Финансовые функции excel для решения экономических задач
(англ. FV ) — возвращает будущую стоимость инвестиций при условиях постоянной процентной ставки, периодических постоянных платежей или единого общего платежа (в виде начальной инвестиции, определяемой аргументом « пс »): = БС(ставка;кпер;плт;[пс];[тип]), где:
- « ставка » — процентная ставка за период (можно использовать ставку простого процента в случае с депозитами / вкладами): например, если ставка 6% годовых и выплаты производятся ежемесячно, процентная ставка за месяц составит 6%/12 , при ежеквартальных выплатах аргумент « ставка » будет равен 6%/4 ;
- « кпер » — общее количество периодов для ежегодного платежа: например, в случае кредита на 5 лет и ежемесячных платежах, аргумент « кпер » будет равен 5*12 ;
- « плт » — постоянная выплата за каждый период (выплаты — отрицательные значения, поступления — положительные значения): например, если ежемесячный платеж по кредиту составляет 10 000 руб., то аргумент « плт » будет равен -10 000 .
- « пс » — приведенная стоимость или первоначальная (инвестированная или вложенная) сумма (если аргумент опущен, предполагается значение 0 и необходимо обязательно указать аргумент « плт »),
- « тип » — срок выплаты в начале (1) или в конце периода (0) (если аргумент « тип » опущен, предполагается значение 0, т.е. в конце периода).
2. БЗРАСПИС
( англ. FVSCHEDULE ) — возвращает будущую стоимость инвестиций после начисления ряда сложных процентов (с переменной процентной ставкой, подойдет для вкладов с капитализацией процентов): =БЗРАСПИС(первичное;план), где:
- « первичное » — стоимость инвестиции на текущий момент,
- «план» — массив применяемых процентных ставок.
3. ПС
( англ. PV) — возвращает приведенную (текущую) стоимость инвестиции или займа (на основе постоянной процентной ставки): =ПС(ставка; кпер; плт; [бс]; [тип]) , где:
- « ставка » — процентная ставка за период (можно использовать ставку простого процента в случае с депозитами / вкладами): например, если ставка 6% годовых и выплаты производятся ежемесячно, процентная ставка за месяц составит 6%/12 , при ежеквартальных выплатах аргумент « ставка » будет равен 6%/4 ;
- « кпер » — общее количество периодов для ежегодного платежа: например, в случае кредита на 5 лет и ежемесячных платежах, аргумент « кпер » будет равен 5*12 ;
- « плт » — постоянная выплата за каждый период (выплаты — отрицательные значения, поступления — положительные значения): например, если ежемесячный платеж по кредиту составляет 10 000 руб., то аргумент « плт » будет равен -10 000 .
- « бс » — будущая стоимость или желаемый остаток средств после последнего платежа (если аргумент опущен, предполагается значение 0 и необходимо обязательно указать аргумент « плт »),
- « тип » — срок выплаты в начале (1) или в конце периода (0) (если аргумент « тип » опущен, предполагается значение 0, т.е. в конце периода).
4. ЧПС
( англ. NPV) – возвращает чистую приведенную или дисконтированную стоимость инвестиции при условии серии периодических денежных потоков и с использованием ставки дисконтирования: =ЧПС(ставка; значение1; [значение2],… ), где:
- «ставка» — ставка дисконтирования за один период;
- « значение1, значение2,… » — предполагаемые выплаты и поступления (должны быть равномерно распределены во времени, при этом выплаты должны осуществляться в конце каждого периода).
5. ЧИСТНЗ
( англ. XNPV) — возвращает чистую приведенную стоимость для денежных потоков, не обязательно являющихся периодическими: =ЧИСТНЗ(ставка;значения;даты), где:
- «ставка» — ставка дисконтирования за один период;
- « значение1, значение2,… » — предполагаемые выплаты и поступления (денежные потоки, соответствующие графику платежей, приведенному в аргументе «даты». Если первое значение является затратами или выплатой, оно должно быть отрицательным. Все последующие выплаты дисконтируются на основе 365-дневного года. Ряд значений должен содержать по крайней мере одно положительное и одно отрицательное значение);
- «даты» — график дат платежей, который соответствует платежам для денежных потоков.
6. ПЛТ
( англ. PMT) — возвращает сумму периодического платежа с постоянным процентом и постоянной суммой платежа (подходит для расчета платежей по аннуитету): =ПЛТ(ставка; кпер; пс; [бс]; [тип]), где:
- « ставка » — процентная ставка за период (можно использовать ставку простого процента в случае с депозитами / вкладами): например, если ставка 6% годовых и выплаты производятся ежемесячно, процентная ставка за месяц составит 6%/12 , при ежеквартальных выплатах аргумент « ставка » будет равен 6%/4 ;
- « кпер » — общее количество периодов для ежегодного платежа: например, в случае кредита на 5 лет и ежемесячных платежах, аргумент « кпер » будет равен 5*12 ;
- « пс » — приведенная стоимость или первоначальная (инвестированная или вложенная) сумма (если аргумент опущен, предполагается значение 0),
- « бс » — будущая стоимость или желаемый остаток средств после последнего платежа (если аргумент опущен, предполагается значение 0),
- « тип » — срок выплаты в начале (1) или в конце периода (0) (если аргумент « тип » опущен, предполагается значение 0, т.е. в конце периода).
7. ПРПЛТ
( англ. IPMT) — возвращает сумму процентных платежей за указанный период только в том случае, если платежи в каждом периоде осуществляются равными частями: =ПРПЛТ(ставка;период;кпер;пс;[бс];[тип]), где :
- « ставка » — процентная ставка за период (можно использовать ставку простого процента в случае с депозитами / вкладами): например, если ставка 6% годовых и выплаты производятся ежемесячно, процентная ставка за месяц составит 6%/12 , при ежеквартальных выплатах аргумент « ставка » будет равен 6%/4 ;
- «период» — период, для которого требуется найти платежи по процентам (число в интервале от 1 до аргумента «кпер»);
- « кпер » — общее количество периодов для ежегодного платежа: например, в случае кредита на 5 лет и ежемесячных платежах, аргумент « кпер » будет равен 5*12 ;
- « пс » — приведенная стоимость или первоначальная (инвестированная или вложенная) сумма (если аргумент опущен, предполагается значение 0),
- « бс » — будущая стоимость или желаемый остаток средств после последнего платежа (если аргумент опущен, предполагается значение 0),
- « тип » — срок выплаты в начале (1) или в конце периода (0) (если аргумент « тип » опущен, предполагается значение 0, т.е. в конце периода).
8. СТАВКА
( англ . RATE) – возвращает ставку процентов по аннуитету за один период: =СТАВКА(кпер; плт; пс; [бс]; [тип]; [прогноз]), где:
- « кпер » — общее количество периодов для ежегодного платежа: например, в случае кредита на 5 лет и ежемесячных платежах, аргумент « кпер » будет равен 5*12 ;
- « плт » — постоянная выплата за каждый период (выплаты — отрицательные значения, поступления — положительные значения): например, если ежемесячный платеж по кредиту составляет 10 000 руб., то аргумент « плт » будет равен -10 000 ;
- « пс » — приведенная стоимость или первоначальная (инвестированная или вложенная) сумма (если аргумент опущен, предполагается значение 0);
- « бс » — будущая стоимость или желаемый остаток средств после последнего платежа (если аргумент опущен, предполагается значение 0, а аргумент « пс » является обязательным);
- « тип » — срок выплаты в начале (1) или в конце периода (0) (если аргумент « тип » опущен, предполагается значение 0, т.е. в конце периода);
- «прогноз» — предполагаемая величина ставки (если аргумент «прогноз » опущен, предполагается значение 10%).
9. ЭФФЕКТ
(англ. EFFECT) — возвращает фактическую (или эффективную) годовую процентную ставку, если заданы номинальная годовая процентная ставка и количество периодов в году, за которые начисляются сложные проценты: =ЭФФЕКТ(номинальная_ставка;кол_пер) , где:
- «номинальная_ставка» — номинальная процентная ставка;
- «кол_пер» — количество периодов в году, за которые начисляются сложные проценты.
10. ДОХОД
( англ. YIELD) — возвращает доходность ценных бумаг ( облигаций ), по которым производятся периодические выплаты процентов: =ДОХОД(дата_согл; дата_вступл_в_силу; ставка; цена; погашение, частота; [базис]), где:
- « дата_согл » — дата расчета за ценные бумаги (дата продажи ценных бумаг покупателю, более поздняя, чем дата выпуска);
- « дата_вступл_в_силу » — срок погашения ценных бумаг (момент, когда истекает срок действия ценных бумаг);
- « ставка » — годовая процентная ставка для купонов по ценным бумагам;
- « цена » — цена ценных бумаг на 100 рублей номинальной стоимости;
- « погашение » — выкупная стоимость ценных бумаг на 100 рублей номинальной стоимости;
- « частота » — кол-во выплат по купонам за год (для ежегодных — 1, для полугодовых — 2, для ежеквартальных — 4);
- «базис» — используемый способ вычисления дня (если 0 или опущен, то используется американский (NASD) 30/360).
11. ВСД
( англ. IRR) – возвращает внутреннюю ставку доходности для потоков денежных средств (для платежей (отрицательные величины) и доходов (положительные величины), которые имеют место в следующие друг за другом и одинаковые по продолжительности периоды): =ВСД(значения; [предположения]), где:
- «значения» — массив или ссылка на ячейки, содержащие ряд денежных выплат (отрицательные значения) и поступлений (положительные значения), происходящих в регулярные периоды времени (по крайней мере одна положительная и одна отрицательная величина);
- «предположение » — величина, предположительно близкая к результату ВСД ( в большинстве случаев нет необходимости задавать аргумент «предположение». Если он опущен, предполагается значение 10%).
12. МВСД
( англ. MIRR) – возвращает модифицированную внутреннюю ставку доходности, учитывая процент от реинвестирования средств (при котором положительные и отрицательные денежные потоки имеют разные значения ставки): =МВСД(значения;ставка_финанс;ставка_реинвест), где:
В Microsoft Excel предусмотрено огромное количество разнообразных функций, позволяющих справляться с математическими, экономическими, финансовыми и другими задачами. Программа является одним из основных инструментов, использующихся в малых, средних и больших организациях для ведения различных видов учета, выполнения расчетов и т.д. Ниже мы рассмотрим финансовые функции, которые наиболее востребованы в Экселе.
Вставка функции
Для начала вспомним, как вставить функцию в ячейку таблицы. Сделать это можно по-разному:
Независимо от выбранного варианта, откроется окно вставки функции, в котором требуется выбрать категорию “Финансовые”, определиться с нужным оператором (например, ДОХОД), после чего нажать кнопку OK.
На экране отобразится окно с аргументами функции, которые требуется заполнить, после чего нажать кнопку OK, чтобы добавить ее в выбранную ячейку и получить результат.
Указывать данные можно вручную, используя клавиши клавиатуры (конкретные значения или ссылки на ячейки), либо встав в поле напротив нужного аргумента, выбирать соответствующие элементы в самой таблице (ячейки, диапазон ячеек) с помощью левой кнопки мыши (если это допустимо).
Обратите внимание, что некоторые аргументы могут не показываться и необходимо пролистать область вниз для получения доступа к ним (с помощью вертикального ползункам справа).
Альтернативный способ
Находясь во вкладке “Формулы” можно нажать кнопку “Финансовые” в группе “Библиотека функций”. Раскроется список доступных вариантов, среди которых просто кликаем по нужному.
После этого сразу же откроется окно с аргументами функции для заполнения.
Популярные финансовые функции
Теперь, когда мы разобрались с тем, каким образом функция вставляется в ячейку таблицы Excel, давайте перейдем к перечню финансовых операторов (представлены в алфавитном порядке).
Данный оператор применяется для вычисления будущей стоимости инвестиции исходя из периодических равных платежей (постоянных) и размера процентной ставки (постоянной).
Обязательными аргументами (параметрами) для заполнения являются:
- Ставка – процентная ставка за период;
- Кпер – общее количество периодов выплат;
- Плт – неизменная выплата за каждый период.
Необязательные аргументы:
- Пс – приведенная (нынешняя) стоимость. Если не заполнять, будет принято значение, равное “0”;
- Тип – здесь указывается:
- 0 – выплата в конце периода;
- 1 – выплата в начале периода
- если поле оставить пустым, по умолчанию будет принято нулевое значение.
Также есть возможность вручную ввести формулу функции сразу в выбранной ячейке, минуя окна вставки функции и аргументов.
Синтаксис функции:
Результат в ячейке и выражение в строке формул:
Функция позволяет вычислить внутреннюю ставку доходности для ряда денежных потоков, выраженных числами.
Обязательный аргумент всего один – “Значения”, в котором нужно указать массив или координаты диапазона ячеек с числовыми значениями (по крайней мере, одно отрицательное и одно положительное число), по которым будет выполняться расчет.
Необязательный аргумент – “Предположение”. Здесь указывается предполагаемая величина, которая близка к результату ВСД. Если не заполнять данное поле, по умолчанию будет принято значение, равное 10% (или 0,1).
Синтаксис функции:
Результат в ячейке и выражение в строке формул:
ДОХОД
С помощью данного оператора можно посчитать доходность ценных бумаг, по которым производится выплата периодического процента.
Обязательные аргументы:
- Дата_согл – дата соглашения/расчета по ценным бумагам (далее – ц.б.);
- Дата_вступл_в_силу – дата вступления в силу/погашения ц.б.;
- Ставка – годовая купонная ставка ц.б.;
- Цена – цена ц.б. за 100 рублей номинальной стоимости;
- Погашение – суммы погашения или выкупная стоимость ц.б. за 100 руб. номинальной стоимости;
- Частота – количество выплат за год.
Аргумент “Базис” является необязательным, в нем задается способ вычисления дня:
- 0 или не заполнен – армериканский (NASD) 30/360;
- 1 – фактический/фактический;
- 2 – фактический/360;
- 3 – фактический/365;
- 4 – европейский 30/360.
Синтаксис функции:
Результат в ячейке и выражение в строке формул:
Оператор используется для расчета внутренней ставки доходности для ряда периодических потоков денежных средств исходя из затрат на привлечение инвестиций, а также процента от реинвестирования денег.
У функции только обязательные аргументы, к которым относятся:
- Значения – указываются отрицательные (платежи) и положительные числа (поступления), представленные в виде массива или ссылок на ячейки. Соответственно, здесь должно быть указано, как минимум, одно положительное и одно отрицательное числовое значение;
- Ставка_финанс – выплачиваемая процентная ставка за оборачиваемые средства;
- Ставка _реинвест – процентная ставка при реинвестировании за оборачиваемые средства.
Синтаксис функции:
Результат в ячейке и выражение в строке формул:
ИНОРМА
Оператор позволяет вычислить процентную ставку для полностью инвестированных ц.б.
Аргументы функции:
- Дата_согл – дата расчета по ц.б.;
- Дата_вступл_в_силу – дата погашения ц.б.;
- Инвестиция – сумма, вложенная в ц.б.;
- Погашение – сумма к получению при погашении ц.б.;
- аргумент “Базис” как и для функции ДОХОД является необязательным.
Синтаксис функции:
Результат в ячейке и выражение в строке формул:
С помощью этой функции рассчитывается сумма периодического платежа по займу исходя из постоянства платежей и процентной ставки.
Обязательные аргументы:
- Ставка – процентная ставка за период займа;
- Кпер – общее количество периодов выплат;
- Пс – приведенная (нынешняя) стоимость.
Необязательные аргументы:
- Бс – будущая стоимость (баланс после последней выплаты). Если поле оставить незаполненным, по умолчанию будет принято значение, равное “0”.
- Тип – здесь указывается, как будет производиться выплата:
- “0” или не указано – в конце периода;
- “1” – в начале периода.
Синтаксис функции:
Результат в ячейке и выражение в строке формул:
ПОЛУЧЕНО
Применяется для нахождения суммы, которая будет получена к сроку погашения инвестированных ц.б.
Аргументы функции:
- Дата_согл – дата расчета по ц.б.;
- Дата_вступл_в_силу – дата погашения ц.б.;
- Инвестиция – сумма, инвестированная в ц.б.;
- Дисконт – ставка дисконтирования ц.б.;
- “Базис” – необязательный аргумент (см. функцию ДОХОД).
Синтаксис функции:
Результат в ячейке и выражение в строке формул:
Оператор используется для нахождения приведенной (т.е. к настоящему моменту) стоимости инвестиции, которая соответствует ряду будущих выплат.
Обязательные аргументы:
- Ставка – процентная ставка за период;
- Кпер – общее количество периодов выплат;
- Плт – неизменная выплата за каждый период.
Необязательные аргументы – такие же как и для функции “ПЛТ”:
Синтаксис функции:
Результат в ячейке и выражение в строке формул:
СТАВКА
Оператор поможет найти процентную ставку по аннуитету (финансовой ренте) за 1 период.
Обязательные аргументы:
- Кпер – общее количество периодов выплат;
- Плт – неизменная выплата за каждый период;
- Пс – приведенная стоимость.
Необязательные аргументы:
- Бс – будущая стоимость (см. функцию ПЛТ);
- Тип (см. функцию ПЛТ);
- Предположение – предполагаемая величина ставки. Если не указывать, будет принято значение по умолчанию – 10% (или 0,1).
Синтаксис функции:
Результат в ячейке и выражение в строке формул:
Оператор позволяет найти цену за 100 рублей номинальной стоимости ц.б., по которым производится выплата периодического процента.
Обязательные аргументы:
- Дата_согл – дата расчета по ц.б.;
- Дата_вступл_в_силу – дата погашения ц.б.;
- Ставка – годовая купонная ставка ц.б.;
- Доход – годовой доход по ц.б.;
- Погашение – выкупная стоимость ц.б. за 100 руб. номинальной стоимости;
- Частота – количество выплат за год.
Аргумент “Базис” как и для оператора ДОХОД является необязательным.
Синтаксис функции:
Результат в ячейке и выражение в строке формул:
С помощью данной функции можно определить чистую приведенную стоимость инвестиции исходя из ставки дисконтирования, а также размера будущих поступлений и платежей.
Аргументы функции:
- Ставка – ставка дисконтирования за 1 период;
- Значение1 – здесь указываются выплаты (отрицательные значения) и поступления (положительные значения) в конце каждого периода. Поле может содержать до 254 значений.
- Если лимит аргумента “Значение 1” исчерпан, можно перейти к заполнению следующих – “Значение2”, “Значение3” и т.д.
Синтаксис функции:
Результат в ячейке и выражение в строке формул:
Заключение
Категория “Финансовые” в программе Excel насчитывает свыше 50 различных функций, но многие из них специфичны и узконаправлены, из-за чего используются редко. Мы же рассмотрели 11 самых востребованных, по нашему мнению.
Чтобы просмотреть более подробные сведения о функции, щелкните ее название в первом столбце.
Примечание: Маркер версии обозначает версию Excel, в которой она впервые появилась. В более ранних версиях эта функция отсутствует. Например, маркер версии 2013 означает, что данная функция доступна в выпуске Excel 2013 и всех последующих версиях.
Возвращает накопленный процент по ценным бумагам с периодической выплатой процентов.
Возвращает накопленный процент по ценным бумагам, процент по которым выплачивается в срок погашения.
Возвращает величину амортизации для каждого учетного периода, используя коэффициент амортизации.
Возвращает величину амортизации для каждого учетного периода.
Возвращает количество дней от начала действия купона до даты соглашения.
Возвращает количество дней в периоде купона, который содержит дату расчета.
Возвращает количество дней от даты расчета до срока следующего купона.
Возвращает порядковый номер даты следующего купона после даты соглашения.
Возвращает количество купонов между датой соглашения и сроком вступления в силу.
Возвращает порядковый номер даты предыдущего купона до даты соглашения.
Возвращает кумулятивную (нарастающим итогом) величину процентов, выплачиваемых по займу в промежутке между двумя периодами выплат.
Возвращает кумулятивную (нарастающим итогом) сумму, выплачиваемую в погашение основной суммы займа в промежутке между двумя периодами.
Возвращает величину амортизации актива для заданного периода, рассчитанную методом фиксированного уменьшения остатка.
Возвращает величину амортизации актива за данный период, используя метод двойного уменьшения остатка или иной явно указанный метод.
Возвращает ставку дисконтирования для ценных бумаг.
Преобразует цену в рублях, выраженную в виде дроби, в цену в рублях, выраженную десятичным числом.
Преобразует цену в рублях, выраженную десятичным числом, в цену в рублях, выраженную в виде дроби.
Возвращает продолжительность Маколея для ценных бумаг, по которым выплачивается периодический процент.
Возвращает фактическую (эффективную) годовую процентную ставку.
Возвращает будущую стоимость инвестиции.
Возвращает будущее значение первоначальной основной суммы после применения ряда (плана) ставок сложных процентов.
Возвращает процентную ставку для полностью инвестированных ценных бумаг.
Возвращает проценты по вкладу за данный период.
Возвращает внутреннюю ставку доходности для ряда потоков денежных средств.
Вычисляет выплаты за указанный период инвестиции.
Возвращает модифицированную продолжительность Маколея для ценных бумаг с предполагаемой номинальной стоимостью 100 рублей.
Возвращает внутреннюю ставку доходности, при которой положительные и отрицательные денежные потоки имеют разные значения ставки.
Возвращает номинальную годовую процентную ставку.
Возвращает общее количество периодов выплаты для инвестиции.
Возвращает чистую приведенную стоимость инвестиции, основанной на серии периодических денежных потоков и ставке дисконтирования.
Возвращает цену за 100 рублей номинальной стоимости ценных бумаг с нерегулярным (коротким или длинным) первым периодом купона.
Возвращает доход по ценным бумагам с нерегулярным (коротким или длинным) первым периодом купона.
Возвращает цену за 100 рублей номинальной стоимости ценных бумаг с нерегулярным (коротким или длинным) последним периодом купона.
Возвращает доход по ценным бумагам с нерегулярным (коротким или длинным) последним периодом купона.
ПДЛИТ
Возвращает количество периодов, необходимых инвестиции для достижения заданного значения.
Возвращает регулярный платеж годичной ренты.
Возвращает платеж с основного вложенного капитала за данный период.
Возвращает цену за 100 рублей номинальной стоимости ценных бумаг, по которым выплачивается периодический процент.
Возвращает цену за 100 рублей номинальной стоимости ценных бумаг, на которые сделана скидка.
Возвращает цену за 100 рублей номинальной стоимости ценных бумаг, по которым процент выплачивается в срок погашения.
Возвращает приведенную (к текущему моменту) стоимость инвестиции.
Возвращает процентную ставку по аннуитету за один период.
Возвращает сумму, полученную к сроку погашения полностью инвестированных ценных бумаг.
ЭКВ.СТАВКА
Возвращает эквивалентную процентную ставку для роста инвестиции.
Возвращает величину амортизации актива за один период, рассчитанную линейным методом.
Возвращает величину амортизации актива за данный период, рассчитанную методом суммы годовых чисел.
Возвращает эквивалентный облигации доход по казначейскому векселю.
Возвращает цену за 100 рублей номинальной стоимости для казначейского векселя.
Возвращает доходность по казначейскому векселю.
Возвращает величину амортизации актива для указанного или частичного периода при использовании метода сокращающегося баланса.
Возвращает внутреннюю ставку доходности для графика денежных потоков, не обязательно носящих периодический характер.
Возвращает чистую приведенную стоимость для денежных потоков, не обязательно носящих периодический характер.
Возвращает доход по ценным бумагам, по которым производятся периодические выплаты процентов.
Возвращает годовую доходность ценных бумаг, на которые сделана скидка (например, по казначейским векселям).
Возвращает годовую доходность ценных бумаг, по которым процент выплачивается в срок погашения.
Важно: Вычисляемые результаты формул и некоторые функции листа Excel могут несколько отличаться на компьютерах под управлением Windows с архитектурой x86 или x86-64 и компьютерах под управлением Windows RT с архитектурой ARM. Подробнее об этих различиях.
1. PMT (ПЛТ) — рассчитывает сумму ежемесячных платежей по долгам
Это сэкономит время, когда есть несколько кредитных предложений от разных банков и не хочется обращаться в каждый за подробностями.
Допустим, человек переехал в новую квартиру и решает отремонтировать её прямо сейчас. Свободных денег не осталось, поэтому он собирается занять их у банка.
Какие данные нужны
Для начала надо правильно написать формулу — в любой свободной ячейке.
В скобках стоят три обязательных аргумента, без которых не получится ничего посчитать:
- Ставка — процент по кредиту, который предлагает банк. Пусть будет 9,5%.
- Кпер — количество выплат по займу. Ремонт дорогой, но не смертельно, так что возьмём на полтора года: это 18 ежемесячных платежей.
- Пс — сумма, которая нужна на обновление жилья. Оценим это дело в 300 000 рублей.
Как всё посчитать
Надо занести известные данные в таблицу, а потом напечатать формулу через знак «=». Вместо каждого из аргументов подставляем свои данные.
Важно следить за оформлением: десятичные дроби отбиваются запятой, а не точкой. А ещё каждое значение в формуле нужно разделять точкой с запятой
Ничего не мешает одновременно внести в таблицу несколько предложений с разными процентными ставками и сроками кредита и сравнить условия. Каждый раз переписывать формулу необязательно, её можно просто растянуть за уголок.
Главное — не перепутать местоположение ячеек: все значения остаются в одних и тех же строках
2. EFFECT (ЭФФЕКТ) — позволяет рассчитать сложный процент
Функция подойдёт инвестору, который выбирает облигации для своего портфеля и хочет понять, какую годовую доходность получит на самом деле.
Россия занимает деньги через множество облигаций федерального займа (ОФЗ). У каждого выпуска таких бумаг есть номинальная доходность, определяющая, какой процент годовых от вложенной суммы получит инвестор. Например, по ОФЗ 26209 обещают Параметры облигации федерального займа SU26209RMFS5 / Московская биржа 7,6%, а по ОФЗ 26207 ещё больше Параметры облигации федерального займа SU26207RMFS9 / Московская биржа — 8,15%.
Но если человеку не нужны деньги в ближайшее время, то он не станет забирать прибыль по облигациям. А, скорее всего, вложит её в те же бумаги, то есть реинвестирует. И тогда вырастет эффективная доходность облигаций. Это произойдёт из‑за механизма сложного процента: прибыль начисляется не только на первоначальные инвестиции, но и на последующие.
Какие данные нужны
Формула расчёта довольно простая:
В ней всего две переменные:
- Номинальная_ставка — та доходность, которая обещана облигацией при выпуске. Это 7,6% и 8,15% в нашем примере.
- Кол_пер — количество периодов в году, когда инвестору начисляется прибыль (в облигациях её называют купоном).
Как всё посчитать
Принцип сохраняется: вносим исходные данные в таблицу. Номинальную доходность и периодичность выплат по купонам обязательно публикуют для каждой облигации на Мосбирже в разделе «Параметры инструмента». Теперь легко всё посчитать:
Чтобы было проще понимать результат, можно переключить отображение ячейки на проценты. А затем растянуть формулу дальше и сравнивать доходность
Только заметим, что облигации устроены очень хитро, инвестору нужно учитывать и другие факторы, которые влияют на прибыльность. Например, номинал бумаги равен 1 000 рублей, а её продают за 996 — реальная доходность будет выше. С другой стороны, инвестору придётся заплатить ещё и накопленный купонный доход — автоматически рассчитываемая компенсация предыдущему владельцу облигации. Эта сумма может быть равна 20–30 рублям, из‑за чего доходность опять упадёт. Одной формулой здесь не обойтись.
3. XNPV (ЧИСТНЗ) — вычисляет общую прибыль инвестора
Порой люди накапливают много активов, каждый из которых нерегулярно приносит деньги: проценты по вкладам, выплаты купонов по облигациям, дивиденды от акций. У всех инструментов разная прибыль, поэтому полезно понимать, сколько выходит в сумме.
Функция позволяет рассчитать, какое количество денег вернётся через определённое время, например спустя четыре года. Так владелец активов поймёт, сможет ли реинвестировать доходы или купить что‑нибудь дорогое.
Какие данные нужны
Формула состоит из трёх компонентов:
Второй и третий достаточно ясны:
2. Значения — сколько денег потрачено на инвестиции и сколько возвращается.
3. Даты — когда именно средства приходят или уходят.Первый компонент формулы — ставка дисконтирования. Обычно деньги со временем обесцениваются, и на одну и ту же сумму в будущем можно купить меньше, чем сейчас. Это значит, что нынешние 100 рублей равны, допустим, 120 рублям в 2025 году.
Если инвестор хочет не просто сохранить деньги, но и заработать, ему нужно учесть постепенное обесценивание валюты. Есть много способов это сделать, но самый простой — посмотреть доходность по надёжным облигациям: к примеру Параметры облигации федерального займа SU26234RMFS3 / Московская биржа , ОФЗ 26234 — 4,5%. Смысл в том, что инвестор почти гарантированно получит такую прибыль в будущем, это «безрисковая ставка». Оценивать потенциал инвестиций имеет смысл с поправкой на этот процент.
Как всё посчитать
Со знаком минус нужно внести затраты — в нашем случае деньги, израсходованные на ценные бумаги. Следом укажем поступления, которые для отдельных инвестиций доступны заранее.
Чтобы было проще осознавать результат, можно указать отображение «Валюта» для ячейки
Итоговое значение — фактическая прибыль инвестора через четыре года с учётом ставки дисконтирования. Она совсем маленькая, несмотря на 92 тысячи инвестиций: для больших поступлений нужно подбирать более рискованные, но доходные инструменты.
4. XIRR (ЧИСТВНДОХ) — оценивает доходность инвестиций по притокам денег
Обычно у любого инвестора есть выбор между разными финансовыми инструментами. Каждый обещает какую‑то прибыль, но не всегда понятно, что выгоднее.
Функция помогает сравнить доходность, если мы заранее не знаем процент годовых. К примеру, ставка по банковскому вкладу равна 6%. Можно вложить деньги туда, а можно в бизнес знакомого, который обещает раз в квартал платить плавающую сумму в зависимости от успехов.
Какие данные нужны
Чтобы определить более выгодное предложение, применим формулу:
Достаточно знать всего две переменные:
- Значения — сколько денег инвестор вложит и сколько ему обещают вернуть.
- Даты — график платежей, по которым будут выплачивать прибыль.
Как всё посчитать
Допустим, человек вложил 100 000 рублей и получил четыре платежа, по одному в квартал. В конце года инвестор знает их размер и может вычислить доходность — больше 40%. Это на 37% выгоднее банковского вклада, хотя и рискованнее.
5. RATE (СТАВКА) — вычисляет месячную или годовую процентную ставку по займам
Бывают и такие ситуации, что заём уже есть, а процент не оговорён. Допустим, если человек взял в долг 100 000 рублей у знакомого и пообещал в течение полугода возвращать по 20 тысяч ежемесячно. Кредитор может захотеть узнать, какова выходит ставка.
Какие данные нужны
Полезной будет эта формула:
Три переменных в ней означают следующее:
- Кпер — количество выплат. В нашем примере заём полугодовой, то есть их будет шесть.
- Плт — размер платежей. Считаются и основной долг, и проценты.
- Пс — общая сумма займа. В нашем примере это 100 000 рублей.
Как всё посчитать
Нужно внести значения каждой переменной в свою ячейку и применить формулу. Главное — не забыть поставить перед суммой займа знак минуса, потому что это деньги, которые ушли.
6. PV (ПС) — подсказывает, сколько денег можно взять в долг
Люди иногда делают большие покупки. Например, приобретают автомобили. Они стоят дорого, и для машин берут автокредит, обслуживать который тоже недёшево. Если человек не готов отдавать всю зарплату на ежемесячные платежи, то может заранее прикинуть, какой заём будет комфортным.
Какие данные нужны
Пригодится формула расчёта текущей стоимости:
=ПС(ставка; кпер; плт)
Для этого потребуется информация, которая есть на сайте любого банка:
- Ставка — под какой процент придётся брать деньги на покупку. Допустим, 9% годовых, или 0,75% в месяц.
- Кпер — сколько времени предстоит выплачивать кредит. Например, четырёхлетний заём равен 48 ежемесячным переводам средств.
- Плт — размер комфортного платежа.
Как всё посчитать
Предположим, что человеку будет по силам отдавать от 40 до 50 тысяч рублей в месяц. В этом случае нужны два столбца: ставка и срок постоянны, меняется только значение платежа. В результате увидим, что машина должна стоить не больше 1,6 или 2 миллионов рублей.
Автомобили с такой ценой не утянут в долговую яму. Значит, можно сокращать себе пространство для выбора и искать подходящие модели.
7. NPER (КПЕР) — помогает рассчитать время накоплений
Обычно банки объясняют, какой процент человек получит по их депозиту и сколько денег заработает. Но иногда у вкладчика другая цель — накопить конкретную сумму к определённой дате. Функция поможет высчитать этот срок.
Какие данные нужны
Чтобы узнать, за какое время соберутся деньги, используем формулу количества периодов:
Она состоит из четырёх основных значений и одного дополнительного:
- Ставка — годовая процентная ставка, которую предлагают вкладчику. Предположим, что 7%.
- Периоды_капитализации — количество раз в году, когда банк начисляет проценты. Это часто делают ежемесячно, поэтому пишем «12».
- Плт — ежемесячный платёж. Скажем, вклад непополняемый, так что показатель будет равен нулю.
- Пс — начальная сумма на депозите. Допустим, 100 000 рублей.
- Бс — сумма, которую вкладчик намерен получить в конце срока. Например, 200 000 рублей.
Как всё посчитать
Человек собирается положить на депозит 100 000 рублей под 7% и хочет однажды забрать вдвое больше.
Для этого придётся подождать два с лишним года. Либо искать более доходную инвестицию, которая сократит срок.
Читайте также: