Какие протоколы используются для подключения к linux серверам
В мире ИТ существует уже довольно широкий спектр операционных систем, начиная с серверных, заканчивая операционными системами для мобильных устройств. В обычных пользовательских компьютерах и в серверах довольно часто используются две ОС — Linux и Windows. Поэтому очень часто возникают ситуации, когда приходится подключаться по сети из одной операционной системы к другой для выполнения разнообразных операций.
В этой статье мы рассмотрим варианты подключения к Linux из Windows. Существуют бесплатные и условно бесплатные утилиты вроде AnyDesk или TeamViewer, но установка их довольно тривиальна и не нуждается в дополнительном пояснении. Утилиты подобного рода обладают рядом ограничений при бесплатном некоммерческом использовании, либо их функциональность не удовлетворяет тем или иным потребностям пользователя. Мы рассмотрим полностью бесплатные способы как подключится к Linux из Windows.
Удалённый доступ к Linux с помощью VNC
На сегодняшний день самое популярное удаленное подключение к Linux из Windows, с использованием привычный в Windows графического интерфейса, является VNC (Virtual Network Computing) — утилита, использующая протокол RFB (Remote FrameBuffer — удалённый кадровый буфер). Управление осуществляется путём передачи нажатий клавиш на клавиатуре и движений мыши с одного компьютера на другой и ретрансляции содержимого экрана через компьютерную сеть.
В качестве сервера VNC в данном примере будет использоваться TightVNC, установленный в Ubuntu 20.04. Для установки сервера VNC необходимо выполнить ряд действий:
Шаг 1. Установка рабочей среды XFCE
Xfce — одна из самых легковесных рабочих сред, используемых в Linux, она будет быстро работать даже при слабом и нестабильном сетевом подключении. Установите её с помощью команд:
sudo apt update
sudo apt install xfce4 xfce4-goodies
Шаг 2. Установка TightVNC
Далее установите TightVNC:
sudo apt install tightvncserver
Шаг 3. Настройка пароля
Перед началом выполнения всех действий необходимо задать пароль пользователя VNC. Выполните команду:
Вам будет предложено создать новый пароль, а также пароль только для просмотра. Откажитесь от второй опции:
Завершите процесс vncserver:
vncserver -kill :1
Шаг 4. Настройка скрипта запуска
Отредактируйте скрипт, который выполняется после запуска VNC-сервера:
Он должен содержать такой текст:
Сделайте файл исполняемым:
Шаг 5. Запуск VNC сервера
На этом этапе уже можно запустить VNC-сервер с помощью команды:
Шаг 6. Подключение из Windows
Для того, чтобы подключиться из Windows к вашему Linux-серверу, используйте TightVNC Viewer.
Укажите IP-адрес компьютера, к которому нужно подключиться, и номер порта в поле Remote Host. В данном примере — 192.168.56.102::5901:
После того, как будет введён пароль, вы должны увидеть рабочий стол Xfce:
Шаг 8. Настройка systemd
Для того, чтобы запуск вашего VNC-сервера добавить в автозагрузку надо использовать systemd. Создайте новый файл сервиса systemd:
sudo nano /etc/systemd/system/[email protected]
Его содержимое должно быть следующим:
[Unit]
Description=Systemd VNC server startup script for Ubuntu 20.04
After=syslog.target network.target
[Service]
Type=forking
User=ubuntu
ExecStartPre=-/usr/bin/vncserver -kill :%i &> /dev/null
ExecStart=/usr/bin/vncserver -depth 24 -geometry 800x600 :%i
PIDFile=/home/ubuntu/.vnc/%H:%i.pid
ExecStop=/usr/bin/vncserver -kill :%i
[Install]
WantedBy=multi-user.target
Измените имя пользователя ubuntu и рабочего каталога ubuntu на нужные вам значения. Если у вас запущен VNC-сервер, остановите его:
vncserver -kill :1
Сообщите systemd о появлении нового сервиса:
sudo systemctl daemon-reload
Добавьте запуск вашего нового сервиса в список автозагрузки:
sudo systemctl enable [email protected]
sudo systemctl start vncserver@1
Использование RDP для удалённого подключения
Помимо VNC, для управления Linux-сервером из Windows можно воспользоваться RDP (Remote Desktop Protocol). Для этого на компьютере с Ubuntu 20.04 установите утилиту xrdp:
sudo apt install xrdp
Для корректной работы сервиса необходимо добавить пользователя xrdp в группу ssl-cert:
sudo adduser xrdp ssl-cert
sudo apt-get install xfce4
Добавьте Xfce в сессии RDP в качестве рабочего стола по умолчанию:
Перезапустите сервис xrdp:
sudo systemctl restart xrdp.service
Процедура подключения из Windows к Linux-серверу по протоколу RDP почти ничем не отличается от подключения к удалённым Windows-серверам. Введите IP-адрес сервера, логин и пароль пользователя в Linux:
Если всё сделано правильно, вы увидите рабочий стол Xfce:
Подключение к Linux из Windows по SSH
Для подключения к компьютеру под управлением Linux по протоколу SSH из Windows можно воспользоваться PowerShell. Сначала становите OpenSSH Client, если ещё не установлен. Запустите на вашем компьютере PowerShell от имени администратора системы и выполните следующую команду:
Get-WindowsCapability -Online | ? Name -like 'OpenSSH*'
Это необходимо для того, чтобы узнать текущую версию SSH-клиента. В данном примере доступна версия OpenSSH.Client-0.0.1.0. Установите OpenSSH.Client с помощью команды:
Add-WindowsCapability -Online -Name OpenSSH.Client
Для того, чтобы подключиться к устройству, на котором запущен SSH-сервер, необходимо ввести имя пользователя и IP-адрес. Команда для подключения по SSH используя PowerShell выглядит так:
Здесь ubuntu — имя пользователя на удалённом компьютере, а 192.168.56.1 — IP-адрес Linux-сервера, на котором запущен демон SSH.
При первом подключении необходимо подтвердить использование специального персонального ключа для шифрованного соединения по SSH-протоколу (введите слово Yes), затем введите пароль пользователя (в данном случае для пользователя ubuntu):
Как видите, соединение прошло успешно. Теперь можно выполнять все команды так же, как если бы вы их выполняли используя стандартный Linux SSH-клиент:
Для завершения терминальной сессии на удалённом компьютере введите команду exit. Теперь вы знаете как выполняется подключение к Linux из Windows по SSH.
Использование Putty для подключения к Linux
Пожалуй, одним из самых популярных способов подключения к Linux из Windows является кроссплатформенная утилита Putty — небольшая по размерам, но очень часто незаменима для подключения по таким протоколам как SSH, Telnet, rlogin и даже с помощью последовательных портов.
Для обычного подключения к Linux-серверу по протоколу SSH достаточно в поле Host Name (or IP-address) указать его IP-адрес и нажать кнопку Open (в данном примере Linux-сервер имеет IP-адрес: 192.168.56.102):
Далее нужно будет ввести логин и пароль. Если всё сделано правильно, запустится удалённая сессия терминала Linux:
Мало кто знает, что Putty позволяет запустить почти любое приложение, установленное на компьютере с Linux, по сети в Windows. Для этого на компьютере с Windows нужно установить собственный X-сервер. В данном примере воспользуемся Xming.
Скачайте Xming с официального сайта. Установка довольно тривиальная, поэтому не будем на ней останавливаться. Ничего не меняйте в процессе установки. Просто нажимайте кнопку Next до тех пор, пока программа не установится и не запустится:
Когда установка Xming завершится, откройте Putty и в настройках сессии для вашего подключения в разделе SSH -> X11 включите флажок напротив опции Enable X11 forwarding, а также, в строке Отображение дисплея X впишите значение localhost:0, после чего откройте сессию подключения с помощью кнопки Open:
В открывшемся терминале Putty введите консольное название программы, обладающей графическим интерфейсом. В данном примере введено название графического редактора drawing:
(Знак & позволит запустить программу в фоновом режиме, в этом случае в окне Putty можно будет выполнять и другие команды):
Как видите, Linux-приложение drawing успешно запустилось по сети на X-сервере, установленном в Windows. С ним можно работать так же, как и с локальным приложением.
Выводы
Сегодня не существует слишком уж больших проблем для подключения к Linux из Windows. Способов существует довольно много. Каждый из них обладает своими достоинствами и недостатками, например, скорость работы VNC, да и других тоже, существенно зависит от скорости сетевого соединения. Существуют также программные средства, позволяющие подключаться к Linux-серверам используя мессенджеры или браузеры.
Нет похожих записей
Статья распространяется под лицензией Creative Commons ShareAlike 4.0 при копировании материала ссылка на источник обязательна.
Linux поддерживает много различных протоколов работы с сетями:
3.1 TCP/IP
IP (Межсетевой Протокол) был первоначально разработан два десятилетия назад для Отдела Защиты Соединенных Штатов (DoD), главным образом с целью соединения компьютеров различных марок. TCP/IP - это набор допустимых протоколов, имеющих многоуровневую структуру, чтобы избежать привязки кода прикладных программ к сетевому аппаратному обеспечению.
Хотя он и основан на многоуровневой модели, он ориентирован более на задачи соединений, чем на твердое соблюдение функциональных уровней. Это одна из причин, почему TCP/IP стал фактическим стандартным протоколом работы с сетями в отличие от OSI.
Работа с сетями по протоколу TCP/IP была заложена в Linux с самого начала. Она была выполнена заново и является одной из наиболее продуманных, быстрых и надежных реализаций и потому является одним из ключевых факторов успеха Linux.
3.2 TCP/IP версия 6
IPv6, который иногда также называют IPng (IP Следующего Поколения), - это обновление для протокола IPv4 для решения множества проблем. Эти проблемы включают: нехватка доступных адресов IP, недостаток механизмов обработки трафика, критичного ко времени передачи, недостатки защиты сетевого уровня, и т.д
Увеличение адресного пространства будет сопровождаться в соответствии c дополнительной схемой адресации, что сильно подействовует на эффективность маршрутизации. Реализация беты уже существует для Linux, и промышленная версия ожидается для ядра 2.2.0 Linux.
3.3 IPX/SPX
IPX/SPX (Межсетевой Пакетный Обмен/Последовательный Пакетный Обмен) - стек протоколов, разработанный и являющийся собственностью Novell и основанный на XNS протоколе фирмы Xerox. IPX/SPX стал в начале 1980-ого неотъемлемой частью системы Novell Netware. Система Netware стала фактической стандартной сетевой операционной системой (NOS) для первого поколения локальных вычислительных сетей. Novell выполнил свою NOS с бизнес-ориентируемым набором прикладных программ и утилитами подключения со стороны пользователя.
Linux имеет очень ясную реализацию IPX/SPX, что позволяет его настроить как:
- IPX маршрутизатор
- IPX мост
- NCP клиент и/или NCP сервер (для совместного использования файлов)
- клиент печати Novell, сервер печати Novell
- Допускает PPP/IPX, позволяя машине с Linux работать как PPP сервер/клиент
- IPX tunnelling через IP, позволяя соединить две IPX сети через исключительно IP связь
3.4 Набор протоколов AppleTalk
Appletalk - имя сетевого стека Apple. Он позволяет peer-to-peer сетевую модель, которая обеспечивает базовые функциональные возможности типа совместного использования принтера и файлов. Каждая машина может работать одновременно как клиент и сервер, все необходимое программное и аппаратное обеспечение поставляются с каждым компьютером Apple.
Linux обеспечивает полную работу с сетями Appletalk. Netatalk - реализация на уровне ядра набора протоколов AppleTalk, первоначально разработанного для bsd-совместимых систем. Она включает поддержку для маршрутизации AppleTalk, обслуживание файловых систем Unix и AFS поверх AFP (AppleShare), обслуживание принтеров Unix и доступ к принтерам AppleTalk через PAP.
За подробностями обратитесь к разделу 5.1.
3.5 Глобальные сети: X. 25, Frame-Relay, и т.д .
Некоторые третьи фирмы обеспечивают продукты T-1, T-3, X. 25 и Frame-Relay для Linux. Обычно для этих типов соединений требуются специальные аппаратные средства. Продавцы, торгующие аппаратными средствами, также предлагают драйвера поддержки протоколов.
3.6 ISDN
Ядро Linux имеет встроенную поддержку ISDN. Isdn4linux управляет адаптерами ISDN для PC и может эмулировать модем с набором команд Hayes ("В" команды). Предоставляются возможности от просто использования программы терминала до соединений через HDLC (используя включенные устройства) для полного подключения к Интернет по PPP к звуковым прикладным программам.
3.7 PPP, SLIP, PLIP
Linux ядро имеет встроенную поддержку для PPP (Point-to-Point-Protocol), SLIP (IP для последовательных линий) и PLIP (IP для параллельных линий). PPP - наиболее популярный метод, с помощью которого пользователи подключаются к своему ISP (провайдер услуг Интернет). PLIP обеспечивает дешевое соединение двух машин. Он использует параллельный порт и специальный кабель, достигая скоростей от 10kBps до 20kBps.
3.8 Любительское Радио (HAM)
Linux ядро имеет встроенную поддержку для радиолюбительских протоколов.
Особенно интересен - AX.25. Протокол AX.25 предлагает и соединенный, и несоединенный режимы работы, и используется для связи либо по собственному протоколу, либо для переноса пакетов других протоколов типа TCP/IP и NetRom.
По структуре он напоминает X.25 уровня 2, с некоторыми расширениями, чтобы приспособить его к среде любительского радио.
3.9 ATM
ATM поддержка для Linux в настоящее время очень сырая. Имеется экспериментальный релиз, который поддерживает простые ATM соединения (PVCs и SVCs), IP над ATM, эмуляцию локальной вычислительной сети .
Сетевая подсистема Linux организует сетевой обмен пользовательских приложений и, как следствие, сетевое взаимодействие самих пользователей.
Часть сетевой подсистемы, выполняющаяся в режиме ядра, естественным образом ответственна за управление сетевыми устройствами ввода-вывода, но кроме этого на нее также возложены задачи маршрутизации и транспортировки пересылаемых данных, которые решаются при помощи соответствующих Сетевых протоколов. Таким образом, именно ядерная часть сетевой подсистемы обеспечивает процессы средствами сетевого межпроцессного взаимодействия (network IPC).
Непосредственное, физическое взаимодействие сетевых узлов через каналы связи между ними реализуется аппаратурой сетевых адаптеров. Сетевые адаптеры, как и любые другие устройства ввода-вывода, управляются соответствующими драйверами, реализующимися в большинстве случаев в виде динамических модулей ядра.
Драйверы сетевых устройств
$ lspci
$ lspci -ks 01:00.0
01:00.0 Network controller: Intel Corporation Centrlno Wireless-N 130 (rev 34)
Subsystem Intel Corporation Centrino Wireless-N 130 BGN
Kernel driver in use: iwlwifi
Kernel modules: iwlwifi
Subsystem: Samsung Electronics Co Ltd Device c0b6
Kernel driver in use: r8169
$ modinfo iwlwifi r8169 | grep ^description
description: Intel(R) Wireless WiFi driver for Linux
description: RealTek RTL-8169 Gigabit Ethernet driver
В отличие от несетевых устройств, большинство которых имеют специальный файл в каталоге /dev, сетевые устройства представляются в системе своими интерфейсами. Список доступных интерфейсов, их параметры и статистику можно получить при помощи «классической» UNIX-команды ifconfig или специфичной для Linux команды ip.
Сетевые интерфейсы (UNIX ifconfig)
eth0 Link encap:Ethernet HWaddr e8:03:9a:0a:73:40
UP BROADCAST MULTICAST MTU: 1500 Metric: 1
lo Link encap:Локальная петля (Loopback)
inet addr:127.0.0.1 Mask:255.0.0.0
inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:65536 Metric:1
wlan0 Link encap:Ethernet HWaddr b8:03:05:a2:28:4e
inet addr:192.168.100.5 Bcast: 192.168.100.255 Mask-.255.255.255.0
inet6 addr: fe80::ba03:5ff:fea2:284e/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
$ ifconfig wlanO
wlanO Link encap:Ethernet HWaddr b8:03:05:a2:28:4e
inet addr-.192.168.100.5 Beast: 192.168.100.255 Mask:255.255.255.0
inet6 addr: fe80: :ba03:5ff:fea2:284e/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU: 1500 Metric: 1
RX packets:23103842 errors:0 dropped:0 overruns:0 frame:0
TX packets-.15591575 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:2010967763 (2.0 GB) TX bytes:2828583098 (2.8 GB)
Сетевые интерфейсы (Linux ip)
$ ip link show
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
2: eth0: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc pfifo_fast state DOWN qlen 1000 link/ether e8:03:9a:0a:73:40 brd ff:ff:ff:ff:ff:ff
3: wlan0: «BROADCAST,MULTICAST,UP,L0WER_UP> mtu 1500 qdisc mq state UP qlen 1000
link/ether b8:03:05:а2:28:4е brd ff:ff:ff:ff:ff:ff
$ ip -s link show dev wlanO
3: wlan0: «BROADCAST,MULTICAST,UP, LOWER_UP> mtu 1500 qdisc mq state UP qlen 1000
link/ether b8:03:05:a2:28:4e brd ff:ff:ff:ff:ff:ff
RX: bytes packets errors dropped overrun mcast
2026956879 23261031 0 0 0 0
TX: bytes packets errors dropped carrier collsns
$ ip addr show dev wlanO
3: wlan0: «BROADCAST,MULTICAST,UP,L0WER_UP> mtu 1500 qdisc nq state UP qlen 1000
link/ether b8:03:05:a2:28:4e brd ff:ff:ff:ff:ff:ff
inet 192.168.100.5/24 brd 192.168.100.255 scope global wlan0
valid_lft forever preferred_lft forever
inet6 fe80::ba03:5ff: fea2:284e/64 scope link
valid_lft forever preferred_lft forever
За логическое взаимодействие (адресацию, маршрутизацию, обеспечение надежной доставки и пр.) отвечают сетевые протоколы, тоже в большинстве случаев реализующиеся соответствующими модулями ядра.
Нужно отметить, что в примере из листинга ниже показан список динамически загруженных модулей, среди которых присутствует «нестандартный» TCP vegas, но нет IP, TCP, UDP и прочих «стандартных» протоколов стека TCP/IP.
На текущий момент времени сложно вообразить применение Linux без подключения к IP-сети, поэтому модули стандартных протоколов TCP/IP стека скомпонованы в ядро статически и являются частью «стартового» модуля.
Драйверы сетевых протоколов
$ lsmod
Module Size Used by
tcp_vegas 13603 0
esp4 12868 0
ah4 12866 0
xfm_algo 14869 2 esp4,ah4
bnep 19167 2
bluetooth 356727 24 bnep,rf com,btusb
mac80211 564463 1 iwldvm
description: TCP Vegas
description: Bluetooth BNEP ver 1.3
description: IEEE 862.11 subsystem
Доступ процессов к услугам ядерной части сетевой подсистемы реализует интерфейс сетевых сокетов socket, являющихся основным (и единственным) средством сетевого взаимодействия процессов в Linux.
Для просмотра статистики по использованию сетевых сокетов применяют «классическую» UNIX-команду netstat или специфичную для Linux команду ss. В листингах ниже иллюстрируется использование этих команд для вывода информации обо всех (-a, all) сокетах протоколов (-u, udp) UDP и (-t, tcp) TCP стека TCP/IP v4 (-4), порты и адреса которых выведены в числовом (-n, numeric) виде, а также изображены процессы (-p, process), их открывшие.
Сетевые сокеты (UNIX netstat)
$ sudo netstat -4autpn
Активные соединения с интернетом (servers and established)
Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name
Сетевые сокеты идентифицируются парой адресов (собственным, local, и чужим (адрес удаленного приложения, с которым установлено соединение), foreign), принятыми в их семействе. Например, для семейства TCP/IP адрес сокета состоит из (сетевого) IP-адреса и (транспортного) номера порта, причем нули имеют специальное — «неопределенное» значение.
Так для прослушивающего (LISTEN) сокета 0.0.00 в собственном IP-адресе означает, что он принимает соединения, направленные на любой адрес любого сетевого интерфейса, а 0.0.0.0 в чужом адресе указывает на то, что взаимодействие еще не установлено. Прослушивающие сокеты используются «серверными» приложениями, пассивно ожидающими входящие соединения с ними.
Для сокетов с установленным (ESTABLISHED) взаимодействием оба адреса имеют конкретные значения, определяющие участников взаимодействия, например 192.168.100.5:22 и 192.168.100.3:57929.
Сетевые сокеты (Linux ss)
Из примеров листингов выше видны 5 «слушающих» (LISTEN) сокетов TCP и 4«несоелииеиных» (UNCONN) сокета UDP, открытых разными службами операционной системы. Например, 22 порт TCP открыл сервер sshd, PID = 655 службы удаленного доступа W:[SSH], а 5900 порт TCP — сервер vino-server, PID = 28880 службы удаленного доступа к рабочему столу пользователя W:[VNC].
Сетевая подсистема ОС Linux чрезвычайно развита на всех ее уровнях — от сетевых интерфейсов и протоколов до прикладных сетевых служб. На сегодняшний день колоссальное количество сетевых устройств работают под управлением Linux — маршрутизаторы, сетевые хранилища, медиаплееры, TV-боксы, планшеты, смартфоны и прочие «встраиваемые» и мобильные устройства.
К сожалению, рассмотреть весь пласт сетевых возможностей в рамках этой статьи, не представляется возможным, т. к. потребует от читателя серьезного понимания устройства и функционирования самих сетевых протоколов стека TCP/IP, что не является предметом настоящего рассмотрения.
Основополагающим результатом должно стать понимание принципов организации сетевого взаимодействия в Linux, необходимое и достаточное в качестве базы для последующего самостоятельного расширенного и углубленного изучения. Не менее полезными в практике администратора и программиста будут навыки использования инструментов трассировки и мониторинга сетевых сокетов, а в особенно «непонятных» ситуациях навыки применения анализаторов пакетов.
Исключительное место (эдакий «швейцарский нож») среди прочих сетевых инструментов Linux займет служба SSH, при распределенном использовании оконной системы X Window System, являющейся основой современного графического интерфейса пользователя.
В повседневные задачи системных администраторов входит работа с сетями и с подключённым к ним оборудованием. Нередко роль рабочего места администратора играет компьютер, на котором установлен какой-нибудь дистрибутив Linux. Утилиты и команды Linux, о которых пойдёт речь в материале, перевод которого мы публикуем сегодня, включают в себя список инструментов различной сложности — от простых, до продвинутых, которые предназначены для решения широкого спектра задач по управлению сетями и по диагностике сетевых неполадок.
Утилита ping , как можно судить по её названию, используется для проверки связи между узлами сети, между компьютером, на котором её запускают, и другой системой. Эта утилита использует протокол ICMP, отправляя эхо-запросы, на которые отвечает удалённая система, получающая их. Использование ping , кроме того — это хороший способ проверки связности сети, проводимой в качестве первого шага диагностики сети при наличии неполадок. Команду ping можно использовать с адресами IPv4 и IPv6. Тут можно почитать подробности об IP-адресах и о работе с ними.
▍Примеры
Ping, кроме того, можно использовать для выяснения IP-адресов сайтов на основе их имён. Вот как это выглядит.
Использование ping для выяснения IP-адреса сайта по его имени
Traceroute
Traceroute — это приятная утилита, которая позволяет исследовать маршруты передачи данных между компьютерами. В то время как команда ping направлена на то, чтобы выяснить, можно ли установить связь между двумя узлами сети, traceroute даёт сведения об IP-адресах маршрутизаторов, через которые проходят данные от вашей системы до конечной, например — до веб-сайта или сервера. Команда traceroute обычно применяется на втором шаге диагностики сети, после команды ping .
▍Пример
Telnet
Утилита telnet позволяет связаться с удалённым компьютером по протоколу Telnet и взаимодействовать с ним, используя соответствующие команды.
▍Пример
Для организации сеанса Telnet-связи с другим компьютером используется следующая команда:
Netstat
Эта команда позволяет собирать сведения о сети и используется в ходе поиска и исправления сетевых неполадок, применяется для проверки данных о работе интерфейсов и портов, для исследования таблиц маршрутизации, для изучения информации о работе протоколов. Эта команда непременно должна присутствовать в арсенале системного администратора.
▍Примеры
Для того чтобы получить список всех портов, находящихся в режиме прослушивания, воспользуйтесь такой командой:
Следующая команда выводит сведения обо всех портах. Для того чтобы ограничиться только TCP-портами, нужно воспользоваться ключом -at , для того, чтобы получить данные об UDP-портах, используйте ключ -au .
Для просмотра таблиц маршрутизации воспользуйтесь такой командой:
Вот как выглядит результат выполнения этой команды.
Сведения о таблице маршрутизации
Вот вариант этой команды, выводящий статистику по протоколам:
Статистика по протоколам
Следующий вариант вызова netstat позволяет узнать сведения об отправленных и полученных пакетах (transmission/receive, TX/RX) по каждому интерфейсу:
Данные об отправленных и полученных пакетах
Nmcli
Утилита nmcli отлично подходит для управления сетевыми соединениями, для выполнения настроек и для решения других подобных задач. С её помощью можно управлять программой NetworkManager и модифицировать сетевые параметры различных устройств.
▍Примеры
Вот как с помощью nmcli вывести список сетевых интерфейсов:
Так можно вывести информацию по конкретному интерфейсу:
Следующий вариант вызова команды позволяет проверить подключение устройства к сети:
Примеры использования nmcli
Эта команда позволяет отключить заданный интерфейс:
А эта позволяет включить интерфейс:
Вот пример команды, которая добавляет VLAN-интерфейс с заданным VLAN-номером, IP-адресом и шлюзом к указанному интерфейсу:
Маршрутизация
Существует множество команд, которые можно использовать для проверки правил маршрутизации и их настройки. Рассмотрим самые полезные из них.
▍Примеры
Следующая команда показывает все текущие маршруты, настроенные для соответствующих интерфейсов:
Маршруты, настроенные для интерфейсов
Эта команда позволяет добавить в таблицу маршрутизации шлюз, используемый по умолчанию:
Следующая команда добавляет в таблицу маршрутизации новый сетевой маршрут. Существует и множество других её параметров, позволяющих выполнять такие операции, как добавление маршрута и шлюза, используемых по умолчанию, и так далее.
С помощью такой команды можно удалить запись о заданном маршруте из таблицы маршрутизации:
Вот примеры использования команды route .
Использование команды route
Вот команда, которая применяется для вывода текущей таблицы соседей. Кроме того, её можно использовать для добавления, изменения или удаления сведений о соседях:
Взглянем на примеры её использования.
Данные, полученные с помощью команды ip neighbor
Вот сведения о команде ip neigh
Сведения о команде ip neigh
Команда arp (ARP — это сокращение от Address Resolution Protocol, протокол определения адреса) похожа на ip neighbor . Утилита arp выводит данные о соответствии IP-адресов MAC -адресам. Вот как её использовать:
Вот пример её вызова.
Вызов команды arp
Tcpdump и Wireshark
Linux даёт в распоряжение администратора множество инструментов для захвата и анализа пакетов. Среди них, например, tcpdump , wireshark , tshark , и другие. Они используются для захвата сетевого трафика в передаваемых системой пакетах или в пакетах, получаемых ей. Это делает их весьма ценным инструментом администратора, помогающим в деле выяснения причин различных сетевых неполадок. Тем, кто предпочитает командную строку всем остальным способам общения с компьютерами, понравится tcpdump . Тем же, кто любит графические интерфейсы, можно порекомендовать wireshark — отличный инструмент для захвата и анализа пакетов. Утилита tcpdump — это встроенное в Linux средство для захвата сетевого трафика. Его можно использовать для захвата и вывода трафика с фильтрацией по портам, протоколам, и по другим признакам.
▍Примеры
Такая команда показывает, в режиме реального времени, пакеты с заданного интерфейса:
Пакеты можно сохранять в файл, воспользовавшись флагом -w и задав имя файла:
Вот пример использования tcpdump .
Использование tcpdump
Следующий вариант команды используется для захвата пакетов, приходящих с заданного IP системы-источника:
Так можно захватить пакеты, идущие на заданный адрес системы-приёмника:
Вот пример использования tcpdump для захвата пакетов для заданного номера порта, например, это может быть порт 53, 80, 8080, и так далее:
Здесь показано, как с помощью tcpdump захватывать пакеты заданного протокола, вроде TCP, UDP или других:
Iptables
Утилита iptables похожа на файрвол, она поддерживает фильтрацию пакетов, что позволяет управлять трафиком, пропуская или блокируя его. Диапазон возможностей этой утилиты огромен. Рассмотрим несколько наиболее распространённых вариантов её использования.
▍Примеры
Следующая команда позволяет вывести все существующие правила iptables :
Эта команда удаляет все существующие правила:
Следующие команды разрешают прохождение трафика с заданного номера порта к заданному интерфейсу:
Следующие команды разрешают loopback-доступ к системе:
Nslookup
Инструмент nslookup используется для получения сведений о назначении IP-адресов сетевым ресурсам. Его можно использовать и для получения сведений с DNS-серверов, например таких, как все DNS-записи для некоего веб-сайта (ниже мы рассмотрим соответствующий пример). На nslookup похожа утилита dig (Domain Information Groper).
▍Примеры
Следующая команда выводит IP-адреса вашего DNS-сервера в поле Server, и, ниже, выдаёт IP-адрес искомого сайта:
Такая команда показывает все доступные записи для заданного веб-сайта или домена:
Поиск неполадок
Вот набор команд и список важных файлов, используемых для идентификации сетевых неполадок.
▍Примеры
- ss — утилита для вывода статистической информации о сокетах.
- nmap <ip-address> — имя этой команды является сокращением от Network Mapper. Она сканирует сетевые порты, обнаруживает хосты, выясняет MAC-адреса и выполняет множество других задач.
- ip addr/ifconfig -a — эта команда предоставляет сведения об IP-адресах и другие данные по всем интерфейсам системы.
- ssh -vvv user@<ip/domain> — такая команда позволяет подключиться по SSH к другому компьютеру, используя заданный IP-адрес или доменное имя компьютера и имя пользователя. Флаг -vvv позволяет получать подробные сведения о происходящем.
- ethtool -S <interface> — данная команда позволяет вывести статистические сведения по заданному интерфейсу.
- ifup <interface> — эта команда включает указанный интерфейс.
- ifdown <interface> — эта команда отключает указанный интерфейс.
- systemctl restart network — с помощью этой команды можно перезагрузить системную сетевую подсистему.
- /etc/sysconfig/network-scripts/<interface-name> — это — файл настройки интерфейсов, используемый для указания IP-адреса, сети, шлюза и других параметров для заданного интерфейса. Здесь можно задать использование интерфейсом DHCP-режима.
- /etc/hosts — данный файл содержит сведения о соответствии хостов или доменов IP-адресам, настроенные администратором.
- /etc/resolv.conf — в этом файле хранятся настройки DNS.
- /etc/ntp.conf — этот файл хранит настройки NTP.
Итоги
В этой небольшой шпаргалке мы рассказали о сетевых инструментах Linux, предназначенных для системных администраторов. Надеемся, вам эти инструменты пригодятся.
Так случилось, что Мефодий мало что знал о компьютерных сетях до знакомства с Linux. Если пользоваться только web-броузером и почтовой программой, сведений вроде "у каждого компьютера Internet есть имя, на компьютерах бывает почта и WWW " обычно вполне достаточно. Строго говоря, если сеть настроена, почтовые клиенты или броузеры Linux не требуют большего объема знаний. Однако Linux хорош именно тем, что позволяет проследить работу сети от процедур самого низкого уровня, вроде поведения сетевых карт, до приложений высокого уровня и их протоколов.
В разговоре о сетях передачи данных понятие "уровень" возникает неспроста. Дело в том, что передача данных между компьютерами – сложный процесс, в котором решается сразу несколько разноплановых задач. Если представить себе весь процесс организации сети "на пустом месте", как если бы никаких сетевых разработок доныне не было, все эти задачи встают одна за другой.
Итак, если бы Мефодий получил задание "придумать Internet " на пару с Гуревичем, какие бы вопросы перед ними встали?
- Среда передачи данных. Посредством чего передавать данные? Как именно представляется передаваемая информация?
- Устройство передачи данных (раз уж известно, как передаются данные). Как подключаться к среде? Как отличить данные от не-данных (т. е. определить, идет ли передача)? Как определить очередность работы нескольких устройств, подключенных к одной среде передачи данных? Как определить, кому предназначаются данные, передаваемые в общей среде?
- Топология неоднородной сети (раз уж известно, как подключить компьютер к одной или нескольким средам передачи данных). Если в сеть объединены несколько сред передачи данных, как определить адресата (и отправителя тоже)? Как обеспечить пересылку данных из одной среды в другую? Как выстроить непрерывный маршрут пересылок от отправителя к адресату?
- Доставка данных (раз уж есть механизм передачи данных от любого абонента сети к любому). Как обеспечить целостность и надежность передачи данных (и нужно ли)? Как управлять самим каналом передачи данных (например, чтобы не отправлять данных больше, чем принимающая сторона в состоянии принять)? Как разделять несколько каналов передачи данных (например, когда от одного компьютера к другому одновременно передаются два файла)?
- Интерпретация данных (раз уж возможна надежная и без искажений доставка). Что делать с полученными данными? Какие части операционной системы отвечают за их обработку, и откуда про это знает абонент с другой стороны соединения?
Ответы на эти вопросы в формализованном виде носят название протоколов: в них пунктуально описывается, как именно предлагается решать ту или иную задачу, какая для этого необходима дополнительная информация , какова должна быть логика поведения передающей и принимающей стороны и т. п.
В приведенном делении на этапы (уровни) примечательна их относительная независимость: если группа задач, связанная с некоторым уровнем, решена, на следующем уровне можно забыть, как именно решались эти задачи. Так, устройство передачи данных типа " Ethernet " с точки зрения компьютера всегда одно и то же, какой бы носитель при этом не использовался: коаксиальный кабель или кабель типа " витая пара ", хотя с физической и даже топологической точки зрения эти среды сильно различаются 1 Ethernet с коаксиальным кабелем имеет топологию "общая шина": все абоненты подключаются к единому кабелю, "врезая" в него Т-образный отводок; Ethernet с витой парой имеет топологию "звезда": от каждого абонента идет собственный кабель к центральному устройству-концентратору. . Точно так же обстоят дела при переходе со второго уровня на третий: во время получения данных уже совершенно неважно, какие среды передачи были при этом задействованы ( ethernet , три провода, голубиная почта 2 Организация TCP/IP с помощью почтовых голубей описана в RFC1149. . ). Переход с третьего уровня на четвертый и с четвертого на пятый тоже обладает этим свойством.
По всей видимости, именно с этими задачами сталкивались и разработчики из института ARPA ( Advanced Research Projects Agency , "Агентство перспективных исследовательских проектов"; в процессе работы оно было переименовано в DARPA , где "D" означало Defence). По крайней мере, предложенное ими в середине семидесятых семейство протоколов TCP /IP также подразделялось на пять уровней: аппаратный, интерфейсный, сетевой, транспортный и прикладной. Впоследствии аппаратный уровень стали смешивать с интерфейсным, так как с точки зрения операционной системы они неразличимы 3 Поэтому, если в книге написано, что TPC /IP имеет четыре уровня, это тоже будет правдой — с учетом двойственности самого нижнего. . Именно разделение на независимые друг от друга уровни позволило со временем объединить большинство разнородных локальных сетей в единое сетевое пространство – глобальную сеть Internet .
В TCP /IP вопрос о том, как обеспечить нескольким абонентам сети возможность передавать данные, не мешая друг другу, решен с помощью разделения пакетов данных. разделение пакетов предполагает, что данные передаются не единым блоком, а по частям, пакетами. Алгоритмы, определяющие, когда абоненту разрешено посылать следующий пакет, могут быть разными, но результат всегда один: в сети передаются попеременно фрагменты всех сеансов передачи данных. В сильно загруженном состоянии такая сеть может просто не принять очередной пакет от абонента-отправителя, и тому придется ждать удобного случая, чтобы все-таки "пропихнуть" его в переполненную другими пакетами среду. Таким образом, обеспечить гарантированное время передачи одного пакета в сетях с разделением пакетов бывает довольно сложно, хотя существуют алгоритмы, позволяющие это сделать.
Противоположность метода разделения пакетов – метод разделения каналов , который предполагает, что в сети имеется определенное число каналов передачи данных, которые абоненты сети арендуют на все время передачи. По такому принципу построены, например, телефонные линии: дозвонившись, мы арендуем канал связи между двумя телефонными аппаратами, и до тех пор, пока этот канал занят, невозможно ни воспользоваться им кому-то другому, ни организовать параллельно передачу данных откуда-нибудь еще. Главное достоинство сетей с разделением каналов – постоянная (за вычетом помех на линии) скорость передачи данных. Основной недостаток – ограниченное количество каналов передачи. Проектировать среду передачи так, чтобы каждый абонент был связан с каждым отдельным каналом , имеет смысл только тогда, когда абонентов очень мало: количество каналов будет пропорционально квадрату количества абонентов. Количество каналов в большой сети будет существенно меньшим, и ровно столько сеансов передачи данных можно будет в этой сети установить. Попытка соединиться с абонентом, когда все каналы уже заняты, окончится неудачей. Мефодий припомнил своего знакомого, дозвониться которому тяжело, хотя телефон тот занимает нечасто и не подолгу. По всей видимости, каналов между какими-то двумя АТС, через которые Мефодий связывается с приятелем, хронически недостает (так бывает, когда отдаленный район быстро застраивается и наполняется телефонами).
Если вернуться к сети с разделением пакетов , то можно заметить, что на каждом уровне под пакетом понимается разное. С точки зрения интерфейсного уровня пакет – это ограниченный возможностями среды передачи данных фрагмент, в котором необходимо дополнительно указать, какое устройство из числа подключенных к среде передачи данных его отправило и какому устройству он предназначен. С точки зрения сетевого уровня размер пакета определяется удобством его обработки, а дополнительно в нем надо указать уникальные для всей сети адреса отправителя и получателя (а также тип протокола и многое другое). С точки зрения транспортного уровня размер пакета определяется качеством связи (чем меньше пакет, тем ниже вероятность порчи, но тем больше теряется на дополнительной информации: идентификатор сеанса, тип, специальные поля, описывающие логику связи и т.п.). Наконец, если на прикладном уровне определено понятие "пакет", то его размер и содержимое определяются протоколом прикладного уровня.
Таким образом, процесс передачи данных выглядит так: порция данных прикладного уровня нарезается на части, соответствующие размеру пакета транспортного уровня (фрагментируется), к каждому фрагменту приписывается транспортная служебная информация , и получаются пакеты транспортного уровня. Каждый пакет транспортного уровня может быть опять-таки фрагментирован для передачи по сети, к каждому получившемуся фрагменту добавляется служебная информация сетевого уровня, что дает последовательность сетевых пакетов . Каждый из сетевых пакетов тоже может быть фрагментирован до размера, "пролезающего" через конкретное сетевое устройство, – из него формируются пакеты интерфейсного уровня (фреймы). Наконец, к каждому фрейму само устройство ( по крайне мере, так это сделано в Ethernet ) приписывает некоторый ключ , по которому принимающее устройство распознает начало фрейма. В таком виде данные передадутся по проводам. Процесс "заворачивания" пакетов более высокого уровня в пакеты более низкого уровня называется инкапсуляцией.
Компьютер , получивший фрейм , выполняет процедуры, обратные инкапсуляции и фрагментации: пакеты низкого уровня освобождаются от служебной информации и накапливаются до тех пор, пока не сформируется пакет более высокого уровня. Затем этот пакет отсылается на уровень выше и все повторяется до тех пор, пока освобожденные от всей дополнительной информации и заново собранные воедино данные не попадут к пользователю (или к программе, которая их обрабатывает).
Сетевой пакет. Единица передачи информации в компьютерной сети. Помимо передаваемых данных содержит служебную информацию, в частности, идентификаторы отправителя и адресата, контрольную сумму, поля используемого протокола. Наибольший размер пакета определяется чаще всего не объемом передаваемых данных, а требованиями протокола и необходимостью разделять сеть передачи данных между несколькими абонентами.
Читайте также: