Как рассчитать количество цветов отображаемых на экране монитора
Графическая информация может быть представлена в аналоговой и дискретной формах. Примером аналогового представления графической информации может служить живописное полотно, цвет которого изменяется непрерывно, а дискретного - изображение, напечатанное с помощью струйного принтера и состоящее из отдельных точек разного цвета.
Графические изображения из аналоговой (непрерывной) формы в цифровую (дискретную) преобразуются путем пространственной дискретизации. Пространственную дискретизацию изображения можно сравнить с построением изображения из мозаики (большого количества маленьких разноцветных стекол). Изображение разбивается на отдельные маленькие элементы (точки, или пиксели), причем каждый элемент может иметь свой цвет (красный, зеленый, синий и т. д.).
Пиксель - минимальный участок изображения, для которого независимым образом можно задать цвет.
В результате пространственной дискретизации графическая информация представляется в виде растрового изображения, которое формируется из определенного количества строк, содержащих, в свою очередь, определенное количество точек (рис. 1.1).
Рис. 1.1. Растровое изображение темного прямоугольника на светлом фоне |
Разрешающая способность. Важнейшей Характеристикой качества растрового изображения является разрешающая способность
Разрешающая способность растрового изображения определяется количеством точек как по горизонтали, так и по вертикали на единицу длины изображения.
Чем меньше размер точки, тем больше разрешающая способность (больше строк растра и точек в строке) и, соответственно, выше качество изображения. Величина разрешающей способности обычно выражается в dpi (dot per inch - точек на дюйм), т. е. в количестве точек в полоске изображения длиной один дюйм (1 дюйм = 2,54 см)
Пространственная дискретизация непрерывных изображений, хранящихся на бумаге, фото- и кинопленке, может быть осуществлена путем сканирования. В настоящее время все большее распространение получают цифровые фото- и видеокамеры, которые фиксируют изображения сразу в дискретной форме.
Качество растровых изображений, полученных в результате сканирования, зависит от разрешающей способности сканера, которую производители указывают двумя числами (например, 1200 х 2400 dpi)
Сканирование производится путем перемещения полоски светочувствительных элементов вдоль изображения. Первое число является оптическим разрешением сканера и определяется количеством светочувствительных элементов на одном дюйме полоски. Второе число является аппаратным разрешением; оно определяется количеством "микрошагов", которое может сделать полоска светочувствительных элементов, перемещаясь на один дюйм вдоль изображения (рис. 1.2).
Рис. 1.2. Оптическое и аппаратное разрешение сканера |
Глубина цвета. В процессе дискретизации могут использоваться различные палитры цветов, т. е. наборы цветов, в которые могут быть окрашены точки изображения. Каждый цвет можно рассматривать как возможное состояние точки. Количество цветов N в палитре и количество информации I, необходимое для кодирования цвета каждой точки, связаны между собой и могут быть вычислены по формуле:
N=2 I | (1.1) |
В простейшем случае (черно-белое изображение без градаций серого цвета) палитра цветов состоит всего из двух цветов (черного и белого). Каждая точка экрана может принимать одно из двух состояний - "черная" или "белая", следовательно, по формуле (1.1) можно вычислить, какое количество информации необходимо, чтобы закодировать цвет каждой точки:
2 = 2 I => 2 1 = 2 I => I = 1 бит.
Количество информации, которое используется для кодирования цвета точки изображения, называется глубиной цвета.
Наиболее распространенными значениями глубины цвета при кодировании цветных изображений являются 4, 8, 16 или 24 бита на точку. Зная глубину цвета, по формуле (1.1) можно вычислить количество цветов в палитре (табл. 1.1).
Растровые изображения на экране монитора
Графические режимы монитора. Качество изображения на экране монитора зависит от величины пространственного разрешения и глубины цвета.
Пространственное разрешение экрана монитора определяется как произведение количества строк изображения на количество точек в строке. Монитор может отображать информацию с различными пространственными разрешениями (800 х 600, 1024 х 768, 1152 х 864 и выше).
Глубина цвета измеряется в битах на точку и характеризует количество цветов, в которые могут быть окрашены точки изображения. Количество отображаемых цветов также может изменяться в широком диапазоне, от 256 (глубина цвета 8 битов) до более чем 16 миллионов (глубина цвета 24 бита).
Чем больше пространственное разрешение и глубина цвета, тем выше качество изображения.
В операционных системах предусмотрена возможность выбора необходимого пользователю и технически возможного графического режима.
Рассмотрим формирование на экране монитора растрового изображения, состоящего из 600 строк по 800 точек в каждой строке (всего 480 000 точек) и глубиной цвета 8 битов. Двоичный код цвета всех точек хранится в видеопамяти компьютера (рис. 1.3), которая находится на видеокарте (рис. 1.4).
Рис. 1.3. Формирование растрового изображения на экране монитора |
Рис. 1.4. Видеокарта |
Видеокарта устанавливается в слот расширения системной платы PCI или AGP. Монитор подключается к аналоговому выходу VGA или цифровому выходу DVI видеокарты.
Периодически, с определенной частотой, коды цветов точек вчитываются из видеопамяти точки отображаются на экране монитора. Частота считывания изображения влияет на стабильность изображения на экране. В современных мониторах обновление изображения происходит c частотой 75 и более раз в секунду, что обеспечивает комфортность восприятия изображения пользователем компьютера (человек не замечает мерцания изображения). Для сравнения можно напомнить, что частота смены кадров в кино составляет 24 кадра в секунду.
Объем видеопамяти. Информационный объем требуемой видеопамяти можно рассчитать по формуле:
In = I× X×Y,
где In - информационный объем видеопамяти в битах;
X × У - количество точек изображения (X - количество точек по горизонтали, Y - по вертикали);
I - глубина цвета в битах на точку.
Пример: необходимый объем видеопамяти для графического режима с пространственным разрешением 800 х 600 точек и глубиной цвета 24 бита равен:
In = I× X×Y = 24 бита × 800 × 600 = 11 520 000 бит = 1 440 000 байт = 1 406,25 Кбайт = 1,37 Мбайт.
Качество отображения информации на экране монитора зависит от размера экрана и размера пикселя. Зная размер диагонали экрана в дюймах (15", 17" и т. д.) и размер пикселя экрана (0,28 мм, 0,24 мм или 0,20 мм), можно оценить максимально возможное пространственное разрешение экрана монитора.
Цвет на экране получается при суммировании лучей трёх основных цветов — красного, зелёного и синего. Если интенсивность каждого из них достигает \(100\), то получается белый цвет. Минимальная интенсивность трёх базовых цветов даёт чёрный цвет.
Для описания каждого составляющего цвета требуется \(1\) байт (\(8\) бит) памяти, а чтобы описать один цвет, требуется \(3\) байта, т.е. \(24\) бита, памяти.
Для кодирования одного цвета пикселя определяется длина двоичного кода, которая называется глубиной цвета . Рассчитать глубину цвета можно по формуле: N = 2 i , где N —количество цветов в палитре, i — глубина цвета. Интенсивность каждого из трёх цветов — это один байт (т.е. число в диапазоне от \(0\) до \(255\)), т.е. каждая составляющая может принимать \(256\) значений. Таким образом, с использованием трёх составляющих можно описать \(256⋅256⋅256 = 16777216 \)различных цветовых оттенков, а, значит, модель RGB имеет приблизительно \(16,7\) миллионов различных цветов.Таким количеством цветов определяется, в основном, палитра современного монитора.
При печати изображений на принтерах используется цветовая модель, основными красками в которой являются голубая (Cyan), пурпурная (Magenta) и жёлтая (Yellow).
Чтобы получить чёрный цвет, в цветовую модель был включен компонент чистого чёрного цвета (BlacK). Так получается четырёхцветная модель, называемая CMYK .
Область применения цветовой модели CMYK — полноцветная печать. Именно с этой моделью работает большинство устройств печати.Из-за несоответствия цветовых моделей часто возникает ситуация, когда цвет, который нужно напечатать, не может быть воспроизведен с помощью модели CMYK (например, золотой или серебряный). В этом случае применяются краски Pantone.
Все файлы, предназначенные для вывода в типографии, должны быть конвертированы в CMYK . Этот процесс называется цветоделением .
При просмотре CMYK -изображения на экране монитора одни и те же цвета могут восприниматься немного иначе, чем при просмотре RGB -изображения.
В модели CMYK невозможно отобразить очень яркие цвета модели RGB , модель RGB , в свою очередь, не способна передать тёмные густые оттенки модели CMYK , поскольку природа цвета разная.
Отображение цвета на экране монитора часто меняется и зависит от особенностей освещения, температуры монитора и цвета окружающих предметов. Кроме того, многие цвета, видимые в реальной жизни, не могут быть выведены при печати, не все цвета, отображаемые на экране, могут быть напечатаны, а некоторые цвета печати не видны на экране монитора.
разрешающая способность экрана,
Во всех подобных задачах требуется найти ту или иную величину.
Видеопамять - это специальная оперативная память, в которой формируется графическое изображение.
Объем видеопамяти рассчитывается по формуле: V=I*X*Y, где I – глубина цвета отдельной точки, X, Y – размеры экрана по горизонтали и по вертикали (произведение х на у – разрешающая способность экрана).
Экран дисплея может работать в двух основных режимах: текстовом и графическом .
В графическом режиме экран разделяется на отдельные светящиеся точки, количество которых зависит от типа дисплея, например 640 по горизонтали и 480 по вертикали. Светящиеся точки на экране обычно называют пикселями , их цвет и яркость может меняться. Графические режимы характеризуются такими показателями как:
- разрешающая способность (количество точек, с помощью которых на экране воспроизводится изображение) - типичные в настоящее время уровни разрешения 800*600 точек или 1024*768 точек.
- глубина цвета (количество бит, используемых для кодирования цвета точки), например, 8, 16, 24, 32 бита. Каждый цвет можно рассматривать как возможное состояние точки, Тогда количество цветов, отображаемых на экране монитора может быть вычислено по формуле K=2I , где K – количество цветов, I – глубина цвета или битовая глубина.
Кроме перечисленных выше знаний учащийся должен иметь представление о палитре:
- палитра (количество цветов, которые используются для воспроизведения изображения).
Виды информации и способы представления ее в компьютере.
В компьютере все виды информации кодируются на машинном языке, в виде логических последовательностей нулей и единиц.
Информация в компьютере представлена в двоичном коде, алфавит которого состоит из двух цифр (0 и 1). Каждая цифра машинного двоичного кода несет количество информации, равное 1 бит.
Например. Латинская буква А представлена в двоичном коде – 01000001.
Русская буква А представлена в двоичном коде - 10000000.
0 - 00110000
1 – 00110001
Задачи на кодирование информации:
уровень 1 - легкие (элементарные)
уровень 2 - простые
уровень 3 - средней сложности
1. Определить размер (в байтах) цифрового аудио-файла, время звучания которого составляет 10 секунд при частоте дискретизации 22,05 кГц и разрешении 8 бит. Файл сжатию не подвержен. Формула для расчета размера (в байтах) цифрового аудиофайла (монофоническое звучание): (частота дискретизации в Гц)*(время записи в секундах)*(разрешение в битах)/8. 2. В распоряжении пользователя имеется память объемом 2,6 Мб. Необходимо записать цифровой аудио-файл с длительностью звучания 1 минута. Какой должна быть частота дискретизации и разрядность? 3. Объем свободной памяти на диске — 5,25 Мб, разрядность звуковой платы — 16. Какова длительность звучания цифрового аудио-файла, записанного с частотой дискретизации 22,05 кГц? 4. Определить объем памяти для хранения цифрового аудио-файла, время звучания которого составляет две минуты при частоте дискретизации 44,1 кГц и разрешении 16 бит.Решение:
44100*(2*60)*16=
10МБайт
Ответ:
5. Одна минута записи цифрового аудио-файла занимает на диске 1,3 Мб, разрядность звуковой платы — 8. С какой частотой дискретизации записан звук?
6. Две минуты записи цифрового аудио-файла занимают на диске 5,1 Мб. Частота дискретизации — 22050 Гц. Какова разрядность аудио-адаптера?
7. Объем свободной памяти на диске — 0,01 Гб, разрядность звуковой платы — 16. Какова длительность звучания цифрового аудио-файла, записанного с частотой дискретизации 44100 Гц?
8. Оцените информационный объем моноаудиофайла длительностью звучания 1 мин. если "глубина" кодирования и частота дискретизации звукового сигнала равны соответственно:
а) 16 бит и 8 кГц;
б) 16 бит и 24 кГц.
Решение:
а).
1) Информационный объем звукового файла длительностью в 1 секунду равен:
16 бит х 8 000 = 128000 бит = 16000 байт = 15,625 Кбайт/с
2) Информационный объем звукового файла длительностью 1 минута равен:
15,625 Кбайт/с х 60 с = 937,5 Кбайт
б).
1) Информационный объем звукового файла длительностью в 1 секунду равен:
16 бит х 24 000 = 384000 бит = 48000 байт = 46,875 Кбайт/с
2) Информационный объем звукового файла длительностью 1 минута равен:
46,875 Кбайт/с х 60 с =2812,5 Кбайт = 2,8 Мбайт
Ответ: а) 937,5 Кбайт; б) 2,8 Мбайт
9. Какой объем памяти требуется для хранения цифрового аудио-файла с записью звука высокого качества при условии, что время звучания составляет 3 минуты? (таблица)
10. Цифровой аудио-файл содержит запись звука низкого качества (звук мрачный и приглушенный). Какова длительность звучания файла, если его объем составляет 650 Кб? (таблица)
Количество отображаемых цветов. Количество цветов формируемых монитором определяется типом видеосигналов - цифровой или аналоговый. Цифровой видеосигнал может принимать только 2 значения: высокая - уровень логической единицы; низкий - уровень логического 0. Если на модулятор пушки поступает сигнал высокого уровня, формируется луч номинальной интенсивности, а если низкого - пушка заперта. Возможное число различных состояний 3-х пушек составляет 2^3 = 8. Главный недостаток цифровых мониторов скудная политра. Её можно увеличить добавив дополнительный модулятор яркости и 3 дополнительные линии - такое решение приводит к увелечению толщины соединительного кабеля. Сделать палитру монитора неограничеснной можно, если подать на ЭЛТ аналоговые видеосигналы - это позволяет выполнять смешение 3-х основных цветов в лююой пропорции. Поскольку множество значений непрерывной величины бесконечно, бесконечным будет и число возможных сочетаний яркости 3-х основных цветов.
31)Жидкокристаллические мониторы –принцип действия жк ячейки.
Жидкий кристалл – это вещество, которое обладая основным свойством жидкости – текучестью, сохраняет упорядоченность во взаимном расположении молекул свойственную кристаллам. А каждый момент времени все молекулы такого вещества ориентированные одинаково и выстроены вдоль локальной оптической оси. Её направление зависит от различных факторов, в частности от свойств поверхности стенок с которыми соприкасается ЖК-масса и может меняться под воздействием электрического или магнитного поля. При соприкосновении с рифлёной поверхностью, молекулы жидкого кристалла ориентируются вдоль канавок. В верхнем и нижних слоях ориентация молекул соответствует направлению канавок, а во внутренних слоях они занимают промежуточные положения. При прохождении через эту конструкцию поляризованного света, он так же закручивается и конструкция пропускает свет. Под воздействием электрического поля молекулы жидкого кристалла меняют свою ориентацию выстраиваясь вдоль силовых линий поля. Если направление поля перпендикулярно плоскости стёкол, то и молекулы не будут закручиваться и ячейка окажется непрозрачной. Если дополнить эту конструкцию двумя поляризационными фильтрами получится ЖК-дисплей.ЖК-ячейка по своей сути является светофильтром с электрическим управлением, т.к. склейка 2-х поверхностей поглощает до 50 % проходящего света
32)Технология изготовления LCD мониторов –пассивные и активные матрицы.
· Пассивная матрица – применяются накрест лежащие сетки прозрачных электродов, расположенные по разные стороны стеклянных подложек. Места их пространственного пересечения являются пикселями, поэтому чтобы активировать работу одного пикселя необходимо задействовать две адресные линии – вертикальную и горизонтальную. Главным недостатком пассивных матриц является необходимость создания большого числа микроскопических соединений по всей пластине.
· Активная матрица – технология TFT. Окончательно решить всю связку этих проблем позволила технология активных матриц, от обычной пассивной ЖК-ячейки, активная отличается наличием собственного электронного ключа, который позволяет сигналам низкого уровня (0.7 В) управлять высокими напряжениями – это позволило значительно снизить уровень сигнала управления и решить проблему частичной засветки соседних пикселей. Электронные ключи выполняются по тонко-плёночной технологии: на стеклянную подложку наносится слой аморфного кремния на котором формируется транзисторы по одному на каждый пиксель .Каждая ячейка снабжена светофильтром одного из 3-х основных цветов, изменяя уровень поданного на транзистор управляющего сигнала можно регулировать яркость каждой ячейки триады – для этого в состав ЖК-монитора входит контроллер
· 33)Характеристики LCD мониторов
1. Размер экрана - у большинства современных моделей лежит в пределах 19-23 дюйма и более. У плоско-панельных мониторов размеры экрана и его видимой области практически совпадают. Такие мониторы могут менять ориентацию: портретная и ландшафтная.
2. Поле обзора - характеризуется углами обзора отсчитываемыми от перпендикуляра к плоскости экрана по горизонтали и по вертикали и лежат в пределах +- 80-89 градусах (160/160 - 178/178).
3. Разрешение и частоты развёрток - важною особенностью ЖК-мониторов является то, что они предназначены для работы с каким либо одним оптимальным с точки зрения качества изображения разрешением. Пиксель может быть образован только целом количеством ЖК-ячеек. Полоса пропускания видео-тракта 65-80 МГц, частота строчной развёртка 30-80 КГц, частота кадров 60-85 Гц.
4. Яркость и контрастность - чем выше яркость, тем изображение будет более красочным, блики станут менее заметными, угол обзора увеличится. Избыток яркости всегда можно убрать с помощью органов управления. Типичные значения яркости 250-450 кд/м^2 (кд-кондел), но есть мониторы с яркостью 700 кд/м^2. Контрастность изображения показывает во сколько раз изменяется его яркость при изменении уровня видеосигнала от максимального значения до минимального. Чем выше контрастность тем чётче изображение.
Читайте также: