Основные этапы эволюции клетки
Важнейшим событием в появлении жизни стало образование РНК и ДНК или ДНК-подобных макромолекул, обладавших теми свойствами, которые сейчас находят в качествах генов. Далее на протяжении примерно 2 миллиардов или более лет в процессе биологической эволюции происходили непрерывные преобразования жизненных функций живой клетки: питания, размножения и её структурной организации, имевшие важное значение для последующего развития живых форм. Главнейшими шагами в эволюции живого стали:
- автотрофное питание, в частности фотосинтез; ;
- эукариотическая клеточная организация; и многоклеточность.
Наиболее древней клеточной формой была, вероятно, примитивная прокариотическая клетка, возникшая около 3,5 млрд лет назад. Клетки этого типа вначале использовали для своего существования и размножения органические молекулы небиологического происхождения из «первичного бульона». Непрерывный рост гетеротрофных примитивных живых клеток постепенно привёл к истощению органического «первичного бульона». В условиях истощения пищевых ресурсов появившаяся способность самостоятельно (автотрофно) синтезировать пищу с помощью энергии Солнца из неорганических веществ — воды и углекислого газа — давала огромное преимущество.
Важным шагом в эволюции многоклеточных животных явилось возникновение третьего зародышевого листка — мезодермы. Мезодерма обеспечивает возможность дифференцировки мышечной, соединительной тканей и скелета, а также многоклеточных половых желез, в которых созревающие гаметы оказываются надежно защищены от неблагоприятных средовых воздействий. Практически все трехслойные животные ведут активно подвижный образ жизни, благодаря чему приобретают билатеральный тип симметрии. Вместе с тем у трехслойных животных с интенсивным обменом веществ, активно перемещающихся с помощью мышц, возникают проблемы с выведением большого количества продуктов диссимиляции из тканей — производных мезодермы, в то время как эктодермальные и энтодермальные клетки выделяют их за счет диффузии соответственно либо наружу, либо в просвет пищеварительной полости. Поэтому именно у трехслойных впервые появляется и прогрессивно эволюционирует выделительная система.
Следующий значительный этап эволюции животных — возникновение вторичной полости тела, или целома, первоначально функционирующего как гидростатический скелет, а также выполняющего половую и выделительную функции в связи с тем, что продукты диссимиляции и половые клетки попадают в целом и только потом выделяются наружу (см. § 14.5).
Рис. 13.12. Главные направления эволюции групп в животном царстве:
1—прогрессивное направление, 2—адаптивное направление, 3—узловые моменты в прогрессивной эволюции; каждому узловому моменту соответствует его характеристика, обозначенная в правом столбце
Существенным этапом дальнейшей эволюции многоклеточных является возникновение регуляторного типа эмбрионального развития (см. разд. 8.3.1 и 8.3.2), в результате которого в развивающемся зародыше доминирует целостность морфогенетических процессов над их составляющими. Благодаря этому зародыш развивается относительно автономно в соответствии со своей генетической программой и способен компенсировать даже серьезные повреждения. Организмы, характеризующиеся такими особенностями, относят к группе вторичноротых, в отличие от первичноротых, у которых эмбриональное развитие протекает по мозаичному типу (см. разд. 8.3.1).
Наиболее крупные систематические группировки в царстве Животные называют типами. За период существования жизни на Земле их было не менее 35. К настоящему времени некоторые из них вымерли; сейчас на Земле обитают животные 26 типов.
На рис. 13.12 приведена схема главных направлений эволюции в Животном царстве, а на рис. 13.13 изображены представители основных типов современных животных. Интересно, что к концу протерозойской эры (2,7 млрд. лет тому назад) на Земле уже существовали представители всех типов животного мира и основные узловые моменты в прогрессивной эволюции животных ими были пройдены.
Существование разнообразных живых организмов на Земле на протяжении около 3 млрд. лет, а также возникновение человека как биосоциального существа определяет в настоящее время картину современного органического мира.
Рис. 13.13. Основные типы животного царства и их филогенетические взаимоотношения
История развития жизни на Земле насчитывает по современным данным около 3,8 млрд лет и подразделяется на геологические эры, выделяемые в зависимости от преобладающих типов живых организмов и уровня организации биосферы, характерного для той или иной эпохи. Переход от одной эры к другой сопровождался крупными ароморфозами и коренной перестройкой всей биосферы (табл. 6.1)
Основные этапы эволюции жизни на Земле
Первый ароморфоз, следы которого доступны для наблюдения - образование прокариотных клеток. Древнейшие достоверные окаменелости, имеющие возраст около 3,8 млрд лет, содержат остатки микроорганизмов с клеточной оболочкой. Известны и осадочные породы возрастом более 3,5 млрд лет, представляющие собой результаты жизнедеятельности бактерий. Таким образом, примерно через 0,7 млрд лет после формирования нашей планеты на ней уже существовала биосфера. Проследить историю предшествовавших событий затруднительно, поскольку само формирование сплошной твердой земной коры к этому времени только успело завершиться и более древние породы переплавлялись в недрах молодой планеты.
Предполагается, что первичные организмы были гетеротрофами, так как использовали в качестве пищи готовые органические вещества первичного «бульона». Они существовали в бескислородных условиях, т.е. являлись анаэробными. Постепенное исчерпание исходных пищевых ресурсов стало стимулом для поисков нового источника органических соединений. У ряда видов бактерий возникает способность использовать энергию, выделяющуюся при окислении неорганических соединений (Н2, Н2S, NH3 и пр.) для синтеза органических веществ. Такой процесс – хемосинтез, являющийся одним из типов автотрофного питания, сохранился вплоть до настоящего времени и играет важную роль в биогеохимических циклах химических элементов в биосфере. Однако энергетически более выгодным оказался другой тип автотрофного питания – фотосинтез, осуществляющийся за счет энергии солнечного света.
Возникновение фотосинтеза является вторым важнейшим ароморфозом. С его помощью стало возможным получать ресурсы (углекислый газ) для синтеза органических соединений непосредственно из атмосферного воздуха, отдавая взамен молекулярный кислород. Постепенное изменение химического состава атмосферы способствовало ускорению биологического круговорота веществ и ускорению процесса эволюции в целом. Около 2 млрд лет назад концентрация кислорода в атмосфере достигла 1% современной (точка Пастера), что привело к целому ряду важных последствий:
дыхание становится эффективным способом обеспечения организмов энергией.
в верхних слоях атмосферы образуется озон О3, защищающий поверхность Земли от ультрафиолетового излучения Солнца.
накопление свободного кислорода вызвало экологический кризис (первый в истории Земли) и соответствующий естественный отбор, в результате которого возникают аэробные организмы, способные существовать только в условиях атмосферы, содержащей кислород.
Следующим крупным эволюционным шагом (ароморфозом) было возникновение эукариот, особенностью которых является своего рода «разделение труда» между ядром и органоидами клетки. Около 1 млрд лет назад возникло половое размножение, способствующее комбинированию генов различных особей. Повышается гибкость реагирования популяции и вида в целом на изменение условий жизни, и возрастает скорость эволюционного процесса. В процессе эволюции биосферы определилась ее «двухслойная» структура – бактериальное основание и эукариотная «надстройка». «Основание» неизмеримо более устойчиво, и даже в настоящее время мы обнаруживаем точно такие же микробные сообщества, какие были характерны для ранних этапов развития биосферы.
Дальнейший ароморфоз – многоклеточность, точные механизмы возникновения которой остаются до сих пор неизвестными. Возникновение многоклеточных организмов сопровождалось повышением устойчивости экосистем и открыло возможности для их эволюции в разных направлениях.
Около 600 млн лет назад в истории Земли произошло событие, получившее название «большого взрыва эволюции животных». В течение примерно 70 млн лет возникают почти все известные ныне планы строения тела, почти все из существующих и вымерших типов животных. В течение последующих 100 млн лет эволюция шла в основном по пути усовершенствования и специализации форм, возникших в данный период. Здесь основной ароморфоз – формирование жесткого скелета (наружного – у трилобитов и, позже, внутреннего – у рыб). Примерно 500 млн лет назад начинается выход на сушу растений (псилофитов – близких родственников зеленых водорослей). В результате адаптации к наземной среде формируются специализированные органы: жесткий стебель, корневая система, покровная ткань. Возникновение наземных растений позволило фотосинтезирующим структурам биосферы располагаться в трехмерном пространстве, что резко интенсифицировало весь процесс фотосинтеза. Развитие наземной растительности привело к существенному усложнению наземных экосистем (формирование почвы, накопление больших запасов биомассы) и повышению содержания кислорода в атмосфере до современного уровня – 21%.
440-410 млн лет назад возникают первые позвоночные животные - панцирные рыбы, характеризующиеся наличием внутреннего скелета с черепной коробкой, парными конечностями и развитой мускулатурой. Некоторые виды рыб (акулы) мало изменились за последние сотни миллионов лет. Однако дальнейшая эволюция оказалось связанной с группой кистеперых рыб. Их короткие и мясистые плавники позволяли хорошо ползать по дну, что способствовало выживанию в пересыхающих водоемах. В результате около 320 млн лет назад появляются первые представители наземных позвоночных животных – земноводные (родственные современным жабам, лягушкам, тритонам и пр.), характеризующиеся гладкой кожей, пятипалыми конечностями, легочным дыханием и увеличенным размером головного мозга.
Постепенное понижение температуры и влажности воздуха способствовало росту давления естественного отбора в сторону большей независимости живых организмов от водной среды. У растений возникают семена, снабженные защитной оболочкой, – появляются голосеменные (хвойные) деревья и кустарники. У позвоночных животных возникают внутреннее оплодотворение и яйцо – миниатюрный индивидуальный водоем для эмбриона. Эти два ароморфоза стали главными признаками нового класса животных – рептилий (пресмыкающихся). Уровень их общей организации был настолько высок и открывал столь широкие возможности для разнообразных адаптаций, что рептилии оставались в определенном смысле полновластными хозяевами Земли на протяжении 220 млн лет. Они были представлены широким спектром самых разнообразных видов (динозавры, крокодилы, змеи, черепахи, птеранодоны, ихтиозавры и пр.).
Первые теплокровные животные, млекопитающие (звери) появились одновременно с динозаврами, однако в течение 150 млн лет оставались малочисленной и не играющей существенной роли в биосфере группой. В процессе глобальных климатических изменений теплокровность становилась значительным преимуществом. Примерно 65 млн лет назад подавляющее большинство видов пресмыкающихся вымирает, и опустевшие экологические ниши заполняют млекопитающие и птицы. Помимо особенностей, связанных с регуляцией температуры тела, млекопитающие отличаются приспособлениями, способствующими высокоорганизованной нервно-психической деятельности: развитый головной мозг, длительный период воспитания и обучения детенышей. Характерное практически для всех млекопитающих живорождение обеспечивает более высокую выживаемость потомства.
Таким образом, можно констатировать, что в процессе развития жизни на нашей планете происходило постепенное усложнение экосистем, сопровождающееся возрастанием видового разнообразия, экспансией жизни, охватывающей в настоящее время всю поверхность планеты, усиливающейся дифференциацией биосферы на локальные экосистемы. Результатом миллиардов лет эволюции экосистем является современная биосфера Земли, включающая около 10 млн ныне существующих видов, из которых лишь один – Homo sapiens - оказался способным осуществлять сознательное преобразование биосферы в процессе разумной трудовой деятельности.
Прокариотические клетки появились на Земле приблизительно 3,5 млрд. лет назад в результате спонтанного образования органических молекул и продолжительной эволюции (гипотеза А.И. Опарина).
Появление ферментативных (каталитических) молекулярных механизмов стало решающим этапом в этом процессе.
В первых клетках использовались каталитические свойства белков и РНК, а в качестве вещества наследственности в них содержалась только РНК. Структура и функции клеток усложнялись, накоплялись дополнительные каталитические белки и в результате молекулу РНК заменила двухцепочная ДНК, которая сохраняла генетическую информацию.
Происхождение эукариотических клеток объясняют симбиотической гипотезой, согласно которой клеткой-хозяином был анаэроб. Переход к аэробному дыханию связан с проникновением аэробных бактерий в клетку – хозяина и сосуществование с ней в виде митохондрий.
Зелёные растения благодаря наличию в них хлоропластов способны к фотосинтезу. Считают, хлоропластам дали начало прокариотические синезелёные водоросли, которые являлись симбионтами клетки-хозяина. Основным аргументом в пользу симбиотической гипотезы является наличие в митохондриях и хлоропластах собственной ДНК.
Производными внешней мембраны клетки, способной ветвиться, является система внутриклеточных мембран, образующих гладкую и зернистую эндоплазматические сети, комплекс Гольджи, ядерную оболочку.
Достаточно сложным является вопрос о происхождении генетического материала ядра. Предполагают, что оно так же образовалось из симбиотических прокариот. Наверное, количество ядерной ДНК увеличивалось постепенно – генетический материал перемещался из геномов симбионтов в ограниченный мембраной участок клетки.
Очень важно и возникновение митоза как механизма равномерного распределения генетического материала и воспроизведения клеток. В ходе дальнейшей эволюции появился ещё один механизм деления клеток – мейоз, благодаря чему решилась проблема размножения многоклеточных организмов. Переход к половому размножению содействовал появлению комбинативной изменчивости, а при этом существенно увеличилась скорость эволюции.
Готовые работы на аналогичную тему
Получить выполненную работу или консультацию специалиста по вашему учебному проекту Узнать стоимостьБлагодаря этим процессам за 1 млрд. лет эволюции эукариотический тип клеточной организации обусловил разнообразие живых организмов от простейших к человеку.
Эволюция клетки прокариот
На основании изучения ископаемых останков бактерий и цианобактерий предполагают, что изначальной клеточной формой была примитивная прокариотическая клетка, которая возникла около 3,5 млрд лет назад.
Клетки такого типа для обеспечения своего существования сначала использовали органические молекулы небиологического происхождения. Первым шагом в формировании примитивной клетки было образование мембраны, окружающей клеточное вещество.
В дальнейшем у примитивных прокариот в клетках развились механизмы синтеза и энергетического обеспечения. Предположительно, что первые прокариотические клетки имели самые простые каталитические системы, в результате чего обеспечение их энергией базировалось на брожении.
Далее у отдельных видов прокариот клетки перешли из процесса брожения на процесс дыхания, что способствовало более эффективому получению энергии.
Таким образом, эволюционные изменения прокариотических клеток шло путём развития различных путей метаболизма. При развитии их генома шло формирование «голых» молекул ДНК.
Эволюция клетки эукариот
Изменения клеток эукариот в процессе эволюции шли путём возрастания разнообразия форм, структуры и функций с одновременной компартментализацией биохимических систем и сохранением общего для всех клеток аэробного метаболизма.
Предположительно, что эукариотические клетки возникли из прокариотических менее 1 млрд. лет назад.
Для объяснения их происхождения выдвинуто четыре гипотезы.
Согласно одной из этих гипотез (гипотезы клеточного симбиоза), наиболее распространённой, предполагают, что эукариотическая клетка является симбиотической структурой, которая состоит из нескольких клеток различных типов, окружённых общей мембраной. В частности, предполагают, что пластиды в клетках современных зелёных растений берут начало от бактерий, предков современных цианобактерий, способных к аэробному фотосинтезу, а митохондрии эукариотических клеток берут начало от аэробных бактерий, которые вступали в симбиоз с примитивными анаэробными клетками, способными к фотосинтезу, что вызвало образование клеток, способных к существованию в кислородной атмосфере и к использованию кислорода путём дыхания.
Относительно ядра предполагают, что оно является рудиментом так же какого-то внутриклеточного симбионта, который потерял свою цитоплазму после включения в исходную клетку.
Этой гипотезе соответствуют и данные о временных симбиотических связях некоторых организмов.
Одноклеточная зелёная водоросль хлорелла (Chlorella) живёт в цитоплазме зелёного лишайника парамеции (Paramecium bussaria). Благодаря способности к фотосинтезу она поставляет парамеции питательные вещества.
В пластидах и митохондриях содержится собственная система генетической информации о синтезе белков в виде ДНК, тРНК, мРНК, рРНК и соответсвующих ферментов.
Для хлоропластов и митохондрий прокариот характерны схожие способы репродукции (все они одинаково размножаются путём простого деления надвое).
Согласно другой гипотезе считают, что эукариотическая клетка образовавшаяся от клетки прокариот, содержала несколько геномов, прикреплённых к клеточной мембране.
В результате впячивания клеточной мембраны внутрь цитоплазмы образовывались мезосомы, которые первоначально могли фотосинтезировать. Но в дальнейшем эти органеллы специализировались: одна утратила способность к дыханию и фотосинтезу и преобразовалась в ядро, а другие, наоборот, эти функции развивали и дали начало митохондриям и пластидам.
Подтверждением этой гипотезы является двойное строение мембран ядра, пластид и митохондрий.
Третья гипотеза базируется на информации о происхождении всех живых форм от предковых анаэробных гетеротрофов. Эукариоты являются сублинией бесстеночных (анаэробных) прокариот способных к эндоцитозу.
Благодаря «поглощению» других прокариот, давших им дополнительные метаболические способности, и, в конце концов, деградировавших в органеллы, примитивная клетка стала эукариотической клеткой.
Согласно четвёртой гипотезе припускают, что клетки эукариот возникли из клеток прокариот, содержали много распадающихся на части геномов, которые дали начало структурам с различными функциями. В дальнейшем шло клонирование структур с подобными функциями. После чего они покрывались двойными мембранами, образовались ядро, митохондрии, а позже и мембранная сеть. Есть данные и о схожести содержащегося в митохондриальной и ядерной ДНК генетического кода, а так же подобие в регуляции дыхательной функции ядра и митохондрий.
Как сказано выше, сейчас наиболее популярной является симбиотическая гипотеза происхождения эукариотических клеток. Однако, соглашаясь с этой гипотезой, нельзя не отметить, что митохондрии и хлоропласты вопреки их подобности с временными бактериями-аэробами и цианобактериями всё же имеют существенные отличия. В частности, в митохондриях и хлоропластах намного меньше ДНК, чем в клетках бактерий.
В ходе эволюции хлоропласты и митохондрии подверглись значительным изменениям в направлении своих размеров.
Далее развитие генома эукариот шло путём объединения молекул ДНК и белков. При этом формировался хроматин и хромосомы различной формы и в разном количестве. Происходила специализация хроматина: формировался эухроматин и гетерохроматин, формировались аутосомы и половые хромосомы. Пока что тяжело объяснить эволюционную тенденцию количества хромосом, поскольку в клетках многих примитивных организмов содержится большее число хромосом, чем в клетках более эволюционно развитых организмов. Однако несомненно, структурные и количественные изменения в кариотипах имели важное значение в образовании новых видов. Параллельно и усложнялись структура и функции компонентов клетки компонентов, развитие регуляторных механизмов.
Несомненно и эволюционное значение митоза. Точность распределения хромосом в процессе митоза - это условие, благодаря которому обеспечивается многоклеточность. Однако нет достаточных объяснений происхождения самого. Предположительно, что развивался он из примитивного митоза, при котором в процессе расхождения реплицировавшихся хромосом ядерная мембрана не разрушается.
Читайте также: