Программа на языке программирования это какая модель
В предыдущем разделе, посвященном языку Паскаль, приведено немало примеров программ. Однако, при анализе готовой программы чаще всего не ясно, как разработчики к ней пришли. В этом разделе рассказывается об общих моментах в технологии программирования. Конечно, при разработке небольших учебных программ не все элементы этой технологии следует отрабатывать (да это и не всегда возможно по-существу), однако само ее существование должно быть осознано.
Современный подход к проектированию программ основан на декомпозиции задачи, которая в свою очередь основана на использовании абстракций. Целью при декомпозиции является создание модулей, которые представляют собой небольшие, относительно самостоятельные программы, взаимодействующие друг с другом по хорошо определенным и простым правилам. Если эта цель достигнута, то разработка отдельных модулей может осуществляться различными людьми независимо друг от друга, при этом объединенная программа будет функционировать правильно.
Различают абстракцию через параметризацию и через спецификацию. Смысл абстракции через параметризацию в том, что одним алгоритмом можно решать задачи, отличающихся различными исходными данными, задаваемыми как параметры. Смысл абстракции через спецификацию в том, что разными алгоритмами можно получить один и тот же искомый результат. При этом описываются результаты работы программы, смысл обращения к программе становится ясным через анализ ее спецификации, а не самого текста программы.
Разработка любой программы или программной системы начинается с определения требований к ней для конкретного набора пользователей и заканчиваете," эксплуатацией системы этими пользователями.
Существуют различные подходы и технологии разработки алгоритмов и программ. Хотя программирование в значительной степени искусство, тем не менее. можно систематизировать и обобщить накопленный профессиональный опыт. По современным взглядам проектирование и разработку программ целесообразнс разбить на ряд последовательных этапов:
2) проектирование программы;
3) построение модели;
4) разработка алгоритма;
5) реализация алгоритма;
6) анализ алгоритма и его сложности;
7) тестирование программы;
Кратко остановимся на каждом из этих этапов.
При постановке задачи для крупных компьютерных программ необходимо провести следующие работы:
• выработать требования (свойства, качества и возможности), необходимые для решения проблемы или достижения цели (как правило, эта деятельность носит экспертный характер);
• разработать спецификации, включающие:
• цель программы;
• граничные условия;
• описание функций системы;
• спецификации входных и выходных данных;
• верификационные требования (установление тестовых случаев);
• тип и количество документов.
В ходе этой работы выявляются свойства, которыми должна обладать система в конечном виде (замысел), описываются функции системы, характеристики интерфейса.
Чтобы приступить к решению задачи необходимо точно ее сформулировать. В первую очередь, это означает определение исходных и выходных данных, т.е. ответы на вопросы: а) что дано; б) что нужно найти. Дальнейшая детализация постановки задачи представляет собой ответы на серию вопросов такого рода:
• как определить решение;
• каких данных не хватает и все ли они нужны;
• какие сделаны допущения и т.п.
Проектирование программы. Сначала производится проектирование архитектуры программной системы. Это предполагает первичную (общую) стадию проектирования и заканчивается декомпозицией спецификаций в структуру системы. Обычно на модульном уровне по каждому модулю разрабатывается спецификация модуля:
• имя/цель - дается имя модулю и предложение о функции модуля с формальными параметрами;
• неформальное описание - обзор действий модуля;
• ссылки - какие модули ссылаются на него и на какие модули ссылается данный модуль;
• вход/выход - формальные и фактические параметры, глобальные, локальные и связанные (общие для ряда модулей) переменные;
• примечания - полезные комментарии общего характера по модулю.
Для проектирования программ существуют различные подходы и методы. Современный подход к проектированию основан на декомпозиции, которая, в свою очередь, основана на использовании абстракции. Целью при декомпозиции является создание модулей, которые взаимодействуют друг с другом по определенным и простым правилам. Декомпозиция используется для разбиения программы на компоненты, которые затем могут быть объединены.
Методы проектирования архитектуры делятся на две группы:
1) ориентированные на обработку и
2) ориентированные на данные.
Методы, ориентированные на обработку, включают следующие общие идеи.
а) Модульное программирование. Основные концепции:
• каждый модуль реализует единственную независимую функцию;
• имеет единственную точку входа/выхода;
• размер модуля минимизируется;
• каждый модуль разрабатывается независимо от других модулей;
• система в целом построена из модулей. Исходя из этих принципов каждый модуль тестируется отдельно, затем после кодирования и тестирования происходит их интеграция и тестируется вся система.
б) Функциональная декомпозиция.
Подобна стратегии «разделяй и управляй». Практически является декомпозицией в форме пошаговой детализации и концепции скрытия информации. Каждый модуль характеризуется субъективным решением проектировщика, связь осуществляется с помощью хорошо организованных интерфейсов.
в) Проектирование с использованием потока данных.
Использует поток данных как генеральную линию проектирования программы. Содержит элементы структурного проектирования сверху-вниз с пошаговой детализацией:
• экспертиза потоков данных и отображение графа потока данных;
• анализ входных, центральных и выходных преобразующих поток данных элементов;
• формирование иерархической структуры программы;
• детализация и оптимизация структуры программы.
г) Технология структурного анализа проекта.
Основана на структурном анализе с использованием специальных графических средств построения иерархических функциональных связей между объектами системы. Эффективна на ранних стадиях создания системы, когда диаграммы просты и читаемы.
Методы проектирования, основанные на использовании структур данных, описаны ниже.
а) Методология Джексона.
Здесь структура данных - ключевой элемент в построении проекта. Структура программы определяется структурой данных, подлежащих обработке. Программа представляется как механизм, с помощью которого входные данные преобразуются в выходные. В методе предусматривается:
• разработка и изображение структуры входных и выходных данных;
• изображение структуры программы путем соединения изображений этих структурных элементов:
• определение дискретных операций над структурами данных;
• построение алгоритмов обработки структур данных.
б) Методология Уорнера.
Подобна предыдущей, но процедура проектирования более детализирована. Используются следующие виды представления проекта:
• диаграммы организации данных (описывают входные и выходные данные);
• диаграммы логического следования (логический поток этих данных);
• список инструкций (команды, используемые в проекте);
• псевдокод (описание проекта);
• определение входных данных системы;
• организация входных данных в иерархическую структуру;
• детальное определение формата элементов входного файла;
• то же самое для выходных данных;
•спецификация программы: чтение, ветвление, вычисление, выходы, вызови подпрограмм;
• составление диаграммы (по типу блок-схем) указывающие логическую последовательность инструкций.
в) Метод иерархических диаграмм.
В этом методе определяется связь между входными, выходными данными и процессом обработки с помощью иерархической декомпозиции системы (без детализации). По сути используются три элемента: вход, обработка, выход.
Алгоритм проектирования по этому методу заключается в следующих шагах:
• начать с наивысшего уровня абстракции, определив вход, выход, обработку;
• соединить каждый элемент входа и выхода с соответствующей обработкой;
• документировать каждый элемент системы, используя диаграммы;
• детализировать диаграммы, используя шаги 1 - 3.
г) Объектно-ориентированная методология проектирования.
Основана на концепции упрятывания информации и абстрактных типов данных. Рассматриваются данные, модули и системы в качестве объектов. Каждый объект содержит некоторую структуру данных с набором процедур, знающих как работать с этими данными. По этой методологии создаются абстракции по заданной проблемной области:
· развитие неформальной стратегии, удовлетворяющей требованиям к системе;
· создание объектов и их атрибутов;
· определение операций над объектами;
Построение модели в большинстве случаев является непростой задачей. Чтобы приобрести опыт в моделировании, необходимо изучить как можно больше известных и удачных моделей.
При построении моделей, как правило, используют два принципа: дедуктивный (от общего к частному) и индуктивный (от частного к общему).
При дедуктивном подходе (рис.3.3) рассматривается частный случай общеизвестной фундаментальной модели. Здесь при заданных предположениях известная модель приспосабливается к условиям моделируемого объекта. Например, можно построить модель свободно падающего тела на основе известного закона Ньютона та = mg - Fcoпp и в качестве допустимого приближения принять модель равноускоренного движения для малого промежутка времени.
Индуктивный способ (рис.3.4) предполагает выдвижение гипотез, декомпозицию сложного объекта, анализ, затем синтез. Здесь широко используется подобие, аналогичное моделирование, умозаключение с целью формирования каких-либо закономерностей в виде предположений о поведении системы.
Технология построения модели при индуктивном способе:
1) эмпирический этап
2) постановка задачи для моделирования;3) оценки; количественное и качественное описание;
4) построение модели.
Разработка алгоритма - самый сложный и трудоемкий процесс, но и самый интересный в творческом отношении. Выбор метода разработки зависит от постановки задачи, ее модели. (О некоторых приемах и методах разработки алгоритмов говорилось ранее в гл. 1 и будет сказано в следующих разделах данной главы.) На этом этапе необходимо провести анализ правильности алгоритма, что очень непросто и трудоемко. Наиболее распространенная процедура доказательства правильности алгоритма - это прогон его на множестве различных тестов. Однако, это не гарантирует того. что не может существовать случая, в котором программа «не сработает». В общей методике доказательства правильности алгоритма предполагают, что алгоритм описан в виде последовательности шагов. Для каждого шага предлагается некое обоснование его правильности для всех подходящих входных (условиях до данного шага) и выходных данных (условиях после этого шага). Затем предлагается доказательство конечности алгоритма с окончательными исходными входными и выходными данными.
На этапе реализации алгоритма происходит конструирование и реализация алгоритма, включая:
По сути проводится перевод проекта в форму программы для конкретного компьютера, сборка системы и ее прогон при тестовых и нормальных условиях для подтверждения ее работы в соответствии со спецификациями системы. Этот этап зависит от того, какой язык программирования выбран, на каком компьютере алгоритм будет реализован. С этим связаны выбор типов данных, вводимых структур данных, связь с окружающей средой и т.п. Важно осознавать интерактивность, вид транслятора (компилятор или интерпретатор), наличие библиотек подпрограмм, модулей и объектов.
Анализ алгоритма и его сложности необходим для оценки ресурсов компьютеров, на которых он будет работать, времени обработки конкретных данных, приспособления в работе в локальных сетях и телекоммуникациях. Хотелось бы также иметь для данной задачи количественный критерий для сравнения нескольких алгоритмов с целью выбора более простого и эффективного среди них.
Перед началом эксплуатации программы необходим этап ее отладки и тестирования.
Тестирование - это процесс исполнения программ с целью выявления (обнаружения) ошибок. Тестирование - процесс деструктивный, поэтому считается, чти тест удачный, если обнаружена ошибка. Хорошим считается тест, который имеет большую вероятность обнаружения еще не выявленной ошибки. Удачным считается тест, который обнаруживает еще не выявленную ошибку.
Существуют различные способы тестирования программ.
Тестирование программы как «черного ящика» (стратегия «черного ящика» определяет тестирование с анализом входных данных и результатов работы программы). Критерием исчерпывающего входного тестирования является использование всех возможных наборов входных данных.
Тестирование программы как «белого ящика» заключается в стратегии управления логикой программы, позволяет использовать ее внутреннюю структуру. Критерием выступает исчерпывающее тестирование всех маршрутов и управляющих структур программы.
Разумная и реальная стратегия тестирования - сочетание моделей «черного» и «белого ящиков».
• описание предполагаемых значении выходных данных или результатов должно быть необходимой частью тестового набора;
• тесты для неправильных и непредусмотренных входных данных следует разрабатывать так же тщательно, как для правильных и предусмотренных;
• необходимо проверять не только делает ли программа то, для чего она предназначена, но и не делает ли она то, что не должна делать;
• нельзя планировать тестирование в предположении, что ошибки не будут обнаружены;
• вероятность наличия необнаруженных ошибок в части программы пропорциональна числу ошибок, уже обнаруженных в этой части;
• тестирование - процесс творческий.
При разработке программ очень полезным бывает метод «ручного тестирования» без компьютера на основе инспекции и сквозного просмотра (тестирование «всухую»).
Инспекция и сквозной просмотр - это набор процедур и приемов обнаружения ошибок при чтении текста.
Основные типы ошибок, встречающихся при программировании:
• обращения к переменным, значения которым не присвоены или не инициализированы;
• выход индексов за границы массивов;
• несоответствие типов или атрибутов переменных величин;
• явные или неявные проблемы адресации памяти;
• ошибочные передачи управления;
• логические ошибки.
При проектировании процедуры тестирования предусматривают серии тестов, имеющих наивысшую вероятность обнаружения большинства ошибок. Для целей исчерпывающего тестирования создают эквивалентные разбиения входных параметров. причем предусмативают два класса: правильные входные данные и неправильные (ошибочные входные значения). Для каждого класса эквивалентности строят свой тест. Классом эквивалентности тестов можно назвать такое множество тестов, что выполнение алгоритма на одном из них гарантирует аналогичный результат прогона для других.
Особое внимание необходимо уделять тестам на граничных условиях. Граничные условия - это ситуации, возникающие непосредственно на, выше или ниже границ входных и выходных классов эквивалентности (т.е. вблизи границ эквивалентных разбиений). В частности, примерами классов эквивалентных тестов для алгоритма решения квадратного уравнения могут служить следующие классы: множество действительных, отличных от нуля, чисел а, b, с, таких, что b∙b - 4∙а∙с < 0; множество чисел а = 0, b и с не равны нулю; b = 0, а и с не равны нулю, и т.п.
Сам процесс тестирования может быть пошаговым и/или монолитным. В том и в другом случае используют стратегии нисходящего тестирования, - начиная с верхнего, головного модуля, и затем подключая последовательно другие модули (аппарат заглушек), и восходящего тестирования, начиная с тестирования отдельных модулей.
В процессе отладки программы используют метод грубой силы - использование выводов промежуточных данных по всей программе (трассировка) или использование автоматических средств. Например, в Турбо-Паскале имеется в наличии мощный аппарат автоматической отладки программ (режим DEBUG ).
Есть золотое правило программистов - оформляй свои программы в том виде, в каком бы ты хотел видеть программы, написанные другими. К каждому конечному программному продукту необходимо документированное сопровождение в виде помощи ( help ), файлового текста ( readme . txt ).
У любого языка программирования одна цель - написание алгоритмов для последующего их выполнения и получения результата. Однако особенности и сфера применения у них разная. Разработка программ делится на множество сфер, к которым применим тот или иной язык. Также языки отличаются синтаксисом, набором функций, парадигмами и способом выполнения кода.
Компиляция и интерпретация
Есть компилируемые и интерпретируемые языки программирования.
Компиляция - это перевод инструкций программы с понятного человеку языка в машинный код. Затем компилятор выдает готовый файл в формате "exe" в Windows или "app" в MacOS. При запуске этого файла, процессор начинает выполнять все команды, переведенные в нем в машинный язык. Для компилирования кода нужен компилятор или интегрированная среда разработки типа платформы NET, Visual Studio, Android Studio, Eclipse и другие.
Интерпретатор - программа, которая не переводит код в машинный язык, а исполняет его сразу построчно. Суть языков интерпретируемых языков сводится к тому, что они работают не с операционной системой, а с программой, которая и исполняет код. Интерпретаторы пишутся как на компилируемых, так и интерпретируемых языках.
Компиляторы же пишутся на низкоуровневых языках - чаще всего это Ассемблер. Интерпретатор это код, который является частью программы и исполняет скрипт написанный на языке. Среди таких программ - вэб-браузер, встроенный в вэб-сервер модуль PHP, виртуальная машина (не процессор, а программа), которая исполняет код.
Любой язык программирования можно адаптировать под компилятор и интерпретатор. Однако по умолчанию они работают с предназначенной для конкретного языка технологией.
Виды языков и для чего они нужны
Существует огромное количество языков программирование. При этом, существует не много направлений разработки, для которой предназначен тот или иной язык.
Список направлений и некоторых языков программирования для них:
Стоит также понимать, что определенный язык подчиняется той или иной концепции программирования: ООП, процедурному, прототипно-ориентированному программированию, функциональному и многим другим.
Что следует изучать в первую очередь
Самое важное, это определиться с направлением разработки - игры, сайты, софт. Затем осуществить выбор языка.
Любой язык программирования состоит из следующих составляющих:
- Типы данных;
- Способы хранения данных - переменные, массивы, классы, объекты, коллекции в зависимости от концепции языка;
- Операторы для манипуляции с данными - арифметические, логические, проверочные, перенос и тому подобное;
- Операторы для управления потоком выполнения программы - циклы, условия, прерывание и так далее;
- Встроенные функции языка для обработки данных и как создавать свои собственные;
- Встроенные и внешние библиотеки, движки - графические, функциональные, которые расширяют возможности разработки и упрощают ее;
- Изучить среду разработки;
- Углубиться в концепцию языка и разобрать все подводные камни, в том числе и особенности компилятора или интерпретатора.
Не следует изучать только теорию - все нужно отрабатывать на практике. Это многочасовой ежедневный труд, который окупается усвоением полученных знаний и учебой на ошибках. Только делая что-то руками можно прийти к пониманию технологии и умению использования ее на практике.
Какой язык самый простой для изучения и как его учить
Нет такого понятия как самый простой язык. Все они сложные и не существует определенного порога вхождения. Основы везде аналогичны, а расширенное изучение уже имеет свои особенности. Придется вникнуть в огромный пласт теоретической информации и провести сотни часов, оттачивая мастерство.
Для учебы можно выбрать курсы, книги, видеоуроки и самостоятельное изучение:
-
направляют вас по ступеням изучения - вы идете в правильном направлении и при этом оттачиваете навыки на реальных задачах.
- Книги - самый худший вариант. В книгах представлены основные конструкции языка, однако они не учат разрабатывать программы. Лучше всего пользоваться справочниками, подглядывая в них при разработке программы.
- Онлайн ресурсы - своего рода книга, но хорошо структурирована с лаконичной подачей информации и с возможностью практиковаться прямо на сайте.
Углубленное изучение технологии и расширение знаний - это уже самостоятельное изучение. Бесплатное изучение дома требует терпения. Однако такой подход дает хороший результат. Правда этот метод для самых терпеливых и дисциплинированных программистов.
Преимущества и недостатки определенных языков программирования
Из достоинств стоит выделить то, что концепции разработки идентичны. Другими словами - изучив один язык, легко буде адаптироваться к другому, если это конечно тот язык, который подчиняется той же концепции разработки.
Самые популярные языки на рынке труда и концепции разработки
Это самые востребованные языки на рынке труда. Большинство работодателей, при поиске разработчика требуют знание именно этих технологий.
Самое главное - определиться со сферой разработки, а затем уже подбирать язык для изучения. Стоит помнить, что программирование изучать не просто, ведь языки сами по себе обладают огромными способностями для разработки. Поэтому, не стоит наделяться, что через месяц вы будете способны писать сложные программы с графической составляющей. Изучение программирования - это кропотливый труд, требующий внимания к деталям и самодисциплины.
Язы́к программи́рования — формальная знаковая система, предназначенная для записи компьютерных программ. Язык программирования определяет набор лексических, синтаксических и семантических правил, задающих внешний вид программы и действия, которые выполнит исполнитель (компьютер) под ее управлением.
Со времени создания первых программируемых машин человечество придумало уже более восьми с половиной тысяч языков программирования. Каждый год их число пополняется новыми. Некоторыми языками умеет пользоваться только небольшое число их собственных разработчиков, другие становятся известны миллионам людей. Профессиональные программисты иногда применяют в своей работе более десятка разнообразных языков программирования.
Создатели языков по-разному толкуют понятие язык программирования. К наиболее распространённым утверждениям, признаваемым большинством разработчиков, относятся следующие:
- Функция: язык программирования предназначен для написания компьютерных программ, которые применяются для передачи компьютеру инструкций по выполнению того или иного вычислительного процесса и организации управления отдельными устройствами.
- Задача:язык программирования отличается отестественных языков тем, что предназначен для передачи команд и данных от человека к компьютеру, в то время, как естественные языки используются для общения людей между собой. В принципе, можно обобщить определение «языков программирования» — это способ передачи команд, приказов, чёткого руководства к действию; тогда как человеческие языки служат также для обмена информацией.
- Исполнение: язык программирования может использовать специальные конструкции для определения и манипулирования структурами данных и управления процессом вычислений.
Содержание
Стандартизация языков программирования [ ]
Язык программирования может быть представлен в виде набора спецификаций, определяющих его синтаксис и семантику.
Для многих широко распространённых языков программирования созданы международные стандарты. Специальные организации проводят регулярное обновление и публикацию спецификаций и формальных определений соответствующего языка. В рамках таких комитетов продолжается разработка и модернизация языков программирования и решаются вопросы о расширении или поддержке уже существующих и новых языковых конструкций.
Типы данных [ ]
Современные цифровые компьютеры обычно являются двоичными и данные хранят в двоичном (бинарном) коде (хотя возможны реализации и в других системах счисления). Эти данные как правило отражают информацию из реального мира (имена, банковские счета, измерения и др.), представляющую высокоуровневые концепции.
Особая система, по которой данные организуются в программе, — это система типов языка программирования; разработка и изучение систем типов известна под названием теория типов. Языки могут быть классифицированы как системы со статической типизацией и языки с динамической типизацией.
Статически-типизированные языки могут быть в дальнейшем подразделены на языки с обязательной декларацией, где каждая переменная и объявление функции имеет обязательное объявление типа, и языки с выводимыми типами. Иногда динамически-типизированные языки называются латентно-типизированными.
Структуры данных [ ]
Системы типов в языках высокого уровня позволяют определять сложные, составные типы, так называемые структуры данных. Как правило, структурные типы данных образуются как декартово произведение базовых (атомарных) типов и ранее определённых составных типов.
Основные структуры данных (списки, очереди, хеш-таблицы, двоичные деревья и пары) часто представлены особыми синтаксическими конструкциями в языках высокого уровня. Такие данные структурируются автоматически.
Семантика языков программирования [ ]
Существует несколько подходов к определению семантики языков программирования.
Наиболее широко распространены разновидности следующих трёх: операционного, денотационного (математического) и деривационного (аксиоматического).
При описании семантики в рамкахоперационного подхода обычно исполнение конструкций языка программирования интерпретируется с помощью некоторой воображаемой (абстрактной) ЭВМ.
Деривационная семантика описывает последствия выполнения конструкций языка с помощью языка логики и задания пред- и постусловий.
Денотационная семантика оперирует понятиями, типичными для математики— множества, соответствия, а также суждения, утверждения и др.
Парадигма программирования [ ]
Язык программирования строится в соответствии с той или иной базовой вычислений и парадигмой программирования.
Несмотря на то, что большинство языков ориентировано на императивную модель вычислений, задаваемую фон-неймановской архитектурой ЭВМ, существуют и другие подходы. Можно упомянуть языки со стековой вычислительной моделью ( Forth , ML и др.) и логическое программирование ( Способы реализации языков [ ]
Языки программирования могут быть реализованы как компилируемые и интерпретируемые.
Программа на компилируемом языке при помощи специальной программы компилятора преобразуется (компилируется) в набор инструкций для данного типа процессора (машинный код) и далее записывается в исполнимый модуль, который может быть запущен на выполнение как отдельная программа. Другими словами, компилятор переводит исходный текст программы с языка программирования высокого уровня в двоичные коды инструкций процессора.
Если программа написана на интерпретируемом языке, то интерпретатор непосредственно выполняет (интерпретирует) исходный текст без предварительного перевода. При этом программа остаётся на исходном языке и не может быть запущена без интерпретатора. Можно сказать, что процессор компьютера — это интерпретатор машинного кода.
Кратко говоря, компилятор переводит исходный текст программы на машинный язык сразу и целиком, создавая при этом отдельную машинно-исполняемую программу, а интерпретатор выполняет исходный текст прямо во время исполнения программы («интерпретируя» его своими средствами).
Разделение на компилируемые и интерпретируемые языки является условным. Так, для любого традиционно компилируемого языка, как, например, Common Language Runtime .
Подобный подход в некотором смысле позволяет использовать плюсы как интерпретаторов, так и компиляторов. Следует упомянуть также язык Forth , имеющий и интерпретатор, и компилятор.
Используемые символы [ ]
Современные языки программирования рассчитаны на использование ASCll , то есть доступность всехграфических символов ASCII является необходимым и достаточным условием для записи любых конструкций языка. Управляющие символы ASCII используются ограниченно: допускаются только возврат каретки CR, перевод строки LF и горизонтальная табуляция HT (иногда также вертикальная табуляция VT и переход к следующей странице FF).
Заметным исключением является язык Delphi 2006 , Смотрите также [ ]
В настоящее время активно используются интегрированные среды разработки, включающие в свой состав также редактор для ввода и редактирования текстов программ, отладчики для поиска и устранения ошибок, трансляторы с различных языков программирования, компоновщики для сборки программы из нескольких модулей и другие служебные модули.
Текстовый редактор среды программирования может иметь специфичную функциональность, такую как индексация имен, отображение документации, средства визуального создания пользовательского интерфейса. С помощью текстового редактора программист производит набор и редактирования текста создаваемой программы, который называют исходным кодом. Язык программирования определяет синтаксис и изначальную семантику исходного кода. Компилятор преобразует текст программы в машинный код, непосредственно исполняемый электронными компонентами компьютера. Интерпретатор создаёт виртуальную машину для выполнения программы, которая полностью или частично берёт на себя функции исполнения программ.
Программирование в широком смысле можно разбить на несколько стадий:
Содержание
История
Антикитерский механизм из Древней Греции был калькулятором, использовавшим шестерни различных размеров и конфигурации, обусловливавших его работу, [1] по отслеживанию метонова цикла, до сих пор использующегося в лунно-солнечных календарях. [2] Аль-Джазари построил программируемый автомат-гуманоид в 1206 году. Одна система, задействованная в этих устройствах, использовала зажимы и кулачки, помещённые в деревянный ящик в определённых местах, которые последовательно задействовали рычаги, которые, в свою очередь, управляли ударными инструментами.
Часто первым программируемым устройством принято считать жаккардовый ткацкий станок, построенный в 1804 году Жозефом Мари Жаккаром, который произвёл революцию в ткацкой промышленности, предоставив возможность программировать узоры на тканях при помощи перфокарт.
Первое программируемое вычислительное устройство, Аналитическую машину, разработал Чарлз Бэббидж (но не смог её построить). 19 июля 1843 года графиня Ада Августа Лавлейс, дочь великого английского поэта Джорджа Байрона, как принято считать, написала первую в истории человечества программу для Аналитической машины. Эта программа решала уравнение Бернулли, выражающее закон сохранения энергии движущейся жидкости. В своей первой и единственной научной работе Ада Лавлейс рассмотрела большое число вопросов. Ряд высказанных ею общих положений (принцип экономии рабочих ячеек памяти, связь рекуррентных формул с циклическими процессами вычислений) сохранили свое принципиальное значение и для современного программирования. В материалах Бэббиджа и комментариях Лавлейс намечены такие понятия, как подпрограмма и библиотека подпрограмм, модификация команд и индексный регистр, которые стали употребляться только в 1950-х годах. Однако ни одна из программ написанных Адой Лавлейс никогда так и не была запущена.
Языки программирования
Большая часть работы программистов связана с написанием исходного кода, тестированием и отладкой программ на одном из языков программирования. Исходные тексты и исполняемые файлы программ являются объектами авторского права и являются интеллектуальной собственностью их авторов и правообладателей.
Различные языки программирования поддерживают различные стили программирования (парадигмы программирования). Отчасти искусство программирования состоит в том, чтобы выбрать язык программирования, наиболее полно подходящий для решения поставленной задачи. Разные языки требуют от программиста различного уровня внимания к деталям при реализации алгоритма, результатом чего часто бывает компромисс между простотой и производительностью (или между временем программиста и временем пользователя).
Программные средства
На олимпиадах по информатике и программированию с успехом используются только свободно распространяемые лицензионные инструментальные средства (в большинстве своём распространяются по лицензии GNU GPL). Из языков программирования на олимпиадах по программированию последние годы часто используются языки программирования Паскаль, C/C++ и Java.
Читайте также: