Чертеж редуктора псп
Немало эирганнеров хоть раз задумывалось о создании собственной пневматики или, как минимум, тотальном тюнинге существующих образцов. Я – не исключение.
Идея «колхозить» меня, как перфекциониста, не привлекает, поэтому Я сразу погрузился в разработку сложных конструкций такого уровня, что можно было бы чуть ли не на поток ставить производство. Сделать пневматику мечты, без преувеличения.
И вот, полно идей и желаний. Позаимствовать чужие разработки и уже существующие схемы, доработать или изобрести что-то свое. А что дальше.
А дальше учить матчасть, ведь мы же с вами профессионалы)))
Тут все идет по принципу, «Чем дальше в лес, тем толще волки».
Разъяснения некоторых моментов пришлось достаточно долго искать, а что-то было на поверхности, но главное то, что, чем глубже стараешься познать процессы разработки и изготовления полноценной, например, винтовки, тем больше всплывает новых деталей и моментов, которые так же требуют изучения и разъяснения…
Я уже многие моменты для себя изучил, но неудобство для меня заключалось в разрозненности данных. Не одну ночь мне пришлось просидеть в поисках мануалов и инструкций…
В этой статье Я постараюсь разобрать как можно больше нюансов пневмостроения на примере со2 винтовок, чтобы в дальнейшем другим самодельщикам не чувствовать себя одинокими первопроходцами в неизведанном направлении…
Что такое со2-рср? Почему?
Со2-рср, как класс, почти не распространен в России. Принцип идентичен классическому РСР – перезаправляемый резервуар (съемный или нет), только вместо воздуха используется углекислый газ. Соответственно, заправка не насосом или баллоном ВВД, а от огнетушителя или углекислотного баллона.
Почему именно этот класс? Все просто, пружинно-поршневые системы на порядок проще, газобаллонные системы с одноразовыми баллончиками отличаются лишь отсутствием перезаправляемого резервуара, а РСР, хоть и имеет отличия, по большей части, работает по тому же принципу.
Ствол.
Почти первая сложность, которая возникает при построении самодельной пневматики – это ствол. Это одна из самых дорогих деталей в винтовке. Где зять? Какой?
Нарезной ствол невозможно изготовить самому, технология его производства весьма сложна. Гладкий ствол большой длины и точного калибра раздобыть тоже не просто.
Гладкий стволик это трубка, а любая трубка, в отличие от нарезного ствола, может быть изготовлена. К слову, на Ганзе есть мастер, способный изготовить гладкие стволики достаточных длин, его ник - пётр.
А вот нарезные стволы Я разберу подробнее.
Один из относительно простых и дешевых вариантов – заимствование ствола у винтовки-донора. Отличным помощником в этом деле стал ижевский механический завод. Его винтовки недорогие и многочисленные. На любой барахолке за тысячу-полторы можно купить б/у винтовку в плохом состоянии, но с живым стволом.
Дальше нужно будет только отдать знакомому токарю или обработать самостоятельно под необходимое крепление.
Недостаток в том, что, покупая винтовку-донора, не приходится рассчитывать на высокое качество и хорошую сохранность ствола. Лотерея. Может оказаться в идеале, а может и с убитыми гвоздем нарезами.
Выбирая ствол от донора, вы автоматически ограничиваете себя в калибре – только 4.5мм.
Тоже сравнительно недорогой вариант – тонкостенный стволик от винтовок Crosman. Такой стволик уже обработан и готов к установке, с одним лишь «но» - установка будет в точности как у кросманов, либо все-таки придется дорабатывать. Покупка такого стволика может обойтись в 3000р.
Преимущество перед донорским стволом от ИЖей – выбор длин до 610мм и хоть какое-то разнообразие в калибрах – 4.5мм и 5.5мм.
В недостатки вписывают невнятные, неглубокие нарезы.
Что такое бланк? Бланк – это заготовка ствола, однородная трубка с нарезами, без фасок, без крепежей. Такая деталь, по сути, еще и деталью не является до конца, т.к. обязательно требует обработки и доводки перед установкой.
Преимущества – высокое качество нарезов и всего ствола в целом, разнообразие калибров от 4.5мм до 12.7мм. Бланк – выбор профессионалов)))
А теперь ложка дегтя. Цена одного необработанного бланка начинается от 5т.р за самый простой, короткий и мелкокалиберный, и до 30-40т.р. за самые крутые и редкие.
В среднем, за нормальный бланк придется отдать 7-10т.р., в зависимости от калибра.
Еще одна сложность – обработка. Качественный бланк из хорошей стали требует и соответствующего оборудования для обработки, благо, многие продавцы бланков специализируются и на обработке бланка под требования заказчика. Естественно, за обработку придется также заплатить.
При выборе бланка может встать вопрос о некоторых дополнительных параметрах, как, например, твист и наличие/отсутствие чока.
Твист – это шаг нарезов, дистанция, на протяжении которой нарез (и пуля, соответственно) делает один полный оборот.
Самый распространенный твист в пневматике – около 450мм. В действительности, твист подбирается относительно длины пули. Чем длиннее пуля, тем короче шаг нарезов. Но, поскольку у простых смертных нет возможности заказать ствол с твистом точно подобранным под пули заказчика, этот параметр можно и опустить, все заготовки под пневматические нужды имеют нормальный усредненный твист.
Исключение, разве что, крупнокалиберные винтовки, в которых нередко используются пули гораздо более похожие на огнестрельные (длинные), нежели на пневматические. В таком случае твист нужен короче.
Чок. У многих людей встречал такую реакцию, - «Чок? Это же дульная насадка-сужение для охотничьих гладкоствольных ружей. Зачем чок на пневме?». Правда в том, что чок в пневматике не такое уж и редкое явление.
Для справки, компания FX (крупный производитель РСР винтовок) практикует выпуск гладких пневмо-стволов с чем-то вроде нарезного чока на конце. И практика показала, что заметного ухудшения в показателях точности и кучности винтовок нет.
Резервуар.
Закончили по стволам. Следующий немаловажный элемент в винтовке – резервуар.
Есть два основных вида резиков – съемные и стационарные. Первые позволяют иметь под рукой сразу несколько заправленных резервуаров или быстро менять питание винтовки с со2 на воздух, если это позволяют запаса прочности прочих элементов винтовки. Вторые могут быть бОльших объемов и прятаться глубоко в корпусе винтовки. Преимущество несъемного резервуара в том, что его не придется снимать с винтовки для заправки.
Основные материалы изготовления резервуаров – сталь и дюраль Д16Т. Прочности дюрали, при меньшем весе, по сравнению со сталью, хватает для того, чтобы стенка толщиной в 2.5мм выдерживала давление сжатого воздуха более 200 атмосфер.
Сам резервуар представляет собой бесшовную стальную или дюралевую трубу с двумя пробками на концах. В случае со стационарным резиком, одной из пробок может быть сразу клапан или ствольная коробка.
От объема резервуара, как это ни удивительно, зависит количество выстрелов с одной заправки. С объемом все относительно просто - чем больше, тем лучше, в разумных пределах (габариты винтовки, внешний вид).
Но есть некоторые дополнительные моменты при расчете резервуара, которые будут не лишними.
Чтобы разбираться в резервуарах, нужно разбираться в используемом газе. Раз уж начали рассматривать сборку со2 винтовки, то и газ возьмем углекислый.
Давление углекислого газа, как известно, весьма сильно зависит от температуры окружающей среды, нельзя винтовку переохлаждать, нельзя и перегревать. В первом случае винтовка просто сильно потеряет в характеристиках, во втором – может дойти и до взрыва с печальными последствиями.
Вот примерная зависимость давления со2 от температуры:
0 C - 27 бар;
20 C - 58 бар;
30 C - 70 бар;
40 C - 105 бар;
60 C - 170 бар.
Вспоминая школьный курс физики, «С» - градусы по Цельсию, а «бар» - единица измерения давления, примерно равная одной технической атмосфере (АТ = 1кгс/см).
Оптимальная температура – 20-25 градусов, более высокая - стремительно повышает давление до опасного уровня (критическое давление со2
72ат, более высокое переводит газ в состояние сверхкритической жидкости - состояние, при котором исчезает различие между жидкой и газовой фазой).
1 литр жидкой углекислоты дает при испарении 505 литров углекислого газа. Эта информация позволит примерно рассчитать количество выстрелов с одной заправки резервуара, зная объем испарительной камеры и самого резика.
Но не стоит спешить рассчитывать эти параметры от 100% объема резервуара, поскольку он далеко не полностью забит жидкой фазой со2. Это напрямую касается процесса заправки резервуара.
Заправляется углекислотный резервуар от огнетушителя или от большого промышленного баллона.
Чтобы при заправке в резик шел не только газ, но и жидкая фаза, баллон-донор необходимо перевернуть вверх ногами, тогда при открытии клапана в резервуар пойдет жидкая углекислота.
В случае с огнетушителем таких заморочек не требуется, у огнетушителя в корпусе от клапана вниз идет трубка, благодаря которой жидкость поступает раньше газа.
Оптимальные условия заправки – из баллона комнатной температуры в сильно охлажденный резервуар. Это позволит эффективнее перелиться жидкой фазе. В данном случае съемный резервуар имеет преимущество – его можно положить в морозилку. Винтовку же с несъемным резервуаром придется заправлять не полностью.
При переливке в резик комнатной температуры можно заполнить его жидкой фазой не больше чем на 50%. При заправке замороженного резервуара физически можно залить 70% и даже больше, НО:
ВНИМАНИЕ. Нельзя заправлять резервуар жидкой фазой больше 70% (0.7кг со2 на 1 литр объема). При заправке с охлаждением резервуара обязательно нужно взвешивать резик до и после заправки. Если залить больше 70% жидкой фазы, то при согревании резервуара со2 расширится и может разорвать резервуар. Как говорят опытные люди, никакого запаса прочности у резервуара не хватит.
Теперь о прочности. Как известно, резервуары в РСР пневматике проходят проверочную гидравлическую опрессовку (закачивается вода под давлением в 1.5 раза большим, чем ориентировочное рабочее давление). Без такой опрессовки резервуар просто смертельно опасен, бомба замедленного действия.
Так вот, опрессовка для со2 резервуара тоже нужна, хоть и не настолько обязательна. Можно сделать резервуар с большим запасом прочности (например, с толщиной стенки как у резервуара под воздух) и надеяться, что у вас нет никаких утечек (которые тоже выявляет опрессовка). Если опрессовку делать, то нужно помнить, что для со2 она делается не в 1.5 раза больше рабочего давлении, а в 2.5 раза, т.е. около 175ат.
Самостоятельно опрессовку делать никому не рекомендовал бы, хотя учиться и нужно, но, по крайней мере, этому нужно будет уделить максимум внимания и времени. Думаю, не нужно рассказывать, какие опасности влечет за собой взорвавшийся при испытаниях резервуар. Хоть вода и снижает степень опасности по сравнению с воздухом, но это все равно ВЗРЫВ! ТБ, ТБ и еще раз ТБ.
Касаемо моей разработки винтовки, Я решил избежать опрессовки, как сложного и не критичного для со2 процесса, но, как сознательный конструктор, в проект внес несложную систему защиты от превышения рабочего давления.
Ну, и «доверяй, но проверяй», никто не запрещает (а многие и рекомендуют) установить на резервуар или испарительную камеру манометр. Это позволит не только контролировать давление в целях безопасности, но и следить за наличием в резервуаре жидкой фазы, т.е. узнавать, когда потребуется дозаправка резервуара.
По резервуару, вроде, все…
Испарительная камера (дозатор) и клапан.
Не самая сложная деталь с точки зрения разработки. Скорее, клапан сложен не в расчетах, а в реализации из-за возможного наличия мелких или хитрых деталей.
Вся суть расчетов сводится к тому, чтобы газа в испарительной камере хватало для расчетной мощности, а клапан обеспечивал необходимую пропускную способность для эффективного использования объема камеры.
Немаловажно предусмотреть расположение камеры или канала к ней от резервуара так, чтобы в испарительную камеру попадал только газ, без жидкой фазы.
По объемам испарительной камеры, увы, не могу рассказать много подробностей, т.к. на данный момент сам не располагаю всей необходимой информацией.
Неоднократно пользователями Ганзы упоминалась некая программа от мастера Игната, которая позволяет делать многие расчеты, касающиеся объемов испарительных камер и компрессоров пневматики, для достижения желаемых показателей.
Приведу лишь пример характеристик испарительной камеры, чтобы иметь хоть какое-то представление:
Для скорости 240 м/с для пули массой 0.62 грамма (18Дж) нужен объем дозатора около 12 см куб.
Кстати, о скоростях. Не следует пытаться выжимать из со2 пневматики скорости, превышающие 240м/с, это невозможно. Объяснение достаточно простое, 240м/с – это примерная скорость звука с углекислом газе, и перевалить за этот показатель очень сложно (читать как «почти невозможно»).
Это ограничение в скорости создало ошибочное мнение, что со2 – удел игрушек, не способных на высокую мощность. Это сильное заблуждение. В своей статье (из 3 частей) про крупнокалиберные со2 пушки ( ---ТУТ--- ) Я уже продемонстрировал, что углекислоту не стоит недооценивать.
Да, скорость выше 240м/с не получить, но скорость, как известно, параметр непостоянный, зависящий от веса снаряда. Постоянным параметром является энергия выстрела. Таким образом, «уперевшись» при разгоне со2 винтовки в «потолок» 240м/с, нужно лишь повысить вес снаряда. При скорости 240м/с пуля в 0.62г даст 18Дж, а пуля в 0.8г при той же скорости будет иметь энергию уже 23Дж.
В какой-то момент придется повысить калибр, т.к. постоянно повышая вес пули в рамках одного калибра, мы будем вынуждены удлинять пулю, а это не есть хорошо, как мы выяснили в разделе про стволы и их твисты. Длинной пуле понадобится другой шаг нарезов, да и газ уже не так эффективно будет передавать свою энергию пуле.
Касаемо клапана скажу очевидность, чем быстрее клапан выпускает газ, тем лучше. Но от повышения пропускной способности клапана сильно растут его габариты. Клапан, дающий достаточное количество газа на выстрел из чего-нибудь крупнокалиберного, имеет монструозные пропорции. Благо, у крупнокалиберных винтовок все прочие элементы под стать клапану.
Затвор-досылатель.
Все знают, зачем досылателю функция затвора – чтобы выстрелом досылатель не выталкивало в противоположную сторону от пули. Тут мне даже сказать особо нечего. Как в авто-салоне или еще где – есть список опций и нужно лишь выбрать желаемые:
Тип запирания – классические болт (поворотом затвора) и биатлон (рычажный) или какие-нибудь редкости, вроде запирания ствола поворотным блоком перепуска.
Тип досылателя – с узким носиком, или трубчатый, или вообще без досылателя.
Тип взвода УСМ – одновременно с затвором (при отведении назад/при возврате) или же отдельной рукояткой взвода ударника.
То же самое со ствольной коробкой – работа исключительно конструкторская. Можно коробку под однозарядку, можно предусмотреть установку магазина, можно придумать что-то иное.
Ударно-спусковой механизм.
Не могу сказать, что тут ничего сложного, но работа снова на креативность. Существует множество схем и макетов различных УСМ, в самом простом функцию шептала выполняет сам спусковой крючок, в сложных – число промежуточных шептал может доходить до 4-5.
А все сводится к тому, чтобы спуск сделать легким, коротким и предсказуемым.
Усилие спуска зависит от разницы длин рычагов спускового крючка и шептал, а так же жесткости и количества пружин.
Отчасти от этого же зависит длина хода спускового крючка. Чем короче спуск, тем он жестче (в равных условиях). Именно для избавления от этой зависимости в схему УСМ вносятся дополнительные шептала. Самый легкий спуск в тех схемах, где спусковой крючок играет роль фиксирующего упора. Нажатие на такой крючок высвобождает шептала и они сами, под действием своих пружин или пружины ударника, этот самый ударник спускают.
Предсказуемость спуска не менее важна для точного выстрела, чем усилие или длина хода СК. Хорошо, если спуск легкий, но перед самым высвобождением ударника усилие ощутимо повышается, тогда можно точно выбрать свободный ход и почувствовать что вот именно сейчас будет выстрел. Это достигается, например, немного усложненной формой рычага спускового крючка, взаимодействующего с шепталом. За счет изогнутой формы этого рычага (или наличия регулировочного винтика, имитирующего излом), перед доведением шептала до выстрела соотношение рычагов меняется, повышая усилие.
Бывают еще конструкции УСМ, называющиеся «самооткрывашки». Такие системы не имеют ударника, а клапан открывается сам под действием давления газа, когда его (клапан) «отпускает» шептало.
Преимущество такой системы в легком спуске, отсутствии лишних вибраций, производимых ударником и несколько меньших габаритах.
Недостаток в некоторой сложности и необходимости как-то отсекать выпускаемый газ от основного резервуара. Иначе – одна заправка на один выстрел.
Материалы.
В наше время практически все можно найти. Для изготовления винтовки с нуля понадобятся следующие материалы:
Разнообразная сталь для разнообразных деталей.
Дюраль Д16Т – трубы, прутки, бруски. Прочный и легкий материал.
Латунь. Обладает сравнительно малым трением при взаимодействии со сталью. Часто используется в корпусах клапанов и т.д.
РТИ – резинки всех видов. Есть ряд компаний, предоставляющих резинки абсолютно всех размеров на заказ, хоть поштучно, хоть вагонами.
Полиуретан. Для надбаллонных прокладок и т.д. Живуч и прочен.
Дерево твердых пород. Придадим благородства нашему изделию, подарив ему красивую деревянную ложу.
АБС-пластик. Технология трехмерной печати распространяется с огромной скоростью. Это нужно использовать. При весьма высокой прочности и неплохой стойкости к температурам имеет невысокую цену и простоту в обработке/изготовлении деталей любых форм и размеров.
Вот, кажется, и все. Этих знаний вполне достаточно чтобы спроектировать рабочую схему и воплотить ее в жизнь.
Дальше дело только за выдумкой, чертежным мастерством и изготовлением деталей.
Контроль объёма выпускаемого воздуха из резервуара в ствол является одной из наиболее сложных задач при конструировании винтовок на сжатом воздухе. В идеале объём выпускаемого воздуха должен быть таким, чтобы сообщать пуле абсолютно одинаковую скорость, несмотря на падение давления в резервуаре.
Многие годы конструктора разрабатывали разные схемы, пытаясь приблизиться к указанному идеалу. Все эти конструкции можно разделить на два основных типа: систему типа «dump» и «knock-open». В первых системах при открывании клапана за один выстрел выпускается весь воздух из резервуара, а Во-вторых системах лишь некоторая его часть. Клапаны первого типа используются в воздушных патронах, компрессионной пневматике и большей части мультикомпрессионной пневматики, а клапаны второго типа используются в РСР и изредка в мультикомпрессионных винтовках.
Выпускные клапаны и редукторы в пневматическом оружии, их описание,
схемы и принцип работы на РСР-оружии
В мультикомпрессионной винтовке стабильность скорости, как правило, обеспечивается одинаковым количеством качков при сжатии воздуха. То же самое относится и к воздушным патронам, когда их накачивают ручным насосом.
Большая часть спортивных винтовок относится к типу РСР и, соответственно, оснащается клапанами типа «knock-open», чтобы за один выстрел выпускать лишь часть воздуха из резервуара и обеспечивать большое количество выстрелов с одной заправки. Клапаны системы «knock-open», по сути, обычно состоят из подпружиненного ударника, который бьёт по подпружиненному штоку, заставляя его открываться на небольшой промежуток времени. Это позволяет потоку воздуха проходить из резервуара в ствол при каждом выстреле. Однако, несмотря на кажущуюся простоту, если клапан сконструирован неразумно, то скорость вылета пули будет меняться в очень широких пределах по мере израсходования воздуха в резервуаре.
Первые пневматические винтовки имели очень сложную систему выпускного клапана. Нередко их приходилось взводить специальным ключом, или же взводить ударник почти как кремень в кремневых замках первых огнестрельных образцов. Сжатая листовая пружина затем разжималась, через систему рычагов заставляя открываться клапан. Механизм был весьма сложный, требующий большого времени на изготовление и настройку, соответственно, сейчас он уже не используется. Однако следует отметить, что и в таком механизме присутствовала некоторая автоматическая регуляция - по мере падения давления воздуха в резервуаре оно закрывало клапан всё медленнее, позволяя большему количеству воздуха пройти в ствол.
В 1891 году Paul Giffard получил патент на винтовку, работающую на газе. Хотя его винтовка работала на углекислом газе, он всё равно имел проблему с выпуском малого количества газа на каждый выстрел. В отличие от своих предшественников, Giffard не стал конструировать сложную систему запирания резервуара, а вместо этого он сконструировал первый клапан типа «knock-open», в котором ударник непосредственно бил по штоку клапана. Более того, он даже предусмотрел регулировочный штифт, который контролировал дистанцию, на которую открывался клапан. Это позволило ему легко регулировать мощность выстрела. Однако, следует помнить, что использование углекислого газа вместо воздуха позволило конструктору избежать проблем с падением давления - пока в резервуаре оставалась жидкая фаза давление было стабильным. Если бы он использовал воздух, то ему бы пришлось как-то компенсировать небольшое падение давления после каждого выстрела.
Различные вариации системы, которую предложил Gifford, сегодня используются практически во всех РСР винтовках. Ударник скользит в трубе позади клапана, толкаемый пружиной, которая сжимается при взведении винтовки. При нажатии на спусковой крючок, ударник под действием пружины движется вперёд, ударяет по штоку клапана, открывает его, а затем под действием запирающей пружины и давления в резервуаре клапан закрывается. Далее цикл повторяется пока в резервуаре остаётся воздух. «Dump» - сброс, «knock-open» - открытие ударом.
Рис. 1
На рис. 1 резервуар A содержит воздух высокого давления, закачанный через однонаправленный заправочный клапан. Выпускной клапан С герметично прижимается пружиной В и давлением в резервуаре. При взведении ударник D отводится назад, сжимая пружину Е , а при нажатии на спуск ударник под действием пружины движется вперёд, ударяет по штоку клапана, открывая путь потоку воздуха из резервуара в ствол для разгона пули.
В большинстве конструкций ударник взводится с помощью болтового затвора, который одновременно открывает доступ к зарядному окну. В задней точке взведении ударник цепляется за шептало, а болтовой затвор можно вернуть в переднее положение. Такая конструкция обеспечивает неплохую безопасность - практически невозможно выстрелить, не закрыв затвор.
Даже если нажать на спуск при открытом затворе, то ударнику придётся при движении вперёд тащить за собой весь затвор, что приведёт к бешеному падению его скорости и удар по клапану будет очень слабый, возможно, вообще недостаточный для его открытия. Кроме того, воздух, который пойдёт в ствол при открытии клапана будет большей частью утекать в атмосферу через незакрытый затвор, вместо того, чтобы толкать пулю по стволу.
В случае реального использования приведённой на рисунке упрощённой схемы, о стабильности скорости не может быть и речи. Как правило, при использовании такой схемы скорость вылета пули сначала несколько нарастает, достигает максимума и начинает понемногу спадать, по мере опустошения резервуара.
Некоторые производители немного изменяют приведённую выше схему, чтобы достичь большей стабильности по скорости вылета пули. Изменяя вес ударника, его пробег, силу пружин и прочие параметры можно добиться достаточно неплохой стабильности скорости вылета пули даже для такой схемы выпускного клапана. Ниже, на рис. 2 показан график изменения скорости вылета пули от числа выстрелов.
Видно, что скорость сначала нарастает, достигает максимума при некотором оптимальном давлении в резервуаре, а затем начинает спадать. Правильная конструкция, настройка и расположение выпускного клапана определяются особенностями быстро движущегося потока воздуха. Как правило, это результат не столько расчётов, сколько опыта и метода проб и ошибок.
Вполне очевидно, что схема выпускного клапана на рис. 1 может быть легко модифицирована в вариант «dump»-системы, для использования в компрессионной или мультикомпрессионной пневматике. Как правило, такие конструкции имеют относительно маленький объём накопителя для сжатого воздуха, поскольку иначе сжатый воздух будет использоваться неэффективно. наиболее заметно уменьшение резервуара в случае компрессионных пистолетов, поскольку для короткого пистолетного ствола требуется ещё меньший объём сжатого воздуха, а избыток его просто выхолит из дула, создавая ненужный шум. Характеристики ударника и пружин в «dump»-системе также должны быть другими, поскольку тут уже требуется полное открытие клапана при выстреле и клапан должен оставаться открытым, пока не выйдет весь воздух.
Успех винтовки на сжатом воздухе во многом зависит от материала, из которого изготовлена торцевая поверхность штока выпускного клапана. С одной стороны, она должна быть достаточно мягкой, чтобы обеспечивать плотную и герметичную посадку на седло клапана, когда он закрыт. С другой стороны, она не должна быть избыточно мягкой, чтобы обеспечить надёжное и быстрое открывание клапана ударником. Таким образом, получается, что при высоком давлении в резервуаре предпочтительней использовать достаточно твёрдый материал, а при относительно низком давлении - мягкий материал. Экспериментальным путём мы пришли к выводу, что фторопласт является наиболее подходящим материалом для достаточно большого диапазона давлений, он обеспечивает надлежащую герметичность, кроме того, он может вбирать в себя небольшое количество мелкого мусора, типа случайно попавших песчинок, не нарушая при этом герметичности.
Рис. 2
Кроме всего прочего, этот же материал должен прочно соединяться с самим штоком, иначе при открытии возможен вариант, когда сам шток под действием ударника подвинется, а его торцевая поверхность останется прижатой высоким давлением к седлу клапана. На нашей схеме рис. 1 шток клапана С сделан в виде металлической чаши, внутри которой лежит уплотнитель, хотя иногда шток и уплотнитель изготавливаются в виде одного целого из какого-либо одного материала.
В нашем случае края чаши немного загнуты вовнутрь, чтобы удерживать уплотнитель, поэтому для обеспечения герметичности седло клапана имеет небольшой выступ. Если же воздух попадёт в стык между металлической чашей и уплотнителем, то последний будет тут же вырван из чаши при очередном выстреле. Например, если диаметр штока будет дюйма, а давление в резервуаре будет 3000 PSI, то для открывания клапана нужна сила около 600 Lbs.
То есть диаметр штока 0.95см, давление 204 атм., сила на отрыв 1417 Н (в два раза меньше, чем указано в оригинале, т.е. вроде там 300 Lbs должно быть). Именно эту силу должен преодолеть ударник при открытии клапана и, очевидно, что такой удар может разрушить клапан, если изготовить его из недостаточно прочного материала.
Масса ударника, его разбег и сила толкающей его пружины - три основных фактора, влияющих на успех «knock-open»-системы. Если они будут подобраны неправильно, то ударник не сможет открыть клапан на нужное время, чтобы выпустить необходимый объём сжатого воздуха. Это значит, что момент движения ударника должен быть правильно подобран для каждой системы. Как известно, момент движения определяется как масса тела, умноженная на его скорость. Но в нашем случае это ещё не конец.
Если пружина будет достаточно сильной, а ударник достаточно лёгким, то возможен вариант с пересиливанием закрывающей пружины В в случае пустого резервуара. Это неминуемо приводит к необходимости взводить ударник перед заправкой резервуара. Также существует вероятность, что шток С под действием пружины В и давления в резервуаре отбросит ударник достаточно далеко, что приведёт ко второму выстрелу при однократном нажатии на спусковой крючок. Теоретически на таком принципе можно получить полностью автоматический огонь очередями.
С другой стороны, если взять достаточно тяжёлый ударник и относительно слабую пружину, то может потребоваться увеличение пробега ударника для получения нужного момента движения для открытия клапана. Дело в том, что при удвоении массы ударника при неизменной силе пружины момент движения увеличивается лишь на 50%. Кроме того, это может привести к тому, что удар будет ощущаться уже на всей винтовке. Тем не менее, подбор компромисса между массой ударника и силой пружины не такая уж сложная задача, мы довольно быстро находили оптимальные значения, даже если исходно выбирали совершенно неправильные характеристики.
В течение многих лет мы проводили различные исследования и установили, что наиболее простым и эффективным методом регулировки мощности винтовки на сжатом воздухе является изменение расстояния, на которое ударник открывает клапан. Мы встраивали специальный регулировочный винт в ударник таким образом, чтобы штока клапана касался только самый кончик винта, после чего мощность винтовки можно было легко регулировать, изменяя этого винта относительно ударника. Кроме того, вокруг штока клапана мы прикрепили резиновое кольцо, которое принимало на себя избыток энергии ударника при открытии клапана. Таким образом, мы получили конструкцию, которая позволяла легко регулировать мощность винтовки, не внося существенных изменений в механизм.
В случае же конструкций клапана типа «dump»-системы, в основном для спортивных винтовок и пистолетов, устройство клапана получается несколько более сложным, чем для «knock-open»-системы. Как правило, при нажатии на спусковой крючок клапан открывается с помощью специальной пружины, опционально через систему рычагов, и этот клапан должен затем вручную закрываться при следующем взведении. Зато при использовании такой схемы не требуется столь больших энергий для удара по клапану, как в «knock-open»-системах, что в свою очередь способствует минимизации вибраций винтовки, весьма важному фактору для спортивного оружия с лёгким спуском.
Рис. 3
После выстрела для перезарядки резервуара С сжатым воздухом надо нажать на кнопку перезарядки N и вдавливать её до тех пор, пока поперечный подпружиненный винт L не повернётся, попав в паз М, и не зафиксирует шток К в переднем положении. В это же время шток К выдвигает обратно вперёд чашку Н вместе с деталью G и штоком Е, позволяя подняться подпружиненному шепталу Н. Кроме того, под действием пружины деталь G выдвигается из чашки Н и толкает шток Е, который в свою очередь открывает перепускной клапан В. Воздух начинает заполнять резервуар С и при достижении некоторого давления воздух снова отжимает шток Е, сжимая пружину в чашке F, и перепускной клапан В закрывается, при этом давление в резервуаре С остаётся неизменным от выстрела к выстрелу. Выпускной клапан, состоящий из штока Е и детали G, сейчас находится в положении равновесия между давлением воздуха с одной стороны и пружиной, упирающейся в чашку F , с другой стороны. Чашка F пока всё ещё удерживается штоком К, который в свою очередь зафиксирован поперечным винтом L.
В этот момент времени винтовка снова заряжена сжатым воздухом и готова к выстрелу, как только в казённик будет вложена пуля и закрыт затвор. Соответственно 204 атм. и 102 атм. Нажатие на подпружиненный винт L освобождает шток К и кнопку N, которые возвращаются назад под действием лёгкой пружины, скрытой внутри кнопки N . В этот момент детали Е , G и Н сдвигаются назад, пока чашка F не упрётся в шептало Н. В результате образуется небольшой зазор между штоком выпускного клапана Е и штоком перепускного клапана В, что гарантирует отсутствие протекания воздуха из резервуара А в резервуар С до следующего цикла перезарядки. Теперь все детали вернулись в своё исходное положение, и далее цикл выстрела и перезарядки повторяется.
Разумеется, давление воздуха в резервуаре А потихоньку снижается, но это не влияет на мощность выстрела, поскольку исходное давление в нём намного больше, чем давление, накапливаемое в резервуаре С перед выстрелом.
Суммируя всё вышесказанное, можно отметить, что в этой конструкции шток Е имеет четыре основных положения:
• зарядка резервуара С воздухом из резервуара А
• резервуар С полностью заряжен (шток К ещё в переднем положении)
• готовность к выстрелу (шток К отведён назад)
• выстрел (шток Е в заднем положении).
Успех винтовки GC2 привёл к тому, что другие производители также стали конструировать аналогичные винтовки, правда, менее сложной конструкции. Они использовали обычную «knock-open»-схему, но вместе с редуктором, таким образом, получая одинаковое давление и стабильную скорость для каждого выстрела.
На рис. 4 схематически изображён редуктор. Если сейчас вернуться к схеме на рис. 1, то этот редуктор может быть встроен прямо в резервуар, перед выпускным клапаном С так, чтобы торцевая пробка L была недалеко от конца пружины A . Кольцевое уплотнение D необходимо для исключения утечки воздуха между корпусом редуктора и внутренней поверхностью резервуара.
Задача редуктора обеспечить стабильное давление перед выпускным клапаном, несмотря на падение давления в резервуаре. Вполне очевидно, что редуктор будет функционировать, пока давление в основном резервуаре не опустится ниже некоторого порога, определяемого конструкцией редуктора. Перейдём теперь к описанию работы редуктора. Воздух высокого давления протекает через впускной клапан В и перепускной канал F во вторичный резервуар перед выпускным клапаном. По мере повышения давления во вторичном резервуаре, поршень G сдвигается вправо, сжимая пружину J. Клапан В через винтовое соединение прикреплён к поршню G , поэтому движение поршня G направо приводит к закрытию клапана В путём его прижатия к уплотнению С . Поршень G ещё немного продвигается за счёт наличия внутри него небольшого количества несжатого воздуха, удерживаемого гофрированной манжетой К.
Как только клапан В закрылся, воздух в редуктор больше не поступает и при этом получается, что воздух во вторичном резервуаре имеет постоянное, определяемое конструкцией давление. Регулировка этого давления производится балансом между давлением на поршень и пружиной J, соответственно, этот баланс может быть настроен путём изменения силы пружины. Регулировочный винт A предназначен именно для этой цели - при его завинчивании происходит сжатие пружины J и, соответственно, повышается давление на выходе из редуктора.
Вместо гофрированной мембраны К можно было бы использовать обычное кольцевое уплотнение в желобке между поршнем и корпусом редуктора. Выбор же именно мембраны обусловлен требованием лёгкого перемещения поршня, чего было бы очень трудно добиться в случае кольцевого уплотнения, которое под давлением стало бы сильно тормозить движение поршня и приводить к нестабильности давления на выходе из редуктора.
Кроме того, подобное кольцевое уплотнение приведено на схеме в точке С , для герметизации клапана В. Разумеется, это тоже не идёт на пользу стабильности выходного давления редуктора и в идеале надо бы использовать более сложную конструкцию впускного клапана, однако, не следует забывать, что приведённый рисунок всего лишь принципиальная схема, а не исполнительный чертёж.
Рис. 4
Наши эксперименты показали, что редуктор работает лучше и точнее, если воздух через него протекает относительно медленно, именно поэтому при описании конструкции винтовки GC2 на рис. 3 следует отметить, что воздух проходит но виткам пружины, которая удерживает клапан В в закрытом состоянии. Такое ограничение позволяет гарантировать, что резервуар С будет наполняться достаточно медленно и точно до заданного давления. По той же причине подобный ограничитель на впускном клапане редуктора, изображённого на рис. 4 также улучшит его характеристики.
Видимо, нет нужды говорить, что наличие редуктора приводит к удорожанию винтовки в целом, соответственно, обычно редуктора ставят только в дорогие винтовки, предназначенные для соревнований. Тем не менее, надо отметить, что и винтовки без редуктора при правильном конструировании и настройке выпускного клапана могут выдавать неплохое количество выстрелов с небольшим разбросом скоростей, вполне приемлемым для нужд среднестатистического стрелка.
В случае винтовки с редуктором также требуется тщательная регулировка выпускного клапана, закрывающей его пружины, массы ударника и силы его пружины. Дело в том, что с одной стороны, при выстреле должен выходить почти весь воздух из вторичного резервуара, а с другой стороны, при выстреле редуктор тут же начинает наполнять вторичный резервуар но новой, как только давление в нём начинает спадать. Поэтому выпускной клапан должен закрываться очень быстро, не допуская протекания только что поступившего из редуктора воздуха в ствол. Если очень хочется как-нибудь назвать и эту конструкцию, то её стоило бы назвать автоматически перезаправляемой «dump»-системой.
Доброго, Камрады!
Оговорюсь сразу что это уже не совсем проект, т.к. винтовка почти собрана, но всё по порядку.
Немного почитав форумы и нажив небольшой опыт владения писипихами я пришёл к мысли, а почему бы не сделать РСР под свои задачи и на свой вкус. Проще и дешевле сегодня заказать КИТ у мастеров и собрать не торопясь под пивко , но мы не ищем лёгких путей.
Цели у меня простые, дурострельность не важна, важна простота, многозарядность, надёжность, ремонтопригодность, компактность при транспортировке. И вот после того как у меня появился неплохой на внешний вид стволик, начался процесс проектирования.
Первое это многозарядная коробка, тут я пошёл по пути наименьшего сопротивления и заказал подходящую у Крюгера (самому делать в одном экземпляре сильно накладно).
Второое это резервуар, винтовка с бутылкой 0,2л вместо цевья выглядит неплохо, а так же нет лишней детали под названием цевье.
Третье это приклад, который можно быстро снять и поставить, ну а внешний вид его конечно как у ВСС, только так.
Исходя из общей компоновки вырисовывается пробка к баллону с штуцером заправки и манометром, расположенными в безопасном месте, а так же корпус УСМ со СМ. Все расстояния и длины органов управления винтовкой взяты исходя из параметров своего организма (он у меня средний, 1,78м). Крепление коробки к УСМ и пробке тремя винтами М4, чтобы понадёжнее. Спусковой механизм захотел спортивный, лёгкий и чёткий. Чертежи проектировал исходя из доступных технологий металлообработки, поэтому на некоторые позиции нет кратных размеров (лазеру то всё-равно). В итоге образовалась вот такая конструкция. Процесс изготовления идёт, поэтому фото будет выкладываться очень неспешно по мере изготовления. Ваш опыт проектирования и изготовления подобных аппаратов прошу выкладывать, сам тоже охотно поделюсь чем знаю.
С Уважением,
Сергей.
Шаблон на приклад
Место под фото
Уплотнение перепуска из фторопласта, любезно предоставленное Фёдором не выдержало частых манипуляций сборки и разборки и стало безбожно травить. Расстроившись, но подумав немного из куска хорошего полиуретана соорудил трубочку с внутренним 5 и наружным 8.5 мм диаметром. Работает на ура, ствол герметичен как банка, при этом разборку и сборку переносит хорошо.
Антибздун реализован по простой схеме, грибок тарированой длины (подбирается опытным путём) упирается в лепесток с колечком. При необходимости лепесток утилизуется, а грибок уходит в специально отведённое под его ножку место.
Инженер ААК
но мы не ищем лёгких путей.
Цели у меня простые, дурострельность не важна, важна простота,
Сергей.
Дурострельности точно не будет, да и "обычную" мощность нужно будет получить и поискать. Очень сильно будет зависеть от накопителя.
Всё потому что канал диам 4мм из колбы к околоклапанному это бутылочное горлышко, удушающее конструкцию и по расходу в том числе.
Смотря на разрез ещё начинаю одно место воспринимать как концентратор напряжений.
Если есть программка, может кто-то смоделирует напряжения в эксцентрике.
Некоторые чертежи вредны публике, отнесут токарю тот сделает (ему посараю) и дунут на всю, потом скажут - ну там на форуме у парня всё работало, там и взял.
Клапан заправочный как уплотняется?
Донышка нет в теле, конической резьбы нет, торца на клапане нет.
Кстати таких клапанов много встречал и покупал здесь на ганзе и не только, на 200 работают, а на 280-300атм уже могут резать уплотнения.
Поэтому вернулся к классике, пейнтбольный с поршнем с полиуретаном и на
конической резьбе.
На фото клапан не самой удачной конструкции.
Нда. Диаметр трубы ударника исходит от коробки? И ради этого делается эксцентрик? Дэн прав, клапан совсем не "дышит". Очень нетехнологично. А манометр как уплотняется? Резьбы там 6мм. Внешний вид ВСС это верх совершенства?
имхо, надо было заморачиваться на интегрированный модер и ствол короче. иначе толку от использования колбы - ноль. габарит с модером нереальный ваще.
Ребята, всё работает))).
Проходных для 7,5 +- Дж вполне хватает. Концентратор есть, но чтобы его нагрузить нужно бросить винт под колёса машине. Колба рассчитана на 200 Атм, не более. За чертежи спокоен совершенно. Клапан заправочный уплотняется резинкой под юбкой (так идёт в комплекте), манометр уплотняется резиновой втулкой поверх которой надета алюминиевая. Всё держит ))) (кто спросил сфотать поближе или накидать эскиз?). Про технологичность уже писал, для кого-то и болт болгаркой перепилить не технологично, т.к. у него нет болгарки, а если есть, то почему не воспользоваться. Оставлять лишнее мясо зачем? Детали оружия должны нести максимальный функционал при небольшом весе и максимальной прочности, поэтому делать эксцентрик другим не вижу причины. Ствол с чоком и прекрасными фасками, поэтому пилить его нет никакого желания, а длина интегрированного модера в итоге получается избыточной, а это лишний вес.
Инженер ААК
Ребята, всё работает))).
Проходных для 7,5 +- Дж вполне хватает.
Инженер ААК
Оставлять лишнее мясо зачем? Детали оружия должны нести максимальный функционал при небольшом весе и максимальной прочности,
Развернув колбу назад вместо приклада, можно получить: меньший габарит (будет полубулка), интегомодер, рукоять уйдет вперед, лучше развесовка и весь дизайн.
При съемном модере и стволе, отличная транспортировка.
Читайте также: