Какие приложения содержит клеточная теория
Корпорация «Российский учебник» вместе с профессором МИОО Георгием Лернером продолжает разбирать клеточную теорию по биологии. На этот раз рассмотрим основные положения, этапы изучения, примеры заданий.
Общие методические рекомендации
- Объедините в один блок все темы, в которых отражен клеточный уровень жизни.
- Проверяйте знания ученика разными типами заданий, модифицируйте задания.
- Используйте контроль знаний и умений как доминирующую форму работы при подготовке к экзаменам.
- Разъясните школьнику как он должен работать: как изучать текст, рисунки, как пользоваться справочными материалами, какие задавать вопросы, как контролировать свой учебный процесс. Приемы работы должны стать навыками ученика.
- Делегируйте учебную деятельность абитуриенту.
- Не забывайте о необходимости психологической подготовки выпускника к экзамену.
- Обсудите простые задания, которые все же требуют сосредоточенности, и в которых из-за невнимательности даже «сильные» ученики допускают ошибки (например, задания на работу с таблицами или на выбор неверных утверждений).
- Используйте только качественные, проверенные учебники и пособия.
Как изучать клеточную теорию
Согласно общим требованиям и кодификатору ЕГЭ, выпускник должен знать основные положения клеточной теории, а также названия, особенности строения и функций органоидов клетки. Кроме того, экзамен проверяет предметные и метапредметные умения ученика:
- Доказывать, что клетка — это открытая система.
- Сравнивать клетки разных царств.
- Устанавливать взаимосвязь между строением и функциями клеток и тканей разных типов.
- Описывать и сравнивать этапы клеточного цикла в митозе и мейозе.
- Применять полученные знания при решении цитологических и генетических задач.
Примерный план изучения клеточной теории
- История открытия клетки и создания клеточной теории. Имена создателей и их роль в становлении теории;
- Методы цитологии (как повторение);
- Про и эукариотические клетки в сравнении. Строение клеток разных царств. Химический состав клеток;
- Функции клеточных структур, их взаимосвязь. Обмен веществ;
- Наследственный аппарат клетки;
- Жизненный цикл клетки;
- Сравнение митоза и мейоза;
- Спорогенез, гаметогенез;
- Эмбриогенез;
- Культура клеток и тканей.
Полезно обратить внимание ученика на интегрирующую роль клеточной теории, повторяя таким образом направления развития биологической науки. Потому что:
- Клеточная теория лежит в основе понимания биологических процессов в биосистемах.
- Клетка основа индивидуального развития многоклеточных структур.
- Клетка и ее жизненный цикл лежит в основе эволюционных процессов.
- С клеткой, ее наследственным материалом связана передача наследственной информации.
- Клеточный уровень жизни является исходным для формирования более высоких уровней жизни.
- Клеточная теория предсказывает различные направления ее развития: таксономическое (про и эукариоты), морфологическое (ткани, органы), физиологическое (процессы), генетическое (ген, геном, кариотип и т.д.), эволюционное (от одноклеточности к многоклеточности).
Принципы работы с текстом на примере изучения темы «Митоз и мейоз»
Существует ряд вопросов, призванных помочь ученику понять текст с новой сложной информацией: О чем говорится в тексте? Что говорится в тексте об этом? Что это значит? В чем это заключается? Что далее говорится об этом? Как это доказывается? О чем это говорит? Какая мысль этим раскрывается? Рассмотрим на примере темы «Митоз и мейоз» как, ставя правильные вопросы и находя на них ответы, ученик может усвоить факты.
Текст
Митоз — непрямое деление эукариотической клетки, в результате которого сохраняется генетическая информация материнской клетки. Митозом могут делиться как диплоидные, так и гаплоидные клетки. Митоз обеспечивает вегетативное размножение организмов, рост, регенерацию тканей, эмбриональное развитие многоклеточных организмов и т.д.
Мейоз — это редукционное деление, при котором хромосомный набор образующихся гамет уменьшается вдвое. Мейоз состоит из двух последовательных процессов — первого деления мейоза и второго деления мейоза. Стадии мейоза: Мейозу предшествует интерфаза. Каждая хромосома перед началом деления состоит из двух молекул ДНК, которые образуют две сестринские хроматиды, сцепленные центромерами. В это время клетка имеет диплоидный набор хромосом, а каждая хромосома состоит из двух молекул ДНК, поэтому в клетке находится 4с молекул ДНК. Таким образом, перед началом деления в клетке набор хромосом и ДНК 2n4c. Половые клетки животных и споры растений формируются в результате мейоза.
Вопросы к тексту
- Чем отличается деление эукариот от деления прокариот?
- Какой набор и каких хромосом имеют клетки, появившиеся в результате митоза?
- Что означает термин «редукционное деление»?
- Какой формулой выражается число хромосом перед началом первого деления мейоза?
- Если в соматической клетке содержится 42 хромосомы и 42 молекулы ДНК, то сколько хромосом и ДНК будет содержаться в клетке после первого деления? А после второго деления?
- Увеличивается ли число хромосом в интерфазе? А число хроматид?
- Чем интерфазная хромосома отличается от хроматиды?
- Сколько хромосом будет в гаметах волка, если в его соматических клетках содержится 78 хромосом?
Что достигается данными вопросами?
- Знание определения понятий «митоз» и «мейоз», понимание различий между ними и биологическими смыслами этих процессов.
- Понимание различий между интерфазой и делением.
- Понимание процесса изменений, происходящих в интерфазе и на протяжении деления клетки еще до изучения всех его стадий.
- Провоцируется постановка проблемы: А каким образом возникает гаплоидный набор хромосом в гаметах после мейоза?
- Понимание того, что гаметы и споры гаплоидны.
- Профилактическая подготовка к решению задач № 27 в экзаменационной работе.
Примеры заданий по клеточной теории
Задание 1
Проанализируйте таблицу «Строение и функции нуклеиновых кислот». Заполните пустые ячейки таблицы, используя термины и словосочетания, приведенные в списке. Для каждой ячейки, обозначенной буквой, выберите соответствующий термин из предложенного списка.
ШКОЛЯРиУМ | Репетитор Биология ЕГЭ/ОГЭ 2021 запись закреплена
Вопрос дня
Какие положения содержит клеточная теория? (3 ответа)
1) Новые клетки образуются в результате деления материнской клетки.
2) В половых клетках содержится гаплоидный набор хромосом.
3) Клетки сходны по химическому составу.
4) Клетка — единица развития всех организмов.
5) Клетки тканей всех растений и животных одинаковы по строению.
6) Все клетки содержат молекулы ДНК.
Какие положения содержит клеточная теория? (3 ответа)
1) Новые клетки образуются в результате деления материнской клетки. ⋅ ⋅ ⋅ 0000
2) В половых клетках содержится гаплоидный набор хромосом. ⋅ ⋅ ⋅ 000
4) Клетка — единица развития всех организмов. ⋅ ⋅ ⋅ 0000
5) Клетки тканей всех растений и животных одинаковы по строению. ⋅ ⋅ ⋅ 000
Ответ
Показать полностью.
(1) Новые клетки образуются в результате деления материнской клетки
2) В половых клетках содержится гаплоидный набор хромосом – утверждение верное,но не является положением клеточной теории
(3) Клетки сходны по химическому составу
(4) Клетка — единица развития всех организмов
(5) Клетки тканей всех растений и животных одинаковы по строению – ложное утверждение, клетки растений и животных сходны по составу и строению, но не одинаковы.
(6) Все клетки содержат молекулы ДНК – не является положением клеточной теории.
Изобретение микроскопа и усовершенствование методов микроскопических исследований позволили открыть и изучить клетку.
Первым увидел клетку английский ученый Р. Гук. В 1665 году при помощи увеличительных линз он стал свидетелем деления тканей коры пробкового дуба на ячейки — клетки. Но, как позже стало известно, он стал первооткрывателем не клетки в прямо значении этого слова, а внешних оболочек растительных клеток.
Открытие мира одноклеточных организмов связано с А. Левенгуком — он первым увидел животные клетки, а именно эритроциты. Дальнейшее описание животных клеток принадлежит Ф. Фонтане. Поскольку четкого представления о том, что такое клетка, не было, исследования ученого не привели к понятию универсальности клеточного строения.
Первоначально Р. Гук считал, что клетки представляют собой пустоты или поры между волокнами растений. Это мнение нашло подтверждение в ходе исследований, проведенных М. Мальпиги, Н. Грю, Ф. Фонтана, которые наблюдали за растительными объектами под микроскопом. Они назвали клетки «пузырьками».
Наибольший вклад в развитие микроскопических исследований организмов растений и животных принадлежит А. Левенгуку. Результаты своих исследований он оформил в книгу «Тайны природы».
По иллюстрациям, представленным в этой книге, понятны клеточные структуры растительных и животных организмов, хотя самим ученым эти описанные структуры не понимались как клеточные образования. Все потому, что исследования ученого были, скорее, случайные, чем систематические.
В начале 19 века такие ученые как Г. Линк, Г. Травенариус и К. Рудольф в своих исследованиях продемонстрировали, что клетки не являются пустотами — это самостоятельные образования, ограниченные стенками. Было доказано, что у клеток есть содержимое, названное Я. Пуркинье протоплазмой. Р. Броун выделил ядро в качестве постоянной части клеток.
Далее Т. Шванн занимался анализом данных литературы о клеточном строении растений и животных. Он сопоставил имеющиеся данные с собственными исследованиями, результатом чего стала его собственный труд. Ученый продемонстрировал, что клетки — элементарные живые структурные единицы растительных и животных организмов. И. Шванн пояснил, что у них есть общий план строения и образуются они одинаковым способом. Все это стало основой клеточной теории. Поэтому Т. Швана можно считать тем, кто стоял у истоков создания клеточной теории.
Перед тем как сформулировать основные положения клеточной теории, на протежении долгого периода времени ученые накапливали наблюдения за строением одноклеточных и многоклеточных организмов. Одновременно с этим совершенствовались и различные оптические методы в исследованиях.
Все клетки бывают двух типов: ядерные (эукариотические) и безъядерные (прокариотические). Организмы животных строятся на экукариотические клетках. Нет ядер только у красных клеток крови млекопитающих — эритроциты, которые теряют свои ядра в процессе развития.
В ходе изучения строения и функций клеток менялось и определение клетки.
Сегодня под клеткой понимают структурно упорядоченную систему биополимеров, ограниченную активной оболочкой. Биополимеры образуют ядро и цитоплазму, принимают участие в единой совокупности процессов метаболизма и обеспечивают поддержку и воспроизведение самой системы.
Клеточная теория — это обобщенное представление о строении клетки, являющейся единицей живого, ее размножении и роли в процессе формирования многоклеточных организмов.
Открытия в 19 веке, связанные с клеткой, были связаны с развитием микроскопии. В это же время происходит изменение представления о клетке. Теперь основой клетки стала считаться не клеточная оболочка, а ее содержимое — протоплазма. Также происходит открытие ядра как постоянного элемента клетки.
Благодаря тому, что появилась четкая информация о строении и развитии клетки, стало возможным ее обобщить. В 1839 году такое обобщение сделал Т. Шванн, который и сформулировал клеточную теорию. Автор клеточной теории считал, что между клетками животных и растений нет принципиальной разницы. В этом, в общем, и заключается сущность клеточной теории.
Развитием этой теории позже занимался немецкий патолог Р. Вирхов. Он является автором идеи, что возникновение клетки происходит исключительно из другой клетки при помощи размножения.
Положения клеточной теории
Положения клеточной теории, которые постепенно уточнялись и дополнялись, были опубликованы в труде под названием «Микроскопические исследования о соответствии в строении и произрастании животных и растений» (1839 г). Эта работа принадлежит Т. Шванну.
Вот основные положения клеточной теории:
- клетка является основной элементарной единицей строения, развития и функционирования любого живого организма. То есть, мельчайшей единицей живого;
- у всех организмов клетки гомологичны — похожи по своему химическому строению, главным проявлениям жизненных процессов, обмену веществ;
- основной способ размножения клеток — деление. Образование новой клетки происходит путем деления материнской клетки;
- клетки сложных многоклеточных организмов имеют специализацию по выполняемым ими функциям и образуют ткани. Ткани лежат в основе органов, которые взаимосвязаны различными формами регуляции: межклеточными, нервными и гуморальными.
Активное развитие в 19 и 20 веках такой науки как цитология способствовало подтверждению основных положений клеточной теории. Она же предоставила новые данные о строении и функциях клетки.
Кроме того, отдельные тезисы клеточной теории, предложенные Т. Шванном, были исключены из теории. К примеру, он считал, что отдельная клетка многоклеточного организма способна самостоятельно функционировать, что многоклеточный организм — простая совокупность клеток, что неклеточная «бластема» — основа развития клетки.
После усовершенствования, остались следующие положения клеточной теории:
- клетка является наименьшей единицей живого. Ей свойственно все, что определяет «живое»: рост, движение, обмен веществ и энергии, изменчивость, адаптация, раздражительность, репродукция, старение и смерть;
- у клеток различных организмов наблюдается схожесть в общем плане строения — это обусловлено похожестью общих функций, которые направлены на поддержание жизни клеток и их размножение. Специфичность выполняемых клетками функций определяет разнообразие клеточных форм;
- размножение клетки осуществляется путем деления материнской клетки (имеет место предыдущее воспроизведение ее генетического материла);
- клетка — часть целостного организма. Развитие, функции и особенности строения клеток определяются всем организмом. Это результат взаимодействия тканей, органов, аппаратов и систем органов в функциональных системах.
Клеточная теория на современном этапе развития биологии во многом отличается от теории и взглядов на клетку, существовавших не только в 19 веке, в период формулировки Т. Шванном первой клеточной теории, но и в середине 20 века.
Сегодня клеточная теория — это система научных взглядов, представленная в виде теорий, законов и принципов.
Главные положения клеточной теории актуальны и сегодня, несмотря на то, что за 150 лет о структуре, развитии и жизнедеятельности клеток были получены новые сведения.
Значение клеточной теории
Клеточная теория в науке открыла и укрепила представление о клетке как важнейшей составляющей всех организмов и главным их строительным элементом. Клетка является эмбриональной основой многоклеточных организмов, поскольку любой организм развивается с зиготы.
Благодаря клеточной теории можно говорить о единстве живой природы. Открытие этой теории — едва ли не самое важное событие в области биологии.
Клеточная теория стимулировала развитие таких наук как эмбриология, физиология и гистология. На ее основе возникло материалистическое понимание жизни, стало возможным объяснение эволюционной взаимосвязи между организмами, формулировка сущности онтогенеза.
Несмотря на то, что сведения о строении, развитии и функционировании клетки постоянно пополняются, основные положения клеточной теории, сформулированные более 100 лет назад, остаются актуальными.
Клетка — основа всех биохимических и физиологических процессов в организме, ведь все эти процессы происходят непосредственно на клеточном уровне. Клеточная теория позволила сделать вывод о схожести химического состава всех клеток и подтвердить единство органического мира.
Клеточная теория является одни из биологических обобщений, свидетельствующих о клеточном строении всех организмов.
Наряду с законом превращения энергии и эволюционной теорией Дарвина, это одно из наиболее значимых открытий в области естествознания 19 века.
Клеточная теория оказала заметное влияние на развитие биологии как науки. Она указала на единство живой природы и выделила структурную единицу этого единства — клетку.
Помимо огромного влияния на биологию как науку, теория стала фундаментом для развития других дисциплин: эмбриологии, гистологии, физиологии. С ее помощью удалось объяснить родственные взаимосвязи организмов, механизм индивидуального развития.
Теория является важным обобщением современной биологии, системой положений и принципов, раскрывающими механизмы роста, развития и размножения организмов.
Цитология (греч. cytos — клетка + logos — наука) - наука о строении и жизнедеятельности клетки. На данный момент нам кажется очевидным, что растения, грибы и животные состоят из клеток, однако раньше об этом и не догадывались.
Цитология начала свой путь развития относительно недавно, в этой статье мы обсудим клеточную теорию и методы, которые используются в цитологии для изучения клеток (методологию).
Клеточная теория
Создание и развитие клеточной теории стало возможным после изобретения микроскопа в 1590 году голландским мастером по изготовлению очков - Захарием Янсеном. Первый микроскоп мог увеличивать изучаемый объект до 3-9 раз.
В 1665 году Роберт Гук, используя микроскоп собственного изобретения, смог различить ячеистые структуры пробки ветки бузины. Эти ячеистые структуры напомнили Роберту Гуку монашеские кельи, он ввел термин клетка (от лат. сеllа — комната, келья).
На самом деле Роберт Гук увидел не живые клетки, как он предполагал, а оставшиеся от них плотные клеточные стенки, которые и представляли собой ячеистую структуру.
В 70-х годах XVII века нидерландский натуралист Антони ван Левенгук открыл целый мир, невидимый невооруженным глазом. Он увидел в микроскопе простейшие организмы: инфузорий, сперматозоидов, а также дрожжи, бактерии, эпидермис кожи.
В течение 50 лет он отсылал результаты своих наблюдений в Лондонское королевское общество. Поначалу они были встречены со скептицизмом, но когда комиссия ученых лично во всем убедилась и подтвердила подлинность его исследований, Антони ван Левенгук был избран действительным членом Лондонского королевского общества.
В последующее время было много описаний самых разных клеток, однако обобщить накопленный материал оказалось не легкой задачей. С ней в 1839-1840 годах справились немецкий ботаник Маттиас Шлейден и немецкий зоолог Теодор Шванн.
- Все организмы состоят из клеток
- Клетка - мельчайшая структурная единица жизни
- Образование новых клеток - основополагающий способ роста и развития растений и животных
- Организм представляет собой сумму образующих его клеток
Допустили ли Шлейден и Шванн ошибки? Да, они были. Ошибочно предположение о том, что клетка может образоваться из неклеточного вещества.
Важное дополнение в 1855 в клеточную теорию внес Рудольф Вирхов, который утверждал, что любая клетка может образоваться только путем деления материнской клетки.
- Клетка является структурной, функциональной и генетической единицей живого
- Клетки растений и животных сходны между собой по строению и химическому составу
- Клетка образуется только путем деления материнской клетки
- Клетки у всех организмов окружены мембраной (имеют мембранное строение)
- Ядро клетки - ее главный регуляторный органоид
- Клеточное строение растений, животных и грибов свидетельствует о едином происхождении всего живого
- В многоклеточном организме клетки подразделяются (дифференцируются) по строению и функции. Они объединяются в ткани, органы и системы органов.
- Клетка - элементарная, открытая и живая система, способная к самообновлению, воспроизведению и саморегуляции
XX век несомненно стал веком биологических наук: цитологии, генетики. Это произошло во многом благодаря клеточной теории.
Я хочу поделиться с вами моим искренним восхищением новой жизни. Вдумайтесь - мы ведь когда-то с вами были всего одной единственной клеткой, зиготой! Как в одной клетке природе удалось уместить столько всего: кожу, мышцы, нервную систему, пищеварительный тракт? Мы приоткроем завесу этой тайну в статьях по генетике и эмбриологии, и, тем не менее, мое восхищение этим безгранично.
Наши клетки рождаются и умирают: эпителий кишечника обновляется каждые 5 дней полностью, при удалении 70% печени оставшиеся клетки способны восстановить всю структуру этого органа, каждые 30 дней мы получаем новую кожу. При этом наше сознание и память остаются с нами. Мы - чудо, настоящее чудо природы, созданное из одной единственной клетки.
Микроскопия
Микроскопия - важнейший метод цитологии, в ходе которого объекты рассматриваются при помощи микроскопа. Его оптическая система состоит из двух основных элементов: объектива и окуляра, закрепленных в тубусе. Микропрепарат (срез тканей) располагается на предметном столике, расстояние от которого до объектива регулируется с помощью винта (винтов).
Чтобы посчитать увеличительную способность микроскопа следует умножить увеличение окуляра на увеличение объектива. К примеру, если окуляр увеличивает объект в 20 раз, а объектив - в 10, то суммарное увеличение будет в 200 раз.
Некоторое внимание уделим направлениям в биологии, которые необходимо знать на современном этапе технического прогресса.
Биоинженерия
Биоинженерия - направление науки и техники, развивающее применение инженерных принципов в биологии и медицине. В рамках биоинженерии происходят попытки (и довольно успешные) выращивания тканей и создание искусственных органов, протезов.
То есть биоинженерия занимается преимущественно технической частью. Медицинское направление в биоинженерии ищет замену органам и тканям человека, которые утратили свою функциональную активность и требуют "замены".
Биотехнология
Биотехнология - направление биологии, изучающее возможность применения живых организмов или продуктов их жизнедеятельности для решения технологических задач. В биотехнологии путем генной инженерии создают организмы с заданным набором свойств.
В рамках биотехнологии происходит получение антибиотиков - продуктов жизнедеятельности бактерий, очищение водоемов с помощью моллюсков, увеличение плодородия почвы с помощью дождевых червей, клонирование организмов.
Это разительно отличается от задач биоинженерии, хотя безусловно, эти дисциплины смежные. Все-таки в биотехнологии происходит большее вторжение в живой мир, по сути человек выступает эксплуататором, достигая с помощью животных, растений и грибов своих целей. Человек проводит искусственный отбор, отделяя особей, которые продолжат род, от других, "менее перспективных".
Представляет собой совокупность методов и технологий, которые приводят к получению рекомбинантных РНК и ДНК, выделению генов из клеток и внедрения их в другие организмы.
Изменив молекулу ДНК или РНК, человек добивается своей цели: клетка начинает синтезировать с нее белок. Он то и нужен человеку, такие продукты жизнедеятельности активно используются в медицине, к примеру, при изготовлении антибиотиков.
- Сорт кукурузы, устойчивый к действию насекомых-вредителей
- Бактерии, продуктом жизнедеятельности которых является человеческий инсулин, используемый в дальнейшем как лекарство
- Культура клеток, вырабатывающих гормон человека - эритропоэтин, также используемый в лечебных целях
Представляет собой совокупность методов и технологий, используемых для конструирования новых клеток. В основе лежит идея культивирования клеток тканей вне организма.
С помощью клеточной инженерии возможно бесполое размножение ценных форм растений. Часто получаются, так называемые, гибридные клетки, которые сочетают свойства, к примеру, раковых клеток и лимфоцитов, в результате становится возможно быстрое получение антител.
Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.
Читайте также: