Как кодируется пиксель на экране монитора
§ 20. Как кодируется изображение
Основные темы параграфа:
• кодирование цветов пикселей;
• объем видеопамяти.
Кодирование цветов пикселей
Информация о состоянии каждого пикселя хранится в закодированном виде в памяти компьютера. Код может быть однобитовым, двухбитовым и т. д.
Код пикселя — это информация о цвете пикселя.
Для получения черно-белого изображения (без полутонов) пиксель может находиться в одном из двух состояний: светится — не светится (белый — черный). Тогда для его кодирования достаточно одного бита памяти:
1 — белый,
0 — черный.
Пиксель на цветном дисплее может иметь различную окраску. Поэтому одного бита на пиксель недостаточно.
Для кодирования четырехцветного изображения требуется двухбитовый код, поскольку с помощью двух битов можно выразить 4 различных значения (отобразить 4 различных состояния). Может использоваться, например такой вариант кодирования цветов:
00 — черный, 10 — зеленый,
01 — красный, 11 — коричневый.
Из трех базовых цветов — зеленого, красного, синего — можно получить восемь комбинаций трехбитового кода:
--- черный, к -- красный,
-- с синий, к - с розовый,
- з - зеленый, к з - коричневый,
- з с голубой, к з с белый.
В этом коде каждый базовый цвет обозначается его первой буквой (к — красный, с — синий, з — зеленый). Черточка означает отсутствие цвета.
Следовательно, для кодирования восьмицветного изображения требуются 3 бита памяти на один видеопиксель. Если наличие базового цвета обозначить единицей, а отсутствие — нулем, то получается таблица кодировки восьмицветной палитры (табл. 4.1).
Из сказанного, казалось бы, следует вывод: с помощью трех базовых цветов нельзя получить палитру, содержащую больше восьми цветов. Однако на экранах современных компьютеров получают цветные изображения, составленные из сотен, тысяч и даже миллионов различных красок и оттенков. Как это достигается?
Если иметь возможность управлять интенсивностью (яркостью) свечения базовых цветов, то количество различных вариантов их сочетаний, дающих разные краски и оттенки, увеличивается.
Шестнадцатицветная палитра получается при использовании четырехразрядной кодировки пикселя; к трем битам базовых цветов добавляется один бит интенсивности. Этот бит управляет яркостью всех трех цветов одновременно (интенсивностью трех электронных пучков) (табл. 4.2).
Большее количество цветов получается при раздельном управлении интенсивностью базовых цветов. Причем интенсивность может иметь более двух уровней, если для кодирования интенсивности каждого из базовых цветов выделять больше одного бита.
Из сказанного можно вывести правило:
Количество различных цветов К и количество битов для их кодирования b связаны между собой формулой: К = 2 b .
2 1 = 2, 2 2 = 4, 2 3 = 8, 2 4 = 16 и т. д. Для получения цветовой гаммы из 256 цветов требуется 8 битов = 1 байт на каждый пиксель, так как 2 8 = 256.
Объем видеопамяти
Объем необходимой видеопамяти определяется размером графической сетки дисплея и количеством цветов. Минимальный объем видеопамяти должен быть таким, чтобы в него помещался один кадр (одна страница) изображения. Например, для сетки 640 х 480 и черно-белого изображения минимальный объем видеопамяти должен быть таким:
640 · 480 · 1 бит = 307 200 бит = 38 400 байт.
Это составляет 37,5 Кбайт.
Для четырехцветной гаммы и той же графической сетки видеопамять должна быть в два раза больше — 75 Кбайт; для восьмицветной — 112,5 Кбайт.
На современных высококачественных дисплеях используется палитра более чем из 16 миллионов цветов. Требуемый размер видеопамяти в этом случае — несколько мегабайтов.
Коротко о главном
Информация в видеопамяти — это двоичные коды, обозначающие цвета пикселей на экране.
Для кодирования двух цветов достаточно 1 бита на пиксель; четырех цветов — 2 битов; восьми цветов — 3 битов; шестнадцати цветов — 4 битов и т. д. Количество цветов К и размер кода в битах b связаны формулой: К — 2 b .
Из трех базовых цветов можно получить 8 различных цветов, Большее число цветов получается путем управления интенсивностью базовых цветов.
Минимально необходимый объем видеопамяти зависит от размера сетки пикселей и от количества цветов. Обычно в видеопамяти помещается несколько страниц (кадров) изображения одновременно.
Вопросы и задания
1. Какая информация содержится в видеопамяти?
2. Сколько битов видеопамяти на один пиксель требуется для хранения двухцветного; четырехцветного; восьми цветного; шестнадцати цветного изображения?
3. Какие цвета получаются из смешения красного и синего, красного и зеленого, зеленого и синего?
4. Сколько цветов будет содержать палитра, если каждый базовый цвет кодировать в двух битах?
5. Придумайте способ кодирования цветов для 256-цветной палитры.
6. Пусть видеопамять компьютера имеет объем 512 Кбайт. Размер графической сетки — 640 х 480. Сколько страниц экрана одновременно разместится в видеопамяти при палитре из 16 цветов; 256 цветов?
И. Семакин, Л. Залогова, С. Русаков, Л. Шестакова, Информатика, 8 класс
Отослано читателями из интернет-сайтов
Наибольшая библиотека рефератов, планирование уроков информатики, материалы для подготовки к урокам информатики, ответы на тесты, изучай информатику 8 класс бесплатно
Если у вас есть исправления или предложения к данному уроку, напишите нам.
Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь - Образовательный форум.
Постараюсь подробно "на пальцах" рассказать, как изображение записывается в память машины.
Итак. Главный тезис: для того, чтобы послать нашему другу мемчик или сохранить демотиватор себе на телефон, требуется изобразить его в "ноликах и единичках".
О памяти машины
Потому что память машины устроена именно так: она содержит сплошняком ячейки, в которых может быть только "0" или "1". Конечно, там не цифры записаны. Они только называются "логический ноль" или "логическая единица". На самом деле, всё зависит от технологии, по которой изготовлена память машины. Например, кучу лет назад (даже "олды" не все припомнят) существовали перфокарты. Такие картонные карточки с цифрами. У них ещё уголок один был срезан:
В качестве логических нулей и единиц использовались дырочки. 864 дырочки или "недырочки". Технология, вообще-то, не очень. Если оператор ошибался в одной дырочке, то карту приходилось менять полностью. Ну, или заклеивать/прорезать лезвием. В современных машинах, конечно, и метод другой, и количество немного больше (в Вкипедии написано, что "кинчик" на 1 гигабайт, в прямом смысле, весил бы 22 тонны, если бы его на перфокартах пробивали).
В разных ситуациях словом бит называют:
- одни значок (дырочка-недырочка, ноль-один)
- одно место, на котором может быть записан либо ноль, либо один
- единицу измерения количества информации
Очень важная деталь. Биты (2) сгруппированы в сегменты по 8 штук. Такие сегменты называются байты . Аналогично битам, у слова "байт" есть несколько значений. Важно то, что машина не может прочитать один бит. За раз ей нужно прочитать целый байт, а только потом из него выделить бит. То же с записью - за раз можно записать только один целый байт, но не бит. Если нам надо поменять один бит, мы должны считать весь байт, заменить там бит с помощью логических операций, перезаписать байт обратно.
Про изображения
Существует масса способов записать картинку только ноликами и единичками. В школе проходят растровый и векторный. К векторному, возможно, я обращусь ещё, а вот про растровый расскажу подробнее. Суть проста: изображение разбивается на одинаковые клеточки. Эти клеточки называются "пиксели" или "пикселы". Кто как привык. Каждый пиксель имеет один единственный цвет. Получается мозаика.
Под графической информацией подразумевают всю совокупность информации, которая нанесена на самые различные носители — бумагу, пленку, кальку, картон, холст, оргалит, стекло, стену и т. д. В определенной степени графической информацией можно считать и объективную реальность, на которую направлен объектив фотоаппарата или цифровой камеры.
Компьютерная графика - область информатики, изучающая методы и свойства обработки изображений с помощью программно-аппаратных средств.
Под видами компьютерной графики подразумевается способ хранения изображения на плоскости монитора.
Машинная графика в настоящее время уже вполне сформировалась как наука. Существует аппаратное и программное обеспечение для получения разнообразных изображений - от простых чертежей до реалистичных образов естественных объектов. Машинная графика используется почти во всех научных и инженерных дисциплинах для наглядности восприятия и передачи информации.
Машинная графика властно вторгается в бизнес, медицину, рекламу, индустрию развлечений. Применение во время деловых совещаний демонстрационных слайдов, подготовленных методами машинной графики и другими средствам автоматизации конторского труда, считается нормой. В медицине становится обычным получение трехмерных изображений внутренних органов по данным компьютерных томографов. В наши дни телевидение и другие рекламные предприятия часто прибегают к услугам машинной графики и компьютерной мультипликации. Использование машинной графики в индустрии развлечений охватывает такие несхожие области как видеоигры и полнометражные художественные фильмы.
История компьютерной графики
Результатами расчетов на первых компьютерах являлись длинные колонки чисел, напечатанных на бумаге. Для того чтобы осознать полученные результаты, человек брал бумагу, карандаши, линейки и другие чертежные инструменты и чертил графики, диаграммы, чертежи рассчитанных конструкций . Иначе говоря, человек вручную производил графическую обработку результатов вычислений. В графическом виде такие результаты становятся более наглядными и понятными .
Возникла идея поручить графическую обработку самой машине. Первоначально программисты научились получать рисунки в режиме символьной печати. На бумажных листах с помощью символов (звездочек, точек, крестиков, букв) получались рисунки, напоминающие мозаику. Так печатались графики функций, изображения течений жидкостей и газов, электрических и магнитных полей. С помощью символьной печати программисты умудрялись получать даже художественные изображения (Рис. 1). В редком компьютерном центре стены не украшались распечатками с портретами Эйнштейна, репродукциями Джоконды и другой машинной живописью.
Рис. 1 Символьная печать.
Затем появились специальные устройства для графического вывода на бумагу — графопостроители (другое название — плоттеры). С помощью такого устройства на лист бумаги чернильным пером наносятся графические изображения: графики, диаграммы, технические чертежи и прочее. Для управления работо графопостроителей стали создавать специальное программное обеспечение.
Настоящая революция в компьютерной графике произошла с появлением графических дисплеев. На экране графического дисплея стало возможным получать рисунки, чертежи в таком же виде, как на бумаге с помощью карандашей, красок, чертежных инструментов Рисунок из памяти компьютера может быть выведен не только на экран, но и на бумагу с помощью принтера. Существуют принтеры цветной печати, дающие качество рисунков на уровне фотографии.
Представление графической информации в компьютере
Создавать и хранить графические объекты в компьютере можно двумя способами: как растровое или как векторное изображение. Для каждого типа изображения используется свой способ кодирования.
Растровое изображение представляет собой совокупность точек, используемых для его отображения на экране монитора.
Объём растрового изображения определяется как произведение количества точек и информационного объёма одной точки, который зависит от количества возможных цветов. Для черно-белого изображения информационный объём одной точки равен 1 биту, так как точка может быть либо чёрной, либо белой, что можно закодировать одной из двух цифр — 0 или 1.
Информационный объём растрового изображения (V) определяется как произведение числа входящих в изображение точек (N) на информационный объём одной точки (q), который зависит от количества возможных цветов, т. е. V=N ⋅ q.
При чёрно-белом изображении q = 1 бит (например, 1 — точка подсвечивается и 0 — точка не подсвечивается). Поэтому для хранения чёрно-белого (без оттенков) изображения размером 100x100 точек требуется 10000 бит.
Если между чёрным и белым цветами имеется ещё шесть оттенков серого (всего 8), то информационный объём точки равен 3 бита (log28 = 3).
Информационный объём такого изображения увеличивается в три раза: V = 30000бит.
Рассмотрим, сколько потребуется бит для отображения цветной точки: для 8 цветов необходимо 3 бита; для 16 цветов — 4 бита; для 256 цветов — 8 битов (1 байт).
Разные цвета и их оттенки получаются за счёт наличия или отсутствия трёх основных цветов (красного, синего, зеленого) и степени их яркости. Каждая точка на экране кодируется с помощью 4 битов.
Цветные изображения могут отображаться в различных режимах, соответственно изменяется и информационный объём точки (Рис. 4).
Описание цвета пикселя является кодом цвета.
Количество бит, отводимое на каждый пиксель для представления цвета, называют глубиной цвета (англ. color depth). От количества выделяемых бит зависит разнообразие палитры.
Наиболее распространенными значениями глубины цвета являются 8, 16, 24 или 32 бита.
Чем больше глубина цвета, тем больше объем графического файла.
Для хранения растрового изображения размером 32x32 пикселя отвели 512 байтов памяти.
Каково максимально возможное число цветов в палитре изображения?
Решение . Число точек изображения равно 32 ⋅ 3 2 = 1024. Мы знаем, что 512 байтов = 512 ⋅ 8=4096 бит. Найдём глубину цвета 4096÷1024=4. Число цветов равно 24 = 16.
FF — наибольшая яркость цветовой компоненты, для получения различных оттенков одного и того же цвета изменяют яркость.
Также следует отметить, что равное или почти равное сочетание цветовых компонент обозначает серый цвет разной интенсивности.
Векторное изображение представляет собой совокупность графических примитивов. Каждый примитив состоит из элементарных отрезков кривых, параметры которых (координаты узловых точек, радиус кривизны и пр.) описываются математическими формулами.
Для каждой линии указываются её тип (сплошная, пунктирная, штрих-пунктирная), толщина и цвет, а замкнутые фигуры дополнительно характеризуются типом заливки.
Рассмотрим, например, такой графический примитив, как окружность радиуса r. Для её построения необходимо и достаточно следующих исходных данных:
- координаты центра окружности;
- значение радиуса r;
- цвет заполнения (если окружность не прозрачная);
- цвет и толщина контура (в случае наличия контура).
Информация о векторном рисунке кодируется обычным способом, как хранятся тексты, формулы, числа, т. е. хранится не графическое изображение, а только координаты и характеристики изображения его деталей. Поэтому для хранения векторных изображений требуется существенно меньше памяти, чем растровых изображений.
Кодирование графической информации
Графическую информацию можно представлять в двух формах: аналоговой и цифровой.
Живописное полотно, цвет которого изменяется непрерывно — это пример аналогового представления.
Изображение, напечатанное при помощи струйного принтера и состоящее из отдельных точек разного цвета — это цифровое или еще именуют как дискретное представление.
Путем разбиения графического изображения (дискретизации) происходит преобразование графической информации из аналоговой формы в цифровую. Этот процесс называется «кодирование», поскольку каждому элементу назначается конкретное значение в форме двоичного кода. При кодировании изображения происходит его пространственная дискретизация. Ее можно сравнить с построением изображения из большого количества цветных фрагментов (метод мозаики).
Графическая информация в аналоговой форме представляется в виде рисунка, картинки, а также слайда на фотопленке и полученную по нему аналоговую фотографию.
Изображение кодируется в цифровую форму с использованием элементарных геометрических объектов, таких как точки, линии, сплайны и многоугольники или матрицы фиксированного размера, состоящей из точек (пикселей) со своими геометрическими параметрам.
Современная компьютерная графика
Научная графика. Это направление появилось самым первым. Назначение — визуализация (т. е. наглядное изображение) объектов научных исследований, графическая обработка результатов расчетов, проведение вычислительных экспериментов с наглядным представлением их результатов (Рис. 6).
Рис. 6 График комплексной функции в четырехмерном (4D) пространстве.
Деловая графика. Эта область компьютерной графики предназначена для создания иллюстраций, часто используемых в работе различных учреждений.
Плановые показатели, отчетная документация, статистические сводки — вот объекты, для которых с помощью деловой графики создаются иллюстративные материалы (Рис. 7).
Рис. 7 Графики, круговые и столбчатые диаграммы.
Программные средства деловой графики обычно включаются в состав табличных процессоров (электронных таблиц).
Плановые показатели, отчетная документация, статистические сводки — вот объекты, для которых с помощью деловой графики создаются иллюстративные материалы (Рис. 7).
Конструкторская графика. Она используется в работе инженеров-конструкторов, изобретателей новой техники. Этот вид компьютерной графики является обязательным элементом систем автоматизации проектирования (САПР). Графика в САПР используется для подготовки технических чертежей проектируемых устройств (Рис. 8).
Рис. 8. Графика в САПР.
Графика в сочетании с расчетами позволяет проводить в наглядной форме поиск оптимальной конструкции, наиболее удачной компоновки деталей, прогнозировать последствия, к которым могут привести изменения в конструкции. Средствами конструкторской графики можно получать плоские изображения (проекции, сечения) и пространственные, трехмерные, изображения.
Иллюстративная графика. Программные средства иллюстративной графики позволяют человеку использовать компьютер для произвольного рисования, черчения подобно тому, как он это делает на бумаге с помощью карандашей, кисточек, красок, циркулей, линеек и других инструментов. Пакеты иллюстративной графики не имеют какой-то производственной направленности. Поэтому они относятся к прикладному программному обеспечению общего назначения.
Простейшие программные средства иллюстративной графики называются графическими редакторами.
Художественная и рекламная графика. Это сравнительно новая отрасль, но уже ставшая популярной во многом благодаря телевидению. С помощью компьютера создаются рекламные ролики, мультфильмы, компьютерные игры, видеоуроки, видеопрезентации и многое другое.
Графические пакеты для этих целей требуют больших ресурсов компьютера по быстродействию и памяти. Отличительной особенностью этого класса графических пакетов является возможность создания реалистических (очень близких к естественным) изображений, а также «движущихся картинок» (рис. 9).
Для создания реалистических изображений в графических пакетах этой категории используется сложный математический аппарат.
Рис. 9 Художественная графика.
Компьютерная анимация. Получение движущихся изображений на дисплее ЭВМ называется компьютерной анимацией. Слово «анимация» означает «оживление».
В недавнем прошлом художники-мультипликаторы создавали свои фильмы вручную. Чтобы передать движение, им приходилось делать тысячи рисунков, отличающихся друг от друга небольшими изменениями. Затем эти рисунки переснимались на кинопленку. Система компьютерной анимации берет значительную часть рутинной работы на себя. Например, художник может создать на экране рисунки лишь начального и конечного состояний движущегося объекта, а все промежуточные состояния рассчитает и изобразит компьютер. Такая работа также связана с расчетами, опирающимися на математическое описание данного типа движения. Полученные рисунки, выводимые последовательно на экран с определенной частотой, создают иллюзию движения.
Фрактальная графика. Фрактальная графика – одна из быстроразвивающихся и перспективных видов компьютерной графики. Математическая основа - фрактальная геометрия. Фрактал – структура, состоящая из частей, подобных целому. Одним из основных свойств является самоподобие (Фрактус – состоящий из фрагментов).
Объекты называются самоподобными когда увеличенные части объекта походят на сам объект. Небольшая часть фрактала содержит информацию обо всем фрактале.
Рис.10 Фрактальная фигура.
Фрактальная графика основана на математических вычислениях. Базовым элементом фрактальной графики является сама математическая формула, то есть никаких объектов в памяти компьютера не хранятся и изображение строится исключительно по уравнениям.
Объекты называются самоподобными, когда увеличенные части объекта походят на сам объект. Небольшая часть фрактала содержит информацию обо всем фрактале.
Информация о состоянии каждого пикселя хранится в закодированном виде в памяти компьютера. Код может быть однобитовым, двухбитовым и т.д»
Для получения черно-белого изображения (без полутонов) пиксель может находиться в одном из двух состояний: светится — не светится (белый — черный). Тогда для его кодирования достаточно одного бита памяти: 1 — белый, 0 — черный.
Пиксель на цветном дисплее может иметь различную окраску. Поэтому одного бита на пиксель недостаточно.
Для кодирования четырехцветного изображения требуется двухбитовый код, поскольку с помощью двух битов можно выразить 4 различных значения (отобразить 4 различных состояния). Может использоваться, например, такой вариант кодирования цветов:
Из трех базовых цветов — зеленого, красного, синего — можно получить восемь комбинаций трехбитового кода:
В этом коде каждый базовый цвет обозначается его первой буквой (к — красный, с — синий, з — зеленый). Черточка означает отсутствие цвета Следовательно, для кодирования восьмицветного изображения требуются 3 бита памяти на один видеопиксель. Если наличие базового цвета обозначить единицей, а отсутствие — нулем, то получается таблица кодировки восьмицветной палитры.
Растровая графика
Растровые графические редакторы называют программами «картинного стиля», поскольку в них есть инструменты, которые используют художники при рисовании картин: «кисти», «краски», «ластики» и др. При создании растрового изображения пользователь словно водит кистью по «электронному полотну», закрашивая каждый пиксель рисунка, или стирает закраску пикселей, используя «ластик».
При вводе изображений с помощью сканера (фотографий, рисунков, документов) также формируются графические файлы растрового формата.
Основное достоинство растровой графики состоит в том, что при высокой разрешающей способности монитора растровое изображение может иметь фотографическое качество
Читайте также: