Тк 106 коммутатор схема подключения
—Алло, редакция? Посоветуйте что-нибудь: за полгода уже третий коммутатор на «Волге» меняю!
Когда подобные звонки стали раздаваться чуть ли не каждый день, необходимость «разборки» стала очевидной. Действительно, с какой стати система зажигания столь знакомых «402-х» моторов вдруг стала капризничать на новеньких «волжанках»?
Прежде чем хвататься за осциллограф и паяльник, совершим краткий, но совершенно необходимый
«Волга» всегда отличалась самобытностью. Освоив еще в середине восьмидесятых бесконтактное зажигание, она при этом предпочла датчику Холла вращающийся магнит и неподвижную обмотку статора. Такое решение потребовало коммутатор, совершенно не похожий на «восьмерочный». В результате под «волжскими» капотами материализовалась схема, приведенная на рис.1.
Система отвечала принципу «проще некуда». При вращении магнита в обмотке формируется сигнал, похожий на синусоиду — вспомним школьные уроки физики. При низком уровне сигнала коммутатор подключает первичную обмотку катушки зажигания к бортовой сети, а при высоком — отключает. Величина тока в катушке его совершенно не волнует — он упрямо работает по принципу выключателя: «открыл — закрыл». А поскольку сопротивление первичной обмотки катушки Б116 всего 0,43 Ом, то при ее непосредственном подключении к бортовой сети сила тока достигнет 30 А — ни катушка, ни коммутатор в таком режиме не протянут и минуты. Чтобы не случилось беды, между коммутатором и катушкой подключают дополнительный резистор номиналом примерно 1,2 Ом.
Упомянутый резистор — типичный паразит: толку от него никакого. Греется, как утюг, отбирая у бортсети драгоценные ватты и амперы. Когда-то давно он присутствовал во всех катушках зажигания с единственной целью — при пуске мотора его закорачивали, пытаясь таким образом компенсировать «просадку» напряжения аккумулятора. Кроме того, самые умные из резисторов при нагревании увеличивают сопротивление, снижая таким образом ток, — их называют вариаторами.
С появлением VAZ 2101 стало ясно, что современный мотор в подобных поблажках не нуждается — в тольяттинской прописке резистору отказали. А вот прогнать его из Нижнего Новгорода оказалось сложнее. Мало того, на «Волге» стоит не простой резистор, а двухсекционный! Первая секция закорачивается при пуске — это понятно, «402-му» двигателю нужно помочь. Вторая секция включена постоянно — прямо скажем, не лучшее инженерное решение.
Изгнание резистора из бесконтактного зажигания «Волги» затянулось на добрый десяток лет. Наконец, вместо коммутатора типа 13.3734 под капотом GAZ 31029/">GAZ 31029 появился почти такой же с виду 131.3734, а желтенькая коробочка с тремя клеммами исчезла. Неудивительно, что даже специалисты-электрики поначалу пожимали плечами, а вокруг нового изделия поползли слухи, один загадочнее другого. Доводилось слышать, что резистор "спрятали" внутрь коммутатора, что его "изъяли" по рацпредложению для экономии, а также то, что зловредные детальки просто не завезли на конвейер. Неудивительно, что многие горе-умельцы начали исправлять "ошибку" завода самостоятельно, возвращая резистор "на место".
Между тем новый коммутатор на порядок умнее старого. Он автоматически поддерживает величину тока в первичной обмотке. Для этого в цепи транзистора установлено маленькое, но очень важное индикаторное сопротивление, падение напряжения на котором отслеживает специальная микросхема. Если ток мал, микросхема «приоткрывает» транзистор, если велик — «закрывает» его. Эта же микросхема экономит электроэнергию, подключая катушку к бортсети впритык по времени, чтобы к моменту искрообразования та успела накопить нужную энергию. Наконец, при остановленном двигателе новый коммутатор отключит катушку совсем. В результате несмотря на то, что вместо резистора-вариатора теперь отдувается сам транзистор, рассеиваемая на полупроводниках мощность снизилась.
Интересный факт: при попытке подключить последовательно с катушкой упомянутый резистор 1402.3729 мощность, рассеиваемая на коммутаторе, не снизится, а возрастет! Причина проста — резистор увеличивает «постоянную времени» системы, а потому для достижения нужного тока разрыва коммутатору придется поработать подольше (рис. 2). А зачем оказывать машине «медвежью услугу»?
Итак, почему же владельцы новых GAZ 3110, выбравшие старый добрый «402-й» мотор взамен непредсказуемого «406-го», обрели при этом не спокойствие, а головную боль. Неужели можно заблудиться в трех соснах — коммутатор, катушка, резистор?
Справочная литература подсказала, что в системе зажигания «Волги» могут применяться коммутаторы трех типов: 131.3734, 90.3734 и 94.3734. Рынок внес поправку — наша коллекция пополнилась изделием с длинным названием 468 332 008 АНАЛОГ 131.3734. Кроме того, услужливые продавцы как бы невзначай предложили устаревшие 13.3734, 13.3734–01, а также еще одно странное изделие — 468 332 007 АНАЛОГ 13.3734. Катушек зажигания оказалось меньше — к старинной Б116 добавилась современная 31.3705. Резистор 1402.3729 особых изменений не претерпел.
Остается решить простую задачку — из семи коммутаторов, двух катушек и одного резистора составить бригаду, способную управлять зажиганием «Волги» и не испытывать взаимной аллергии.
Сначала разберемся с катушками. Электрические параметры Б116 и 31.3705 практически совпадают, поэтому на «Волге» может ездить любая из них. В то же время маслонаполненная «старушка» Б116 обладает более высокой живучестью при перегревах и прочих неприятностях, а потому отправлять ее на пенсию не стоит.
Коммутаторы разобьем на две группы — «старые» и «новые». «Старые» (фото 1–3) не умеют регулировать время нарастания тока в катушке, «новые» (фото 4–7) должны уметь все.
Из «старичков» самым «твердым искровцем» оказался старооскольский (фото 1) — продуманная и опробованная конструкция. Ульяновское изделие (фото 2) с виду почти такое же, но хуже. Что касается другого «ульяновца» (фото 3), это — полный провал. Те, кто изготовил корпус коммутатора из пластмассы, обрекли силовой транзистор (кстати, он без маркировки) на мученическую смерть в медленном огне: площадь теплоотвода сократилась втрое.
Переходим к «современникам». Старооскольские традиции передаются по наследству — к коммутатору 131.3734 (фото 4) претензий нет. Прослеживается наследственность и в Ульяновске (фото 5), однако здесь радоваться нечему. К отвратительному теплоотводу добавилась пародия на индикаторное сопротивление в виде печатного проводника на плате. Калужский коммутатор (фото 6) сделан добросовестно. Индикаторное сопротивление — покупное, со стабильной характеристикой. Древний «чебоксарец» (фото 7) откровенно не понравился. Индикаторное сопротивление — в виде неряшливой спирали из тонкого медного провода. Ремонтопригодность плохая — винты припаяны к плате. А вертикально установленные элементы запросто могут отвалиться при тряске.
Таким образом, из четырех «современников» на «Волге» могут кататься двое — «староосколец» (фото 4) и «калужанин» (фото 6). Резистор 1402.3729 им противопоказан, а катушка может быть любой — как Б116, так и 31.3705. К сожалению, под капоты нынешних «волжанок» периодически просачивается откровенная халтура, безжалостно убивающая воспоминания о некогда безотказном автомобиле.
Рис. 1. Классическая схема бесконтактного зажигания «Волги»: 1 — датчик-распределитель; 2 — коммутатор; 3 — добавочный резистор; 4 — катушка зажигания.
Рис. 2. График нарастания тока в катушке с добавочным резистором и без него. Заштрихованная область — это и есть перегрев коммутатора.
Фото 1. Коммутатор 13.3734–01 (Старый Оскол). Родоначальник систем бесконтактного зажигания для «Волги». Своего рода эталон — расположение компонентов тщательно продумано, теплоотвод от силового транзистора хороший. Применим только с добавочным резистором. Ток разрыва — 6,5 А.
Фото 2. Коммутатор 13.3734 (Ульяновск). «Двойник» старооскольского «дедушки». Расположение компонентов с точки зрения вибро- и ударопрочности несколько хуже, но в целом — приемлемо. Выбор силового транзистора неудачен. Применим только с добавочным резистором. Ток разрыва — 6,5 А.
Фото 3. Коммутатор 468 332 007 АНАЛОГ 13.3734 (Ульяновск). Иллюстрация к поговорке «Лучшее — враг хорошего». Для элементов почему-то не хватило места на одной стороне платы — пришлось использовать «изнанку». Тепловой режим транзистора катастрофический. Применим только с добавочным резистором. Ток разрыва — 6,5 А.
Фото 4. Коммутатор 131.3734 (Старый Оскол). Добротное изделие с продуманным расположением элементов и хорошим теплоотводом от транзистора. Индикаторный резистор — нихромовая спираль из двух-трех витков. Применяется без добавочного резистора. Ток разрыва — 7,3 А.
Фото 5. Коммутатор 468 332 008 АНАЛОГ 131.3734 (Ульяновск). Очень тяжелый тепловой режим транзистора. Индикаторный резистор в виде печатного проводника на плате не обеспечивает точной регулировки тока разрыва. Очень неудачно расположены элементы, неграмотно сделана проводка. Применяется без добавочного резистора. Ток разрыва — 6,6 А.
Фото 6. Коммутатор 90.3734 (Калуга). Лучший в своем классе. Индикаторный резистор — покупной, со стабильной характеристикой. Прекрасный теплоотвод от силового транзистора зарубежного производства. Высокая вибро- и ударопрочность конструкции. Применяется без добавочного резистора. Единственный прокол — слишком большой ток разрыва: 9,8 А катушка может не выдержать.
Фото 7. Коммутатор 94.3734 (Чебоксары). Ухудшенная копия старооскольского 131.3734. Индикаторный резистор — спираль из медного провода, сопротивление которой сильно зависит от температуры. Низкая ремонтопригодность. Плохая вибро- и ударопрочность. Применяется без добавочного резистора. Ток разрыва — 6,8 А.
Прежде всего давайте познакомимся с системой зажигания грузовика ГАЗ-3307. Система зажигания ГАЗ-3307 — батарейная, бесконтактно-транзисторная с напряжением в первичной цепи 12В, состоит из источников электрического тока, катушки зажигания, добавочного резистора (если я не ошибаюсь где с 2000 года выпускаются уже без добавочного резистора), коммутатора, распределителя зажигания, свечей зажигания, наконечников свечей, выключателя зажигания и проводов низкого и высокого напряжения.
Техническая характеристика системы зажигания автомобилей ГАЗ-3307 (ГАЗ 53)
Порядок зажигания ГАЗ-3307 1 — 5 — 4 - 2—6 — 3 -7 — 8 Тип распределителя зажигания (трамблер) - 24.3706 Частота вращения валика распределителя в 1 мин с бесперебойным искра-образованием при работе с катушкой зажигания Б116 на трехэлектродный разрядник при искровом промежутке 7 мм, мин-1 - 20 — 2300 Направление вращения валика распределителя зажигания (трамблер) ГАЗ-3307 - по часовой стрелке Катушка зажигания ГАЗ-3307 - Б116 Свечи зажигания - А11 Величина искрового промежутка в свечах, мм - 0,8 — 0,95 Добавочный резистор - 14.3729 Коммутатор - 131.3734 или 13.3734 Наконечник свечи - 35.3707200
Схема системы зажигания ГАЗ-3307
И так , как я уже говорил в наше время у грузовика ГАЗ-3307 система зажигания потерпела небольшие изменения.
Как я уже писал это произошло после 2000 года, это примерно я говорю. Точно не скажу боюсь ошибиться , а гуглить-искать не стал времени на это просто нет да и особо не интересно. Если Вам интересно поищите потом со мной тоже поделитесь. Можно оставить комментарий.
Это касается транзисторного коммутатора марок 13.3734 и 131.3734
Разницу видите всего одна цифра то есть было 13.3734 это до 2000 года , а стали выпускать ГАЗ-3307 уже после 2000 года с коммутатором 131.3734. И так всего одна цифра и вот это одна цифра , то есть , как Вы заметили , цифра 1 убирает с системы зажигания ГАЗ-3307 добавочный резистор - 14.3729.
То есть попросту говоря функцию добавочного резистора - 14.3729. встроили в транзисторный коммутатор 131.3734.
Хочу Вас предупредить кто то может сказать "да я вот поставил вместо марки 131.3734 марку 13.3734 и не чего машина работает" соглашусь с ним .
ГАЗ-3307 конечно будет работать и поедет нормально но не далеко. А почему , Вы спросите конечно , и будете правы надо же узнать почему? Да потому что у Вас просто на просто перегорит катушка зажигания (бобина) .
Почему это произойдет: Катушка зажигания , ГАЗ-3307 (Б 116) представляет собой трансформатор, на железном сердечнике которого намотаны вторичная, а сверху ее первичная обмотки. Сердечник с обмотками установлен в герметичном стальном корпусе, наполненном маслом и закрытом высоковольтной пластмассовой крышкой.
Рабочая температура от -50° С до +80° С. Величина сопротивления при температуре 25°С: первичной обмотки (0,65+0,07) Ом, вторичной обмотки (18+1,8) кОм.
Развиваемое вторичное напряжение 18 кВ макс. Напряжение питания 12 В. Вес 0,95 кг. При работе катушка зажигания Б-116 питается пониженным напряжением через добавочный резистор-14.3729. Резистор при работе нагревается, это нормально. Резистор , при включений стартера (при пуске двигателя) шунтируется и катушка питается полным напряжением (точнее бортовым, просаженным стартером) это облегчает пуск.
После выключения стартера снова берется за "работу" добавочный резистор-14.3729. И вот приставьте себе такую картину ГАЗ-3307 ну скажем после 2000 года выпуска там конечно же зажигание без добавочного резистора-14.3729 и катушка зажигания Б-116 и транзисторный коммутатор 131.3734 , а Вы взяли и поставили транзисторный коммутатор 13.3734 , и что дальше ГАЗ-3307 конечно же заведется мало того поедет нормально (как я уже излагал выше) не далеко катушка перегорит. То есть понижать бортовое напряжение , для катушки зажигания, уже не кому .
А как нам уже известно катушка зажигания Б-116 питается пониженным напряжением через добавочный резистор-14.3729 или же с добавленной функцией понижения напряжения в транзисторный коммутатор марки 131.3734.
И в последствий катушка зажигания Б-116 просто перегорит.
Еще не могу не отметить такой момент . Есть еще катушка зажигания Б-114
Как Вы заметили она на вид не чем не отличается от Б-116 (некоторые ставят её) она тоже подходит на ГАЗ 3307 , но я лично не советую Вам её ставить . ГАЗ-3307 конечно же будет работать (сам проверял , приходилось с катушкой зажигания Б-114 до дома доезжать , когда Б-116 перегорел ) Если Вы поставите её и поедите можете не почувствовать разницу , но в конце концов это отразится на расход топлива (увеличиться)и конечно же на тягу автомобиля (уменьшиться), двигатель будет работать неустойчиво . Просто на просто катушка зажигания Б-114 предназначена для ГАЗ-53 с контактно-транзисторной системой зажигания
Схема подключения системы зажигания нового образца. Коммутатор 131.3734.
1. Свечи; 2. Помехоподавительные сопротивление; 3. Трамблер; 4. Коммутатор; 5. Катушка зажигания; 6. Генератор; 7. Предохранитель; 8. АКБ; 9. Замок зажигания.
Схема включения коммутатора 131.3734 в составе системы зажигания:
Схема подключения системы зажигания старого образца. Коммутатор 13.3734.
1. Трамблер; 2. Коммутатор; 3. Добавочный резистор (вариатор); 4. Катушка зажигания.
С контактно-транзисторной системой зажигания можно ознакомится вот в этой статье:
Контактно-транзисторная система зажигания ГАЗ-53.
И так друзья мы с Вами , как я считаю , закончили ознакомление с системой зажигания грузовика ГАЗ-3307 (ГАЗ-53). Если вдруг у Вас возникнут какие то вопросы можно оставить комментарии.
А теперь давайте разбираться какие причины бывают отсутствия искры.
Если вдруг, Вы что то не нашли, или у Вас просто нет времени на поиски, то я рекомендую ознакомиться со статьями в категорий "Ремонт ГАЗ". Я уверен Вы найдете ответ на свой вопрос, а если же нет напишите в комментариях интересующий Вас вопрос я обязательно отвечу.
Доброго времени суток, уважаемый читатель. Сегодня мы поговорим о системе зажигания, электро пуска и электропитания автомобиля ГАЗ 21, Москвич 412, УАЗ 469.
Источником тока в автомобилях является аккумулятор и генератор. Как во всех автомобиля такого типа (ГАЗ, УАЗ, Москвич, ЗАЗ), минус аккумулятора идёт на корпус автомобиля. Как на всех старых машинах : плюс АКБ идёт по толстому кабелю к контактному болту стартера :(клемма Б). От него ток идёт на амперметр по красно чёрному проводку КЧ. К выводу амперметра подключается клемма Б реле-регулятора по черному проводу (силовой вывод генератора). От амперметра ток идёт на клемму АМ замка зажигания. АМ -амперметр .
П ри переключении положения замка зажигания клемма АМ соединяется с клеммами КЗ, ПР, СТ:
При включенном зажигании + идёт на клеммы КЗ и ПР,
При положении "Стартер" + идёт на клеммы КЗ, ПР, СТ.
В отличии от автомобиля Москви ч, на автомобилях ГАЗ применяется вспомогательное реле стартера . Сделано это для того чтобы разгрузить замок зажигания.
Реле стартера является нормально разомкнутым. Один конец обмотки-К -подключается к клемме СТ замка зажигания. К-ключ.
Другой конец К подключают к выводу Я реле регулятора, он будет служить в качестве минуса обмотки реле стартера.
Силовой конец реле Б -соединен с плюсом аккумулятора по коричнево-черному проводу. Б-батарея.
Другой силовой конец С - с оединён клеммой включения тягового реле стартера по бело-черному проводу . С-стартер
При включении замка в положение "Стартер", срабатывает обмотка вспомогательного реле, силовые концы Б и С замыкаются, срабатывает втягивающее реле, стартер крутит мотор.
При попытке включить стартер на работающем двигателе , обмотка вспомогательного реле просто не сработает. Так как генератор будет выдавать ток, на клемме Я будет положительный потенциал. Это особенность всех автомобилей с генератором постоянного тока, своего рода блокировка стартера.
Дальше всё как у всех собратьев (УАЗ, Москвич):
трамблёр вращается против часовой стрелки
при включении стартера катушка зажигания питается от клеммы КЗ втягивающего реле в обход вариатра /резистора, через клемму ВК.
ВК-включатель стартера. (Желто-черный провод)
при работающем двигателе катушка зажигания питается от клеммы КЗ замка зажигания , через клемму ВК-Б и вариатор/резистор.
Однако, механические (контактные) коммутаторы имели ряд существенных недостатков, которые по мере развития и совершенствования автомобильных двигателей проявлялись все отчетливее. Контакты имели склонность к подгоранию, требовали систематической чистки и регулировки зазора, и не могли «похвастать» стабильностью создаваемого импульса по величине и продолжительности.
Кроме того, они обладали заметной инертностью, как и все механические устройства, что ограничивало возможности высокооборотистых двигателей, а недостаточно продолжительная и мощная искра была камнем преткновения для увеличения степени сжатия.
Тем не менее, такие системы зажигания длительное время использовались в автомобилях, и только появление и совершенствование полупроводниковых приборов позволило конструкторам совершить своеобразную революцию в способе коммутации управляющих импульсов.
На первых порах от использования механических контактов прерывателя конструкторы не отказались, но решили проблему с их электрической нагрузкой, приводящей к подгоранию. Через контакты прерывателя пропускался слабый ток управления, который подавался на базу мощного транзистора, служащего усилителем сигнала, поступающего в первичную цепь катушки зажигания.
Так появились контактно-транзисторные системы зажигания, и первые полупроводниковые коммутаторы. Впоследствии конструкторы систем зажигания отказались от механических контактов, использовав для формирования маломощного импульса различные магнитоэлектрические датчики, а также датчики, работающие на эффекте Холла.
Усовершенствование этих устройств продолжается и в настоящее время, при этом современные коммутаторы автомобильных систем зажигания совершенно отличаются от своих механических и даже транзисторных «предков».
Применение полупроводниковых и микропроцессорных коммутаторов в контактно-транзисторных или бесконтактных системах зажигания позволяет получить следующие преимущества:
- уменьшается ток, протекающий по контактам прерывателя, вследствие чего они практически перестают подгорать (для контактно-транзисторной системы зажигания);
- увеличивается длительность подачи искры, что гарантирует эффективное воспламенение рабочей смеси в цилиндрах двигателя;
- появляется возможность существенного увеличения степени сжатия в цилиндрах двигателя, а также частоты вращения коленчатого вала без ущерба для надежности искрообразования.
В целом увеличивается надежность работы системы зажигания и снижается трудоемкость ее технического обслуживания.
Выпускаемые коммутаторы контактно-транзисторных и бесконтактных систем зажигания делятся на три группы:
- коммутаторы на дискретных полупроводниковых компонентах с использованием корпусных интегральных микросхем, установленных на печатных платах;
- коммутаторы, выполненные по толстопленочной технологии с применением стандартных бескорпусных и дискретных компонентов;
- коммутаторы, изготовленные по гибридной технологии с использованием специальной твердотельной микросхемы, на которой реализуются основные функциональные узлы коммутатора.
Коммутаторы для контактно-транзисторных систем зажигания
Коммутаторы контактно-транзисторных систем и коммутаторы с постоянной скважностью импульсов выходного тока для бесконтактных систем зажигания функционально просты и содержат небольшое количество полупроводниковых компонентов (как правило, не более четырех транзисторов). Они относятся к первой группе. Их основой служит литой алюминиевый корпус, имеющий ребристую наружную поверхность для улучшения теплоотдачи.
Внутри корпуса расположены все элементы коммутатора за исключением выходного транзистора, который монтируется на корпусе в специальном кармане.
Для многих типов транзисторов (например, n-p-n) необходима изоляция от корпуса коммутатора, поэтому они монтируются через специальную прокладку. Для снижения теплового сопротивления перехода между корпусом коммутатора и прокладкой наносят теплопроводные пасты, благодаря чему охлаждение выходного транзистора более интенсивно.
Для подключения коммутатора к бортовой сети автомобиля и к элементам системы зажигания используется клеммная колодка.
Коммутатор ТК102
На рис. 1 показан коммутатор ТК102, относящийся к первой группе, который предназначен для работы в контактно-транзисторной системе зажигания автомобилей с восьмицилиндровыми двигателями, но может быть использован для работы с любым классическим распределителем зажигания. В качестве нагрузки используется катушка Б114 (W2/W1 = 235; L1 = 3,7 мГн; R1 = 0,42 Ом).
Для ограничения первичного тока используется добавочное сопротивление СЭ107 (1,04 Ом). Коммутатор ТК102 имеет один мощный германиевый транзистор ГТ701А (VT1), стабилитрон Д817В (VD2) и диод Д7Ж (VD1), служащие для защиты от перенапряжения силового транзистора VT1.
Дроссель L1 и резистор R1 предназначены для ускорения процесса запирания транзистора VT1, конденсатор С1 первичного контура возбуждения катушки зажигания и конденсатор С2 служат для защиты компонентов схемы коммутатора от скачков напряжения в бортовой сети автомобиля.
В случае отказа коммутатора (например, при выходе из строя транзистора) можно перекинуть провода в стандартное положение, и двигатель продолжит работать, что позволит водителю добраться до места ремонта.
Коммутаторы для бесконтактных систем зажигания
Коммутаторы этого типа используются в системах зажигания, где для формирования импульса управления током первичной цепи катушки зажигания используются не механически управляемые контакты, а магнитоэлектрические датчики.
Электронные коммутаторы бесконтактных систем зажигания выполняют следующие функции:
- формирование выходного токового импульса необходимой амплитуды и продолжительности, подаваемого к первичной обмотке катушки (или катушек) зажигания для обеспечения заданного уровня высокого напряжения и энергии искры;
- обеспечение момента искрообразования в соответствии с заданным фронтом управляющего импульса, поступающего на вход коммутатора;
- стабилизация параметров выходного токового импульса при колебаниях напряжения бортовой сети автомобиля и воздействии внешних факторов.
Различные коммутаторы могут выполнять и дополнительные функции:
- стабилизация питания и защита от импульсов перенапряжения в бортовой сети автомобиля в аномальных режимах микропереключателя, работающего на эффекте Холла;
- ограничение амплитуды импульса вторичного напряжения в аномальных режимах (например, в режиме открытой цепи);
- предотвращение протекания первичного тока через первичную обмотку катушки зажигания при включенном замке зажигания и неработающем двигателе.
На входные клеммы коммутатора поступают импульсы управления, формируемые бесконтактным датчиком углового положения коленчатого вала двигателя или электронным регулятором напряжения – коллектором.
Выходом (нагрузкой) коммутатора является первичная обмотка катушки (или катушек) зажигания. В случае, когда коммутатор обслуживает две или несколько катушек, он выполняет функцию распределителя высоковольтных импульсов по цилиндрам двигателя.
Многочисленные коммутаторы бесконтактных систем зажигания можно разделить на две группы:
- коммутаторы с постоянной скважностью выходного первичного импульса тока (скважность – отношение периода следования импульсов к их длительности), не зависящей от частоты вращения коленчатого вала двигателя;
- коммутаторы с нормируемой скважностью выходного импульса тока.
Общим для обеих групп коммутаторов является наличие в выходной цепи мощного выходного транзистора, способного коммутировать токи амплитудой до 10 А в индуктивной нагрузке коллектора.
Коммутатор 13.3734
Примером коммутаторов для бесконтактных систем зажигания может служить коммутатор 13.3734, разработанный на базе первого серийного отечественного коммутатора ТК200 «Искра». Коммутатор предназначен для совместной работы с бесконтактным магнитоэлектрическим датчиком, катушкой зажигания Б116 и добавочным сопротивлением 14.379.
Коммутатор 13.3734 (рис. 2) содержит выходной резистор VT3 (КТ848А), каскад предварительного усиления на транзисторе VT2 (КТ630Б) и резисторе R7, формирователь сигнала датчика на транзисторе VT1 (КТ630Б) и элементах R1-R8, С1, VD1, VD2.
Между выходом и входом коммутатора имеется положительная обратная связь (R10, С7), обеспечивающая стабильную работу коммутатора на пусковых частотах вращения валика распределителя (20…30 об/мин). Цепь R3-С1 служит для уменьшения электрического смещения момента зажигания в зависимости от частоты вращения вала датчика.
Коммутатор содержит также элементы схемы (С2-С4, VD3, VD4, R8) и цепи защиты выходного транзистора (С5, С6, R9). Коммутатор выполнен на печатной плате, на которой смонтированы маломощные элементы схемы. Плата установлена в оребренный литой дюралюминиевый корпус, где размещены силовые элементы.
Коммутаторы с нормируемой скважностью импульсов выходного тока
Коммутатор 36.3734
Первый отечественный коммутатор 36.3734 с нормируемой скважностью импульсов выходного тока, применяемый на автомобиле ВАЗ-2108, выполнен также по дискретной технологии и предназначен для работы с бесконтактным датчиком, работающим на эффекте Холла.
В качестве нагрузки используется катушка зажигания 27.3705 (W2/W1 = 85; L1 = 3,8 мГн; R1 = 0,5 Ом).
В коммутаторе 36.3734 реализовано программное регулирование времени накопления энергии в первичной обмотке катушки зажигания, активное ограничение уровня первичного тока (8…9 А), ограничение амплитуды импульса первичного напряжения (350…380 В), безыскровое отключение первичного тока при остановленном двигателе (Тоткл = 1,53 с). Последнее предназначено для плавного запирания коммутационного транзистора для предотвращения искрообразования при остановке двигателя, когда катушка зажигания осталась под током.
В коммутаторе 36.3734 функциональные основные узлы выполнены на операционных усилителях DA1.1-DA1.4, которые являются компонентами микросхемы К1401УД1.
На базе усилителей DA12 и DA13 реализованы интегратор и компаратор (нормирование скважности импульсов) выходного тока. На усилителе DA1.1 собрана схема безыскрового отключения тока, на усилителе DA1.4 – компаратор ограничения амплитуды выходного тока. В качестве выходного транзистора применен транзистор Дарлингтона КТ848А.
Конструктивно коммутатор представляет собой печатную плату, на которой размещены радиокомпоненты схемы, за исключением выходного транзистора VT4, защитного диода VD7 и стабилитрона VD4 ограничителя напряжения питания, которые смонтированы на корпусе коммутатора.
Для подключения коммутатора к бесконтактному датчику Холла, к катушке зажигания и источнику питания используется съемно-контактный разъем.
Коммутатор 42.3734
Электрическая схема дискретного двухканального коммутатора 42.3734 разработана на основе электрической схемы коммутатора 36.3734. Основное различие заключается в наличии двух выходных каскадов (VT4, VT6 и VT5, VT7), управляющих работой выходных транзисторов VT8 и VT9. В свою очередь выходные каскады управления каналов коммутатора посредством ключевого каскада на транзисторе VT2 (КТ342А).
Схема коммутатора также снабжена устройством формирования сигнала для управления тахометром (VD14, VD15, R53, R54).
Коммутатор 42.3734 выполнен на двух печатных платах (рис. 3): плате управления А1, на которой размещена операционная часть коммутатора, и силовой плате А2 с элементами выходных каскадов и выходными транзисторами. Причем последние смонтированы на дополнительном теплоотводе. Платы установлены в корпусе одна над другой.
Достоинства и недостатки различных типов коммутаторов
К недостаткам коммутаторов первой группы можно отнести большие габаритные размеры и массу, а также при крупносерийном производстве низкую технологичность и недостаточную надежность в связи с большим числом радиокомпонентов.
Существенного снижения массогабаритных показателей можно добиться при изготовлении коммутаторов по толстопленочной технологии с применением стандартных бескорпусных компонентов. Однако такая технология является относительно дорогой и трудоемкой, поэтому не нашла широкого применения в промышленном крупносерийном производстве коммутаторов.
Наилучшими показателями с точки зрения трудоемкости и технологичности производства, а также надежности обладают коммутаторы третьей группы, которые содержат специальную микросхему, где размещаются основные функциональные узлы: схема нормирования скважности с адаптацией по уровню выходного тока, схема безыскрового отключения тока, устройство ограничения тока и др. По гибридной толстопленочной технологии выполняется силовая часть схемы коммутатора с элементами защиты от импульсных перегрузок по цепи питания. Примером использования этой технологии может служить коммутатор 0.227.100.103 фирмы «Бош» (Германия), схема которого приведена на рис. 4.
В схему входят следующие элементы: бескорпусной выходной транзистор VT1; специализированная микросхема DA1 (МА 7355) с миниатюрными навесными конденсаторами С2-С5, выполняющая основные функции коммутатора; корпусные диод VD1, стабилитрон VD2, миниатюрный конденсатор С1 и толстопленочные резисторы R3, R4, выполняющие функции защиты от импульсных перенапряжений в бортовой сети и перепутывания полярности аккумуляторной батареи.
Также имеются толстопленочные резисторы, служащие для изменения и подстройки требуемых уровней первичного тока (R6, R7, R10) и первичного напряжения (R8, R9). Цепь защиты выходного транзистора выполнена на дискретных элементах С7 и R11.
Налажен выпуск аналогичных коммутаторов, выполненных в виде большой гибридной интегральной схемы (БГИС), представляющей собой толстопленочную микросборку операционной части и микросборку силовой части коммутатора, смонтированные на медном основании СА из полимерного материала. Причем корпус выполнен заодно с семиштырьковым разъемом. Корпус герметизируется приклеиваемой крышкой. Подложками толстопленочных сборок служит алюмооксидная керамика (Al2O3).
Внешний вид одноканального и двухканального коммутаторов показан на рис. 5.
По мере развития цифровой и микропроцессорной техники и разработки комплексных систем управления двигателем транзисторный коммутатор, сохраняя свое функциональное назначение, в конструктивном плане может не иметь очертания самостоятельного изделия, объединяясь в единую конструкцию с цифровым контроллером. Следующим шагом на пути интеграции электронного блока является передача функции нормирования скважности импульса выходного тока в схему контроллера. В этом случае модуль коммутатора реализует функции распределения высоковольтных импульсов, ограничения тока и первичного напряжения, выдачи сигнала обратной связи об уровне тока в катушке зажигания.
Контроллеры
Выпускаются контроллеры серии МС2715.03 для легковых автомобилей ВАЗ-21083 и МС2713.01 для грузовых автомобилей ЗИЛ-4314, предназначенные для управления углом опережения зажигания по оптимальной характеристике регулирования на основе информации от датчиков начала отсчета, частоты вращения коленчатого вала двигателя, разрежения в задроссельном пространстве карбюратора (или впускном трубопроводе инжекторного двигателя) и температуры охлаждающей жидкости.
Контроллеры осуществляют также управление электроклапаном экономайзера принудительного холостого хода (ЭПХХ). Контроллер МС2715.03 для легковых автомобилей с четырехтактным четырехцилиндровым двигателем вырабатывает сигнал «Выбор канала» для обеспечения функции статического распределения энергии по цилиндрам двигателя.
Структурная схема контроллера приведена на рис. 6. На выводы контроллера поступают сигналы датчика начала отсчета (НО), датчика угловых импульсов (УИ), датчика частоты вращения коленчатого вала (КВ), датчика разрежения (Р), датчика температуры охлаждающей жидкости (Тохл).
После обработки сигналов датчиков в аналого-цифровом преобразователе (АЦП) информация о параметрах двигателя в виде цифровых кодов поступает в процессор, который производит вычисление частоты вращения коленчатого вала двигателя, разрежения, температуры, углового положения коленчатого вала двигателя и на основании этих данных вычисляет угол опережения зажигания в соответствии с картой углов опережения зажигания двигателя, которая хранится в памяти процессора.
Синхронизация работы контроллера с работой двигателя и формирование сигнала «Выбор канала» производится посредством импульсов датчика НО. Выходные сигналы процессора управляют работой формирователей импульса зажигания (ФИЗ) и выбора канала усилителя ЭПХХ. Сигналы ФИЗ и ВК непосредственно управляют работой двухканального коммутатора.
Читайте также: