е годы
Другие производители не заставили себя долго ждать, Motorola представила процессор 6800, работающий на частоте 2 МГц, а годом спустя компания MOS Technology выпускает процессор 6502 с частотой лишь 1 МГц.
В 1976 году на рынок был выпущен процессор Zilog Z80 с частотами от 2,5 до 8 МГц. Это был уже серьезный прирост частоты.
Несмотря на то, что названия этих процессоров мало что говорят современному пользователю ПК, на них была построена масса популярных компьютеров и игровых приставок: микрокомпьютер Altair-8800, Dendy (Nintendo Entertainment System), Apple I, Apple II, Commodore PET и популярнейший Sinclair ZX-Spectrum.
В 1978 году компания Intel выпустила первый 16-битный микропроцессор 8086 с частотами 4 МГц — 10 МГц, его можно назвать прадедушкой процессоров, работающих в наших ПК и основателем платформы PC компьютеров.
80-е годы
Далее произошел скачек производительности процессоров с выходом Intel 80286 в 1982 году. Он работал на невысоких частотах — от 6 МГц, до 12,5 МГц. А вот последующий за ним Intel 80386 в 1985 году принес большой рост и производительности, и частоты, которая доходила до 40 МГц. AMD уже тогда выпускала конкурентов — процессор Am386DX на 40 МГц.
В 1989 году выходит Intel 80486 с частотами 25 МГц — 50 МГц.
90-е годы
Знаменитые процессоры Pentium, на базе архитектуры P5, выходят в 1993 году с частотами 60 МГц или 66 МГц и достигают огромных, по тем меркам, частот в 100-233 МГц у Pentium MMX, к концу 90-х годов. Параллельно развиваются процессоры PowerPC, DEC Alpha и некоторые другие, но они мало интересны пользователям ПК.
Постепенно накапливающиеся технологические и инженерные успехи приводят в 1995 году к смене архитектур и на рынок выходит архитектура P6 — CISC-платформа с RISC-ядром. На ней работает знакомый многим Pentium II, вышедший в 1997 году и имевший частоты до 450 МГц. А Pentium III, пришедший ему на смену в 1998 году, уже работал на частоте от 600 МГц (ядро Katmai), до 1130 МГц на ядре Coppermine в 1999 году.
1000 МГц был впечатляющей планкой в 1999 году и перепрыгнуть ее первой старались и Intel и AMD. AMD выпустила новейший процессор Athlon, работающий на частоте 1000 МГц, 6 марта 2000 года и первой покорила рубеж 1000 МГц. Intel не хватило всего 2 дня для победы, она выпустила процессор Pentium III с частотой 1000 МГц 8 марта 2000 года.
2000-е годы
В 2001 году процессоры Pentium III получили ядро Tualatin и частоты до 1400 МГц. У AMD в это время были очень удачные процессоры Athlon и Duron на ядре Thunderbird с частотами до 1400 МГц. Поскольку частоты перевалили за 1000 МГц, теперь проще называть их гигагерцами (ГГц).
Дальше началась захватывающая война между Pentium 4 от Intel и Athlon XP от AMD. Pentium 4 начал с 1.4 ГГц в 2000 году и быстро дошел до 2 ГГц в 2001 году. Athlon XP в 2001 году смог покорить 1,6 ГГц. Так как производительность на МГц у него была выше, AMD ввела так называемый P-рейтинг, который показывал производительность процессоров Athlon XP относительно сопоставимого по мощности процессора Pentium 4 от Intel. Поэтому модель с реальной частотой 1.6 ГГц имела обозначение 1900+.
В 2002 году Pentium 4 достигли частот 3 ГГц, в 2003 — 3.2 ГГц, в 2004 — 3.4 ГГц, в 2005 — 3.8 ГГц. На этом диапазоне частот хотелось бы заострить внимание, во-первых, заметно резкое замедление прироста частот. Процессоры уперлись в технологический потолок, даже сейчас большинство выпускаемых моделей имеют частоты из диапазона 3.2-3.8 ГГц, а ведь достигнуты они были 15 лет назад.
С трудом современные массовые процессоры перевалили потолок в 4 ГГц и сейчас штурмуют 5 ГГц. Intel Core i9-9900KS — первый процессор, который с заводскими настройками работает на частоте 5 ГГц по всем ядрам.
В 2006 году процессор Intel Pentium D960 работал на частоте 3.6 ГГц, Athlon 64 FX-60 на ядре Toledo, на 2.6 ГГц. Гонка частот практически остановилась.
Последующие Core 2 Duo и Core 2 Quad работали все на тех же частотах, что и предшественники. Процессоры Intel Core i3/i5/i7 на микроархитектуре Bloomfield, Gulftown, Sandy Bridge, Ivy Bridge, тоже работали на частотах до 4 ГГц.
2010-е годы
У AMD сменились процессоры Athlon 64 X2, Athlon II, Phenom, Phenom II, не выходя за рамки 4 ГГц. В 2011 году процессоры на архитектуре Bulldozer смогли в турбобусте покорить частоты выше 4 ГГц. У Intel первыми это смогли сделать Core i7 4790K, на ядре Haswell, в 2014 году.
AMD и Intel вели жестокую борьбу за рынок процессоров и цифра 5 ГГц была очень важна. Битва за нее развернулась нешуточная, и победила в ней AMD с FX-9590 на ядре Vishera в 2013 году.
Но это была чисто маркетинговая победа, FX-9590 имел ужасающее энергопотребление в 220 ватт и плачевную производительность. Это не позволило ему стать массовым. Intel смогла достичь заветной цифры в 5 ГГц процессором Core i7-8086K на ядре Coffee Lake лишь в 2018 году.
Наши дни
На сегодняшний день массовые процессоры AMD Ryzen 3000-й серии и Intel Coffee Lake Refresh имеют частоты по всем ядрам в районе 3.9-4.7 ГГц и постепенно подбираются к 5 ГГц при нагрузке на все ядра. 2020 год обещает быть насыщенным в плане анонса новых процессоров, посмотрим, какие частоты покажут AMD Ryzen 4000-й серии и Intel Core десятого поколения.
Может быть, цифра 5 ГГц наконец-то станет массовой, и процессоры начнут покорять 6 ГГц?
В следующих блогах цикла "Интересные цифры" я расскажу о росте частот графических процессоров, объема ОЗУ и жестких дисков персональных компьютеров.
Читайте также: