Процессор компьютера предназначен для выполнения обработки данных в соответствии с программой
Процессор
Одним из важнейших устройств компьютера является центральный процессор (CPU — англ. central processing unit, что переводится как «центральное вычислительное устройство»). Именно от типа процессора и его характеристик в первую очередь зависит производительность компьютерной системы в целом.
Процессор (Микропроцессор) — это центральное устройство компьютера, предназначенное для обработки данных и управления работой других устройств.
Наиболее популярные процессоры сегодня производят фирмы Intel, AMD и IBM. Большинство процессоров являются Intel-совместимыми.
Эволюция микропроцессоров
Фирма Intel со времени выпуска самого первого процессора и по сей день является одним из ведущих разработчиков микропроцессоров. Чуть позже конкуренцию Intel составила фирма AMD. В настоящее время Intel и AMD являются ведущими производителями процессоров для персональных компьютеров. Некоторое время конкуренцию им составляли также фирмы Apple Computer, IBM и Motorola, разработавшие процессор Power PC.
Важным этапом в развитии микропроцессорной техники стал процессор i80486. Он был выпущен в 1989 году. Первое новшество заключалось в том, что впервые в центральный процессор стал интегрироваться математический сопроцессор, предназначенный для выполнения арифметических вычислений с плавающей запятой. Кроме того, в этом процессоре была реализован конвейер, применяемый ранее в суперЭВМ.
В марте 1993 года был выпущен процессор Pentium, в котором впервые появляется предсказание переходов. Суть предсказания переходов заключается в том, что при выполнении команды условного перехода (например, при выполнении команды ветвления) специальный блок микропроцессора определяет наиболее вероятное направление перехода, не дожидаясь окончания анализа условия. Процессор начинает выбирать из памяти и выполнять команды по предсказанной ветви программы.
В конце 1993 года фирмы Apple Computer, IBM и Motorola совместно разработали микропроцессор Power PC. В 1994 году он стал использоваться в компьютерах Macintosh. В этом процессоре была реализована суперскалярная обработка, позволяющая выполнять в каждом такте 3 команды. Это стало возможным благодаря использованию архитектуры команд RISC (сокращенный набор команд постоянной длины). Все команды архитектуры RISC имеют одинаковую длину (что облегчает их выборку из памяти) и выполняются процессором за один такт. Все предыдущие процессоры либо использовали сложный набор команд CISC (расширенный набор команд переменной длины), либо относились к разряду CISC-процессоров с RISC-ядром. Процессорам, использующим архитектуру CISC, приходилось тратить дополнительное время на декодирование команд, так как их длина могла меняться от 8 до 108 битов.
Важным преимуществом процессоров PowerPC (начиная с моделей 603 и 604) была пониженная потребляемая мощность. В целях энергосбережения любой незагруженный исполнительный блок отключался, а при необходимости автоматически включался.
Однако в начале 2000-х годов развитие платформы PowerPC зашло в тупик. Создание новой архитектуры потребовало бы огромного количества времени и средств, поэтому в 2006 году фирма Apple решила перевести компьютеры Macintosh на процессоры Intel.
В марте 2000 года фирма AMD выпустила первый процессор с тактовой частотой, превышающей 1 ГГц, который назывался Athlon К7. Это позволило значительно укрепить позиции фирмы на рынке микропроцессорной техники.
В сентябре 2003 года AMD представила первые 64-разрядные процессоры для персональных компьютеров (Athlon 64).
Самым значимым событием 2005 года в области микропроцессоров стало появление в продаже CPU (центрального процессора) с двумя ядрами. Ядро представляет собой часть микропроцессора, содержащую его основные функциональные блоки и осуществляющую выполнение одного потока команд. О причинах перехода к многоядерным процессорам будет сказано в следующем параграфе. Первыми двухъядерными процессорами стали процессоры Pentium D фирмы Intel и Athlon64 Х2 фирмы AMD. Одними из наиболее революционных многоядерных процессоров стали процессоры линейки Core 2 Duo фирмы Intel.
В настоящее время основу рынка микропроцессоров составляют многоядерные процессоры, использующие в своем составе от 2 до 8 ядер, к каковым относятся процессоры Intel Core 2 Quad, Phenom ХЗ и Х4 (фирмы AMD) и другие.
Состав микропроцессора
Современные центральные процессоры для персональных компьютеров выполняются в виде отдельных микросхем и называются микропроцессорами. В дальнейшем будем считать понятия «микропроцессор» и «процессор» равнозначными.
Схема состава микропроцессора
Основным элементом микропроцессора является ядро, от которого зависит большинство характеристик самого процессора. Ядро представляет собой часть микропроцессора, содержащую его основные функциональные блоки и осуществляющую выполнение одного потока команд.
1. АЛУ (Арифметико-логическое устройство)
АЛУ (ALU, Arithmetic and Logic Unit) предназначено для выполнения всех арифметических и логических операций над числовой и символьной информацией.
Функционально АЛУ состоит из двух регистров, сумматора и схем управления (местного устройства управления).
Сумматор — это вычислительная схема, выполняющая процедуру сложения поступающих на ее вход двоичных кодов.
Регистры — это быстродействующие ячейки памяти различной длины. При выполнении операций в регистр № 1 помещается первое число, участвующее в операции, а по завершении операции — результат. В регистр № 2 — второе число, участвующее в операции (по завершению операции информация в нем не изменяется).
Схемы управления принимают от шины управления сигналы от устройства управления и преобразуют их в сигналы для управления работой регистров и сумматора АЛУ.
УУ (MU, Management Unit):
- формирует и подает на все устройства ПК в нужные моменты времени определенные сигналы управления (управляющие импульсы);
- формирует адреса ячеек памяти, используемых выполняемой операцией, и передает эти адреса в соответствующие устройства.
Опорную последовательность импульсов устройство управления получает от генератора тактовых импульсов.
Принцип работы УУ
УУ является функционально наиболее сложным устройством ПК — оно вырабатывает управляющие сигналы, поступающие по шине управления во все блоки машины.
Регистр команд — это запоминающий регистр, в котором хранится код операции (КОП) и адреса операндов, участвующих в операции.
Дешифратор операций — это логический блок, выбирающий в соответствии с поступающим из регистра команд кодом операции (КОП) один из множества имеющихся у него выходов.
Постоянное запоминающее устройство (ПЗУ) микропрограмм хранит в своих ячейках управляющие сигналы (импульсы), необходимые для выполнения в блоках ПК процедур обработки информации.
Узел формирования адреса — это устройство, вычисляющее полный адрес ячейки памяти (регистра) по реквизитам, поступающим из регистра команд и регистров микропроцессорной памяти.
3. МПП (Микропроцессорная память)
Кэш-память (кэш) — сверхбыстрая память, хранящая содержимое наиболее часто используемых ячеек оперативной памяти, а также части программы, к которым процессор обратится с наибольшей долей вероятности. Процессор в первую очередь пытается найти нужные данные именно в кэш-памяти, а если их там не оказывается, обращается к более медленной оперативной памяти. Кэш-память делится на два или три уровня, которые обозначаются LI, L2 и L3 (чаще всего уровней два).
4. Сопроцессор — элемент процессора, выполняющий действия над числами с плавающей запятой.
Характеристики микропроцессора
Тактовая частота. Для каждой выполняемой процессором команды требуется строго определенное количество единиц времени (тактов). Тактовые импульсы формируются генератором тактовой частоты, установленным на системной плате. Чем чаще они генерируются, тем больше команд процессор выполняет за единицу времени, т. е. тем выше его быстродействие. Тактовая частота обычно выражается в мегагерцах. 1 МГц равен 1 миллиону тактов в секунду. Первые модели процессоров Intel (i8008x) работали с тактовыми частотами, меньшими 5 МГц. Сегодня тактовая частота последних процессоров превышает 3 ГГц (1 ГГц = 1000 МГц). Внутренняя архитектура процессора, как и тактовая частота, также влияет на работу процессора, поэтому два CPU с одинаковой тактовой частотой не обязательно будут тратить одинаковое время на выполнение одной команды. Если, например, микропроцессору Intel 80286 требовалось 20 тактов, чтобы выполнить команду умножения двух чисел, то Intel 80486 или старше мог выполнить это же действие за один такт. Некоторые процессоры способны выполнять более одной команды за 1 такт. Их называют суперскалярными.
Различают внутреннюю и внешнюю тактовую частоту.
Внешняя тактовая частота — это частота, с которой процессор обменивается данными с оперативной памятью компьютера. Как уже было сказано выше, она формируется генератором тактовых импульсов (кварцевым резонатором).
Внутренняя тактовая частота — это частота, с которой происходит работа внутри процессора. Именно это значение указывается в прайс-листах фирм, продающих процессоры.
Первые процессоры имели одинаковую внутреннюю и внешнюю частоту, но, начиная с процессора i80486, для определения внутренней частоты стал применяться коэффициент умножения. Этот коэффициент определяется подачей напряжения на определенные контакты центрального процессора.
Объем кэш-памяти. Как уже было сказано, при поиске нужной информации процессор в первую очередь обращается к кэш-па-мяти. Поэтому чем выше ее объем, тем больше вероятность, что необходимые данные будут найдены именно там.
Технологические нормы. Технологические нормы определяют расстояние между соседними транзисторами. Чем меньше расстояние, тем короче каналы транзисторов и тем больше их быстродействие. Кроме того, уменьшение расстояния понижает уровень мощности тепловыделения. В настоящее время все процессоры производятся с технологическими нормами 0,09 микрона, 0,065 микрона и 0,045 микрона (1 микрон = 10
6 метров). Иногда технологические нормы указывают в нанометрах (1 нм = 10
Количество ядер. Большинство современных процессоров выпускаются с несколькими ядрами (обычно их два или четыре). Благодаря наличию нескольких ядер процессор может одновременно обрабатывать несколько потоков программных команд, т. е. решать параллельно несколько задач в режиме реального времени.
Для определения основных характеристик процессора можно воспользоваться специальными сервисными программами. Примером такой программы является CPU-Z (рис. 2.24). Ее можно бесплатно скачать из Интернета.
Пользователи компьютеров очень часто путают между собой такие два понятия как системный блок и процессор, называя первый – вторым. Это в корне неправильно. Сам процессор – это устройство, предназначенное для управления работой вычислительной машины по заранее заданной последовательности команд, которая называется программой, и для выполнения операций по обработке информации.
Кроме того, есть и другие устройства с похожим названием. Например, текстовый процессор предназначен для создания документов и их форматирования. К такому типу программ относится Microsoft Word.
Что это такое?
А само устройство, являющееся мозгом компьютера, еще называют микропроцессором. Для чего предназначен процессор в компьютере? Это такая интегральная схема, которая управляет работой персонального компьютера. Создается такая схема на одном или нескольких кристаллах, сделанных из полупроводника при помощи очень сложной технологии, относящейся к сфере микроэлектроники.
Все то что может делать компьютер с информацией, определено системой команд самого процессора. Они входят в инструкции по управлению работой компьютера. Одна отдельно взятая команда – это одна операция, выполняемая вычислительной машиной. Например, выполнение арифметических действий, логических операций, определение последовательности команд для выполнения, передача информации из памяти одного устройства в память другого.
Таков краткий ответ на вопрос, для чего предназначен процессор.
Устройство
Так как процессор – это устройство, предназначенное для обработки данных, он состоит из следующих элементов:
- арифметико-логическое устройство;
- устройство управления;
- регистры памяти.
Устройство управления, как понятно из его названия, по заданной программе управляет всеми узлами компьютера. Оно извлекает каждую последующую команду из регистра, узнает из нее, какую операцию нужно выполнить, и в какой последовательности. Это своеобразный дирижер, управляющий целым оркестром. А музыкальной композицией служит как раз программа.
Составные части
Арифметико-логическое устройство – это инструмент для вычислений, которое, следуя программам, выполняет операции, связанные с арифметикой и логикой.
Регистры являются внутренней памятью центрального процессора. Один регистр можно сравнить с черновиком, с помощью которого устройство производит расчеты и хранит их результаты. Каждый из регистров имеет свое собственно назначение.
Допустим, процессор должен сложить два каких-то числа. Для выполнения этой операции в первую очередь ему нужно взять из памяти первое слагаемое, потом - второе, сложить эти два значения, а сумму вновь переслать в оперативную память компьютера.
Ясно, что оба слагаемых и результат должны процессором где-то храниться. Для этой цели предназначена ячейка, входящая непосредственно в сам процессор, называемая аккумулятором или сумматором. Так как процессор предназначен для данных и их обработки, он должен понимать, из какой ячейки памяти нужно брать следующую команду. Это он узнает из другой своей внутренней ячейки, которая называется счетчиком. Команда, которая извлекается из оперативной памяти, размещается в еще одной ячейке – регистре команд. Из него результат выполненной команды можно перенести уже в оперативную память.
Виды регистров
Регистры бывают нескольких видов. Они отличаются друг от друга видом операций, которые выполняют. Самые важные регистры обладают собственными названиями:
- Счетчик команд – это регистр, содержащий адрес следующей команды, которую нужно выполнить. Он служит для автоматического выбора программы из набора связанных ячеек памяти.
- Сумматор – принимает участие при выполнении всех операций.
- Регистр команд. В нем хранится команда на тот период времени, который нужен для выполнения.
Шина данных
Процессор компьютера предназначен для работы с информацией. Все его устройства постоянно ею между собой обмениваются. А делают они это при помощи элемента, который называется внутренняя шина данных. В современных центральных процессорах есть и другие части, но необходимым минимумом является вышеописанный набор устройств.
Машинный цикл и его схема
Данный процесс, как правило, состоит из следующих шагов:
- Выбирается команда из ячейки, адрес которой сохранен в регистре-счетчике. Его содержимое при этом увеличивается на значение длины этой команды.
- Далее она отправляется в устройство управления, попадая в его регистр команд.
- Адресное поле, принадлежащее команде, расшифровывается устройством управления.
- Последнее дает сигнал, и данные считываются из оперативной памяти, попадая уже в арифметико-логическое устройство.
- Устройством управления расшифровывается код выполняемой операции и в арифметико-логическое устройство подается сигнал о выполнении этого действия над данными, которые в таком случае называются операндами.
- Результат выполнения операции может сохраниться в самом центральном процессоре или же передается в память, в случае, когда имеется адрес, по которому должен находиться результат.
- Все вышеперечисленные шаги выполняются до тех пор, пока не будет дан стоповый сигнал.
Характеристики
Итак, для чего предназначен процессор, ясно: для выполнения команд из заданной программы. Для этого он обладает следующими характеристиками:
- Тактовая частота. Центральный процессор тесно связан с генератором частоты тактов, которым вырабатываются импульсы. Они синхронизируют между собой работу всех элементов компьютера. Равняется эта характеристика числу тактов за одну секунду. Один такт – это отрезок времени, находящийся между первым импульсом и вторым. Измеряется тактовая частота в мегагерцах.
- Разрядность. Это максимальное значение, отвечающее за число разрядов двоичного кода, образованного и передаваемого процессором в одно и то же время. Эта характеристика определена разрядностью его регистров.
- Адресное пространство. К нему относится тот диапазон адресов, к которым обращается процессор, применяя адресный код.
Благодаря вышесказанному можно четко определиться, для чего предназначен процессор. Это мозг компьютера, без которого он совершенно ни к чему не пригоден. Разве только для украшения интерьера.
Одним из важнейших устройств компьютера является центральный процессор (CPU — англ, central processing unit, что переводится как «центральное вычислительное устройство»). Именно от типа процессора и его характеристик в первую очередь зависит производительность компьютерной системы в целом.
Центральный процессор — это устройство компьютера, предназначенное для выполнения арифметических и логических операций над данными, а также координации работы всех устройств компьютера.
Современные центральные процессоры для персональных компьютеров выполняются в виде отдельных микросхем и называются микропроцессорами. В дальнейшем будем считать понятия «микропроцессор» и «процессор» равнозначными.
Схема состава микропроцессора показана на рисунке 1.
Основным элементом микропроцессора является ядро, от которого зависит большинство характеристик самого процессора. Ядро представляет собой часть микропроцессора, содержащую его основные функциональные блоки и осуществляющую выполнение одного потока команд.
Современные процессоры могут иметь более одного ядра, т.е. могут быть многоядерными. Многоядерные процессоры способны выполнять одновременно несколько потоков команд. Основная причина перехода к многоядерным процессорам была вызвана тем, что повышение производительности микропроцессоров путем дальнейшего наращивания тактовой частоты достигло физического предела в связи с очень высоким уровнем тепловыделения и энергопотребления. Производительность многоядерного процессора увеличивается за счет распараллеливания обработки данных между несколькими ядрами. Визуальное представление процессора показано на рисунке 2.
Ядро процессора помещается в корпус (пластмассовый или керамический) и соединяется проводками с металлическими ножками (выводами), с помощью которых процессор присоединяется к системной плате компьютера. Количество выводов и их расположение определяют тип процессорного интерфейса (разъема). Каждая системная плата ориентирована на один определенный тип разъема
Арифметико-логическое устройство (АЛУ) выполняет все математические и логические операции.
Управляющее устройство (УУ) обеспечивает выполнение процессором последовательности команд программы.
Набор регистров — ячейки памяти внутри процессора, используемые для размещения команд программы и обрабатываемых данных.
Кэш-память (кэш) — сверхбыстрая память, хранящая содержимое наиболее часто используемых ячеек оперативной памяти, а также части программы, к которым процессор обратится с наибольшей долей вероятности. Процессор в первую очередь пытается найти нужные данные именно в кэш-памяти, а если их там не оказывается, обращается к более медленной оперативной памяти. Кэш-память делится на два или три уровня, которые обозначаются LI, L2 и L3 (чаще всего уровней два).
Сопроцессор — элемент процессора, выполняющий действия над числами с плавающей запятой.
Характеристики микропроцессора Тактовая частота. Для каждой выполняемой процессором команды требуется строго определенное количество единиц времени (тактов). Тактовые импульсы формируются генератором тактовой частоты, установленным на системной плате. Чем чаще они генерируются, тем больше команд процессор выполняет за единицу времени, т. е. тем выше его быстродействие. Тактовая частота обычно выражается в мегагерцах. 1 МГц равен 1 миллиону тактов в секунду. Первые модели процессоров Intel ( i 8008 x ) работали с тактовыми частотами, меньшими 5 МГц. Сегодня тактовая частота последних процессоров превышает 3 ГГц (1 ГГц = 1000 МГц). Внутренняя архитектура процессора, как и тактовая частота, также влияет на работу процессора, поэтому два CPU с одинаковой тактовой частотой не обязательно будут тратить одинаковое время на выполнение одной команды. Если, например, микропроцессору Intel 80286 требовалось 20 тактов, чтобы выполнить команду умножения двух чисел, то Intel 80486 или старше мог выполнить это же действие за один такт. Некоторые процессоры способны выполнять более одной команды за 1 такт. Их называют суперскалярными. Различают внутреннюю и внешнюю тактовую частоту. Внешняя тактовая частота — это частота, с которой процессор обменивается данными с оперативной памятью компьютера. Как уже было сказано выше, она формируется генератором тактовых импульсов (кварцевым резонатором).
Внутренняя тактовая частота — это частота, с которой происходит работа внутри процессора. Именно это значение указывается в прайс-листах фирм, продающих процессоры.
В этой статье мы рассмотрим, что такое процессор CPU, какие у него функции и из чего он состоит.
В каждом вычислительном устройстве (ПК, смартфон, фотоаппарат) есть центр, который отвечает за правильную работу машины ― процессор.
В широком смысле процессор ― это устройство, которое выполняет вычислительные и логические операции с данными. Чаще всего этот термин используется для обозначения центрального процессора устройства. Расшифровка CPU ― Central Processing Unit (центральное обрабатывающее устройство). Это самая важная часть компьютера. Его мозг. Он выглядит как квадрат размером приблизительно 5x5 см:
С обратной стороны CPU находятся ножки, с помощью которых он крепится к материнской плате:
От мощности центрального процессора зависит скорость обработки команд и продуктивность работы других составляющих компьютера. Например, можно купить современную видеокарту, но она не сможет показать свои возможности, если управляется слабым CPU.
Функции CPU
Какие функции выполняет центральный процессор CPU? Главная функция ― управление всеми операциями компьютера: от простейших сложений чисел на калькуляторе до запуска компьютерных игр. Если рассматривать основные функции центрального процессора подробнее, CPU:
- получает данные из оперативной памяти, выполняет с ними арифметические и логические операции, передаёт их на внешние устройства,
- формирует сигналы, необходимые для работы внутренних узлов и внешних устройств,
- временно хранит результаты выполненных операций, переданных сигналов и других данных,
- принимает запросы от внешних устройств и обрабатывает их.
Из чего состоит CPU
Центральный процессор состоит из 3-х частей:
- Ядро процессора, которое выполняет основную работу. Оно позволяет читать, расшифровывать, выполнять и отправлять инструкции. Ядро состоит из следующих частей:
- Арифметико-логическое устройство (АЛУ). Выполняет основные математические и логические операции. Все вычисления производятся в двоичной системе.
- Устройство управления (УУ). Управляет работой CPU с помощью электрических сигналов. От него зависит согласованность работы всех частей процессора и его связь с внешними устройствами.
Каждое ядро может выполнять только одну задачу, хоть и за долю секунды. Одноядерный процессор выполняет каждую задачу последовательно. Для современного объёма операций этого мало, поэтому ценятся CPU с более чем одним ядром, чтобы выполнять несколько задач одновременно. Например, двухъядерный выполняет две задачи одновременно, трехъядерный ― три и т. д.
- Запоминающее устройство. Это небольшая внутренняя память центрального процессора. Она состоит из регистров и кеш-памяти. В регистрах хранятся текущие команды, данные, промежуточные результаты операции. В кеш-память загружаются часто используемые команды и данные из оперативной памяти. Обратиться в кеш быстрее, чем в оперативную память, поэтому объём кеш-памяти влияет на скорость выполнения запросов.
- Шины ― это каналы, по которым передаётся информация. Они как рельсы для перевозки данных.
Главной характеристикой процессора является производительность. Она зависит от двух параметров: тактовая частота и разрядность.
Тактовая частота ― число выполненных операций в секунду. Измеряется в мегагерцах (МГц — миллион тактов в секунду ) и гигагерцах (ГГц — миллиард тактов в секунду). Чем больше тактовая частота, тем быстрее работает машина.
Разрядность ― количество информации (байт), которое можно передать за такт. Разрядность процессора бывает 8, 16, 32, 64 бита. Современные процессоры 32-х и 64-битные.
Производители CPU
На рынке есть два основных производителя центральных процессоров ― Intel и AMD.
Продукты Intel — дорогие, но имеют высокую производительность. Потребляют меньше энергии, следовательно меньше перегреваются. Имеют хорошую связь с оперативной памятью.
Продукты AMD значительно отстают от Intel, однако стоят дешевле. Они требуют много энергии и хуже взаимодействуют с оперативной памятью по сравнению с процессорами от Intel.
В данный момент вы не можете посмотреть или раздать видеоурок ученикам
Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.
Получите невероятные возможности
Конспект урока "Программная обработка данных на компьютере. Процессор и системная плата"
Компьютер - это универсальное средство обработки информации. Компьютер может обрабатывать графическую, текстовую, звуковую и числовую информацию.
Но для того чтобы компьютер сумел сделать это, вся информация должна быть представлена в двоичном коде, то есть в виде последовательностей нулей и единиц.
Получаемую числовую, текстовую, графическую и звуковую информацию, человек воспринимает соответственно в виде цифр, букв, графических изображений и звука, а компьютер ее воспринимает в виде двоичного кода - последовательности импульсов.
Если импульс есть то это единица, импульс отсутствует - это ноль. Но иногда бывает и наоборот. Если импульс есть то это ноль, импульс отсутствует - это единица. Одна цифра двоичного кода содержит в себе один бит объема информации.
Вся информация, представленная в компьютере в виде двоичного кода, называется данными.
Для того чтобы компьютер смог обрабатывать данные, он должен получить последовательность инструкций или алгоритм действий для обработки данных. Например, алгоритм для нахождения разности чисел или форматирования текста. Другими словами, для решения задачи компьютер должен получить программу. Компьютерная программа - это алгоритм, записанный на языке программирования и предназначенный для исполнения компьютером.
Компьютеры бывают разнообразные и портативные и настольные и совсем маленькие (карманные). Но устройство каждого из этих компьютеров можно представить в виде такой функциональной схемы. Процессор обрабатывает все данные по соответствующей программе в виде последовательности электрических импульсов: импульс есть - единица, нет - ноль. Но человеку тяжело воспринимать информацию закодированную таким способом. Поэтому существуют специальные устройства, которые переводят двоичный код компьютера на язык человека. Они называются устройства «вывода».
А устройства, с помощь которых, наоборот, вводят информацию, а в последующем кодируют, чтобы компьютер мог ее обработать, называются устройствами «ввода» информации.
Чтобы компьютер смог выполнить какую-либо программу, то эта программа вместе с данными должна находиться в его оперативной памяти. Во время выполнения программы производится обмен данными между процессором и оперативной памятью. После выключения компьютера вся информация из оперативной памяти стирается. А для постоянного хранения информации, даже когда компьютер выключен, применяется долговременная память.
Взаимодействие между всеми устройствами компьютера осуществляется по магистрали.
Основой компьютера является системная плата. По-другому мы можем называть ее материнской, основной или главной платой. Она представляет собой сложную многослойную плату с большим количеством микросхем. На материнской плате реализована магистраль для обмена информацией между устройствами компьютера. Имеются разъёмы для подключения устройств, для оперативной памяти и, конечно, процессора.
Процессор считается мозгом компьютера. Производительность процессора напрямую зависит от его характеристик. Основные характеристики процессора - это разрядность, тактовая частота и архитектура.
Разрядность - это сколько битов (нулей или единиц) может обработать процессор одновременно. В 1971 году компанией Интел был выпущен первый процессор.
Разрядность у него была всего лишь 4 бита. То есть одновременно он мог обрабатывать 4 бита информации.
У современных компьютеров разрядность процессора 64 бита, в 16 раз больше, чем четыре десятка лет назад.
Частотой процессора определяется количество выполняемых им тактов обработки информации за одну секунду. Одна операция может занимать один или несколько тактов. Единицы измерения тактовой частоты - герцы. В наше время, тактовая частота процессоров может достигать нескольких миллиардов герц. Поэтому ее измеряют в производных единицах от герца - мегагерцах, что составляет миллион герц, и в гигагерцах - это миллиард герц.
Для повышения производительности процессора постоянно совершенствуется его архитектура, иначе говоря - «внутренняя конструкция». В структуру процессора внедряется кэш - сверхоперативная память. Кэш использует небольшую, очень быструю память, которая содержит в себе копии наиболее часто используемых данных из основной памяти. Также современные процессоры могут иметь уже не одно, а 2, 4, 6 или даже 8 ядер, тем самым выполняя в 2, в 4, в 6 или в 8 раз больше вычислений. Но многие ошибочно полагают, что если ядер больше, то всегда будет прирост производительности. К сожалению если программа не оптимизирована под несколько ядер, то она будет использовать только лишь одно ядро процессора.
Читайте также: